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Abstract 
 

Coal deposits in the adjacent regions of Shanxi, Shaanxi, and Inner Mongolia province (SSI) account for approximately 
two-thirds of coal in China; therefore, the SSI region has become the frontier of coal mining and its westward movement. 
Numerous adverse impacts to land and environment have arisen in these sandy, arid, and ecologically fragile areas. 
Underground coal mining activities cause land to subside and subsequent soil erosion, with slope length and slope 
steepness (LS) as the key influential factor. In this investigation, an SSI mining site was chosen as a case study area, and 
1) the pre-mining LS factor was obtained using a digital elevation model (DEM) dataset; 2) a mining subsidence 
prediction was implemented with revised subsidence prediction factors; and 3) the post-mining LS factor was calculated 
by integrating the pre-mining DEM dataset and coal mining subsidence prediction data. The results revealed that the LS 
factor leads to some changes in the bottom of subsidence basin and considerable alterations at the basin’s edges of basin. 
Moreover, the LS factor became larger in the steeper terrain under subsidence impacts. This integrated method could 
quantitatively analyse LS changes and spatial distribution under mining impacts, which will benefit and provide 
references for soil erosion evaluations in this region. 
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1. Introduction 
 
Underground coal mining results in land subsidence [1] and 
numerous adverse environmental and social changes [2]. 
The negative impacts of coal mining, including coal waste 
occupation, digging of opencast pits, dumps, and ground 
subsidence, can lead to landslides, spontaneous combustions 
and explosion, and cracks [3][4]. In China, 92% of the coal 
comes from underground mining, which is a unique 
phenomenon among the world’s coal mining countries [5]. 
In the US, Australia, India, and Indonesia, coal is mainly 
acquired via surface mining. In terms of subsidence, the 
effects are different in western and eastern China because of 
variations in geology and natural conditions. Mining 
subsidence induces farmland submergence in eastern China 
and leads to severe ecological disasters in western China. 
With the rapid development of coal exploitation, coal mining 
has been expanding westward. Therefore, the adjacent 
regions of Shanxi, Shaanxi, and Inner Mongolia province 
(SSI) became the frontier that accounts for approximately 
two-thirds of China’s coal production, and it is now known 
as the "Black Triangle" or the "Black Gold Triangle." This 
area covers Shenmu and Fugu in Shaanxi province, 

Shuozhou in Shanxi Province, and Junger and Erdos in Inner 
Mongolia. This area has a relatively dry climate, low 
rainfall, and a fragile ecological environment. Underground 
coal mining alters the original topography, thus exacerbating 
soil erosion and vegetation degradation. The related adverse 
ecological and environmental issues include: 1) ground 
fissures, 2) terrain alternation, 3) soil erosion, and 4) 
vegetation degradation; thus, mining subsidence planning 
and environmental conservation are major concerns. The 
relationships between mining subsidence and related issues 
are shown in Figure 1. Mining subsidence-induced soil 
erosion is considered one of the most prominent problems in 
western China. 
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Fig. 1. The importance of land subsidence in drought coal mines 
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Since the 1990s, growing concerns about environmental 
issues, and the implementation of Geographic Information 
System (GIS) technology and soil erosion assessment 
models, the Universal Soil Loss Equation (USLE) has been 
applied to soil erosion assessments and mapping on regional 
scales. In such applications, the most critical factor is LS 
(Slope Length and Slope Steepness), which is generated 
using the GIS platform. The LS factor is a parameter that 
gives a sense of topography characteristics set [6]. Most of 
the terrain factors such as slope, catchment area, slope, flat, 
can pixel and its surrounding elements like the three 
elevation data obtained from any one. The main factors 
involved in the secondary component are the combination of 
factors that describe spatial changes. Therefore, the LS 
factor is an important terrain factors that affects soil erosion. 
The spatial distribution and patterns of slope length, the 
impact of landforms on slope length, and the relationship 
between slope length and gradient are critical for soil erosion 
and research into this process. Many scholars have employed 
GIS platforms to study the LS factor (Remortel, 2001) [7]. 
Sui (2010) studied the LS factor acquisition method based 
on digital elevation model (DEM) and remote-sensing data 
[8], Qin (2010) discussed the effects of DEM data resolution 
changes on the value of LS [9]. Furthermore, Fistikoglu 
(2002) implemented a soil erosion study by using GIS and 
the USLE model [10], and some research was carried out 
regarding soil erosion prediction based on the LS factor [11]. 
However, the LS factor is dynamic during mining 
subsidence, and changes in this value can influence 
subsequent soil erosion. It is very important to obtain the 
dynamic LS factor and quantitatively analyze its effect on 
soil erosion and land disturbance. This paper proposes a 
methodology that includes pre-mining analysis, mining 
subsidence prediction, and post-mining analysis to 
quantitatively evaluate changes in LS and spatial 
distributions during mining processes. The proposed method 
provides a reference and foundation for soil erosion and loss 
caused by mining subsidence. 
 
 
2. Study Area 
 
This study investigated the Bulianta coal mine that was built 
and is managed by the Shenhua Coal Group. The Bulianta 
coal mine is located in Wulanmulun town, Erdos, Inner 
Mongolia (Figure 2). It is a typical sandy and arid mining 
area in western China, with barren soil and sparse ground 
vegetation. The natural elevation is 1,228-1,328 m above 
mean sea level, with an average of 1280 m. The region is 
largely covered by Quaternary Aeolian sand and other loose 
layers. The pre-mining geomorphology is relatively flat, 
with higher elevation in the northwest, southeast, and central 
portions. The region has a typical temperate continental 
climate, with abundant sunshine, four distinct seasons, and a 
spatial and temporal distribution of precipitation with very 
little uneven evaporation. The annual precipitation in the 
region in 195 to 531 mm (average 357 mm) and mostly falls 
between July and September. 

The Bulianta mine is the largest underground mine in the 
world. It is located at Ordos Inner Mongolia with 106.43 
km2 of mining area, 1,550 Mt of mineable reserve, and 77 
years of service life. The major coal seams are No. 1-2, 2-2, 
and 3-1. The total production reached 25 Mt in 2010. The 
study area covered a portion of the coal mine: seven panels 
shown in Figure 3. 

The main coal seams in this area are No. 1-2, with an 
average thickness of about 4.5 m. Buried depths of coal 
seams are about 190-220 m, and the dip angle of coal seams 
varies from 1° to 3°. The overburden has a thin alluvial 
strata and a very thick bedrock reaching 180-200 m. The 
seven panels that include the No. 1-2 coal seam were first 
mined 2006 and are still affected by mining impacts. This 
study analyzed the dynamic evolution of ground condition, 
with a focus on LS factor changes due to coal mining 
subsidence. 

 
Fig. 2. The remote-sensing image showing the study area 
 

 
 

Fig. 3. Panel layout of the study area 
 
3. Material and Methods 
 
3.1 Pre-mining LS factor 
 

As introduced in section 2, the study area was comprised 
of seven panels. The first (No. 1) was mined in 2007. A 
contour map (1:2,000 scale) was obtained in 2005 before 
mining activities were initiated. Under the GIS platform, 
Arcgis software designed by the Environmental Systems 
Research Institute (ESRI) was employed to analyze pre-
mining terrain conditions. The pre-mining DEM image was 
obtained using Kringer interpolation, which is shown in 
Figure 4.  
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L is the slope length factor, representing the effect of 
slope length on erosion, while S is the slope steepness, 
representing the effect of slope steepness on erosion. The L 
and S factors are usually considered together to determine 
their combined effects on erosion. Generally, the LS factor 
represents the ratio of regional and standard region soil 
losses. Typically, the LS factor and soil erosion intensity is 
proportional, as are the acceleration factors of soil erosion. 
The equation proposed by Wischmeier and Smith [12] was 
adopted to analyze the LS factor, as shown below: 

 
mλL =

22.13
⎡ ⎤
⎢ ⎥⎣ ⎦                                          
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Where λ represents slope length, 22.13 represents the 
slope length of standard region, m represents the slope 
length indicator, and θ  is the slope. 

Due to a large number of theoretical and experimental 
study surfaces, in terms of soil erosion, the influence of unit 
catchment area was much bigger than the influence of λ  on 
the two-dimensional surface flow environment [13]. 
Therefore, in the process of solving the practical 
requirements, λ  was replaced by the calculation of the unit 
catchment area, which was calculated as follows:  
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Where Aij is the upstream catchment area of the current 

grid cell, D represents the interval of DEM grid, xij is 

contour length factor, and ijα  is the aspect of the grid. 
The equation proposed by McCool [14] and Liu [15] was 

adopted to calculate the S factor in relatively gentle and 
steep slope conditions, as shown below: 

 

S=10.8sinθ+0.03    0 5θ≤ <o o
 

 
S =16.8sinθ - 0.50      5 10θ≤ <o o

                              (6) 
 

S = 21.91sinθ - 0.96      10θ ≥ o
 

 
Under the Arcgis platform utilizing hydrological 

analysis, spatial analysis, and grid-computing modules, the 
LS factor was extracted from DEM data (Figure 5). 

 
Fig. 4. Pre-mining DEM 
 

 
Fig. 5. Pre-mining LS factors 
 
3.2 Subsidence prediction analysis 
The probability integral method is based on random medium 
theory and is the most mature and widely used method in 
China. This method studies stratum movements by 
considering the rock mass as a random medium and the 
stratum movement as a random process obeying statistical 
rules. It allows accurate prediction for any shape and 
multiple work faces. For any single work face of any shape, 
the surface is first divided into many small rectangular faces 
along the X or Y direction. Secondly, the movements and 
deformation on the surface caused by every small 
rectangular face are calculated, and the results can display 
the movements and deformation in a specified direction at 
any point on ground. Thirdly, the prediction data caused by 
small rectangular faces are superimposed to determine the 
subsidence data for a single work face. A similar process is 
followed if there are many work faces in a specified area. 
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The subsidence height caused by a rectangular work face 
is shown as follows: 

 
A max x yW (x, y) = W C C                              (7) 

 

maxW = mqcosα                                   (8) 
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Where Wmax= maximum subsidence, m=seam thickness, 
q=subsidence factor, α=dip angle, l=panel length along 

strike, L=panel width along dip; r= tan
H
β , r1= 1

tan
H
β , r2= 

2

tan
H
β , radius of the influence circle, tanβ=tangent of draw 

angle, H=depth along strike, H1=depth along the boundary 
of the rise side, and H2=depth along the boundary of the dip 
side [16]. 

When prediction software is programmed according the 
above subsidence prediction model to generate mining 
subsidence data, the algorithm and prediction software has a 
very good performance history in China [1]. 

Using the probability integral method as a prediction 
model, the prediction parameters are shown in table 1, and 
the predicted subsidence contours are depicted in Figure 6.  

 
Table 1. Basic parameters for surface movement and deformation 
prediction 

Parameters Value 
Coefficient of the initial mining 0.55 

Horizontal movement coefficient 0.26 
Influence propagation angle tangent 2.51 

The displacement distance 0.03H 
Influence angle α7.090 −  

 

 
Fig. 6. Mining subsidence contours 
 

3.3 Post-mining LS factor 
The research was conducted to determine LS factor change 
laws under mining conditions; thus, mining subsidence 
prediction was implemented. By using GIS and coupling the 
predicted result of subsidence in different mining stages with 
the original elevation data, a dynamic visualization of 
mining processes is achieved that more clearly reflects 
geomorphologic features. Furthermore, it visually shows the 
variation and characterization of surface subsidence, 
according to which we can analyze and evaluate the degree 
of mining subsidence damage [16]. A post-mining DEM was 
generated and a post-mining LS factor map was 
subsequently obtained (Figure 7). 

 

 
Fig. 7. Post-mining LS factors 
 
 
4. Result Analysis 
 
The LS factor, in reference to the USLE, and its influence on 
the estimation of water erosion with the use of hydrological 
models and GIS is quite important in mining area. With the 
help of mining subsidence prediction software, the potential 
LS changes between pre- and post-mining conditions can 
now be analyzed. At the same time, a new question arises. 
Researchers need to know how the LS factor changes over a 
given spatial distribution, to determine how to prevent soil 
erosion. By using the raster calculator provided by Arcgis 
software, one can obtain the LS difference of pre-mining and 
post-mining conditions (Figure 8). These changes are 
summarized in Table 2. 
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Fig. 8. Pre- and post-mining LS changes 
 
Table 2. Pre- and post-mining LS changes 

Degree Range Sum area (hm2) Percentage (%) 

1 0-0.01 424.60  42.25  

2 0.01-0.06 133.58  13.29  

3 0.06-0.16 134.97  13.43  

4 0.16-0.50 148.15  14.74  

5 0.50-2 132.06  13.14  

6 2-10 27.77  2.76  

7 >10 3.75  0.37  

Total — 1,004.89  100.00  

 
The LS factor increased in different levels, indicating 

that soil erosion may have accelerated due to the mining 
subsidence influence. LS changes was categorized into 
seven degrees, degrees 1 to 4 were gentle change, and the 
maximum value was 0.5, whereas degrees 5 to 7 indicate 
severe change, with the maximum value reaching 10 or even 

more. Our results indicate that the LS factor changed 
dramatically in 16.28% of the study area, which is marked in 
red in Figure 8. The red distribution denotes steep slopes, 
suggesting that the hilly area would be more impacted by 
mining subsidence compared with relatively flat areas. 
Furthermore, most of the red color (or LS factor value 
increased area), was at the edges of the subsidence basin. 
Therefore, more attention should be paid to preventing soil 
erosion in those areas. 

 
 

5. Conclusions 
 
By employing of GIS and mining subsidence prediction 
software, the LS factor of Pre- and post-mining was obtained 
with spatial distribution in time domain. The pre-mining LS 
factor was obtained using a digital elevation model (DEM) 
dataset, and a mining subsidence prediction was 
implemented with revised subsidence prediction factors. 
Furthermore, the post-mining LS factor was calculated by 
integrating the pre-mining DEM dataset and coal mining 
subsidence prediction data. The results indicate that:  
 

1) The hilly area would be more impacted by mining 
subsidence compared with relatively flat areas;  

2) LS factor leads to some changes in the bottom of 
subsidence basin and considerable alterations at the basin’s 
edges of basin.  

 
The integrated method could quantitatively analyze LS 

changes and spatial distribution under mining impacts, 
which will benefit and provide references for soil erosion 
evaluations and related land reclamation work in this region. 
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