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Abstract 
 

Motivated by the wide application in some fields, such as viral marketing, sales promotion etc, influence maximization 
has been the most important and extensively studied problem in social network. However, the most classical KK-Greedy 
algorithm for influence maximization is inefficient. Two major sources of the algorithm’s inefficiency were analyzed in 
this paper. With the analysis of algorithms CELF and CELF++, all nodes in the influenced set of u would never bring any 
marginal gain when a new seed u was produced. Through this optimization strategy, a lot of redundant nodes will be 
removed from the candidate nodes. Basing on the strategy, two improved algorithms of Lv_CELF and Lv_CELF++ were 
proposed in this study. To evaluate the two algorithms, the two algorithms with their benchmark algorithms of CELF and 
CELF++ were conducted on some real world datasets. To estimate the algorithms, influence degree and running time 
were employed to measure the performance and efficiency respectively. Experimental results showed that, compared with 
benchmark algorithms of CELF and CELF++, matching effects and higher efficiency were achieved by the new 
algorithms Lv_CELF and Lv_CELF++. Solutions with the proposed optimization strategy can be useful for the decision-
making problems under the scenarios related to the  influence maximization problem. 
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1. Introduction 
 
Social network is used to describe a social structure made of 
nodes that is tied by one or more types of relationships.  As 
the wide promotion and application of some huge social 
network websites, such as Face book, Twitter, etc, social 
network has played a more and more important role in 
information diffusion.  
 Motivated by the wide applications in viral marketing, 
influence maximization was first proposed and studied as a 
fundamental algorithmic problem by Domingos and 
Richardson in [1,2]. Viral marketing is a new marketing 
technique that employs the pre-existing social network for 
the promotion of products. In viral marketing, when an 
advertisement reaches a susceptible user, the user will be 
infected, and shares the idea with others. So, with the word 
of mouth from user to user, the advertisement will spread 
quickly in the network, which is similar to the spreading of 
viruses or computer viruses.  
 In viral marketing, a few “influential” members of the 
network will be targeted and given free samples of the 
products. In this way, these “influential” members could 
trigger a cascading influence since their friends will 
recommend the product to other friends, and many 
individuals will try it as a result. The wide application of the 
social network websites, such as Facebook and Twitter, 
provide opportunities to conduct large-scale online viral 
marketing in these social networks. There are two most 
important technologies that would enable such large-scale 

online viral marketing, the modeling of influence diffusion 
and the influence maximization problem.  
 This work focuses on influence maximization, which is 
the problem of finding a small set of most influential nodes 
(seed nodes) in a social network that can maximize the 
spread of influence. As for the influence maximization, it 
was first studied as an algorithmic problem in [1,2]. 
However, in [3], Kempe et al. proposed two basic stochastic 
influence cascade models, the independent cascade model 
(ICM) and the linear threshold model (LTM). The two 
models are extracted from the earlier works on social 
network analysis, interactive particle systems, and 
marketing. In ICM and LTM, a social network is modeled as 
a directed graph G (V, E), where V is the node set, and E 
denotes the edge set. In the graph G, a node v in V 
represents an individual in the network, and an edge (u, v) in 
E denotes the relationship from u to v. In ICM, each edge 
has an activation probability. The influence is diffused by 
those active nodes’ independently activating their inactive 
neighbors based on their edge’s activation probability. In 
LTM, each edge has an influence weight, and each node has 
a threshold chosen uniformly at random. An inactive node 
will be activated if the sum of its incoming edges’ weight 
exceeds its threshold. In [3], Kempe et al. showed that both 
models could be generalized and their generalized versions 
were equivalent. 
Under some diffusion model, the influence spread of a given 
seed set is the expected number of the activated nodes when 
the diffusion process ends. Given the budget k, the influence 
maximization problem is to find a subset S of node set V 
with k nodes, so that the influence spread of S is maximal. In 
[3], Kempe et al. showed that the influence maximization 
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problem under both propagation models was NP-hard, and 
they proposed a greedy algorithm (KK-Greedy) for both 
models. Moreover, they proved that KK-Greedy algorithm 
could achieve an approximation ratio of 1-1/e.  
 However, KK-Greedy relies on the computation of the 
influence spread for a given seed set. In this algorithm, the 
influence spread is estimated by the Monte-Carlo 
simulations on influence cascade, which makes the 
algorithm very inefficient. For a moderate size graph of 30K 
nodes, the algorithm will run days to get a seed set of size 
50. 
To tackle the inefficiency of KK-Greedy, researchers have 
done a lot of work to improve the efficiency of the   
algorithm or to propose some new heuristic algorithms 
([4],[5],[6], [7],[8],[9],[10]).  
 The novelties of this study are summarized next. First, 
two reasons of the inefficiency of KK-Greedy are analyzed. 
Second, basing on the algorithm of CELF in [8] and the 
algorithm of CELF++ in [9], two new algorithms of 
Lv_CELF and Lv_CELF++ are proposed. Third, 
experiments of these algorithms are conducted on some real 
world datasets. And the experimental results show that both 
of the two proposed algorithms run faster than CELF and 
CELF++. 
 Since Lv_CELF and Lv_CELF++ are orthogonal to the 
algorithms which optimize the estimating of the influence 
spread, the proposed algorithms can be combined with them 
to achieve a highly scalable algorithm. 
The remainder of this paper is organized as follows. Section 
II surveys the related work of the propagation model and 
influence maximization. Section III presents two improved 
algorithms of Lv_CELF and Lv_CELF++ for influence 
maximization. Section IV presents the related experiments 
of the algorithms. Section V concludes this paper. 
 
 
2. Related Work 
 
Influence maximization was firstly studied as an algorithmic 
problem by Domingos and Richardson in [1, 2]. In their 
works, social networks were modeled as Markov random 
fields, and the probability of a node’s being activated was a 
function of both its intrinsic value and its active neighbors’ 
influence weights. Moreover, some methods that could 
approximately determine the influential nodes have been 
proposed in their works. However, influence maximization 
was firstly formulated as a discrete optimization problem by 
Kempe et al. in [3]. In their work, the researchers showed 
that the optimization problem was NP-hard, and then they 
proposed a greedy algorithm called KK-Greedy with an 
approximation of 1-1/e. In [8], Leskovec et al. proposed a 
“lazy-forward” strategy in choosing new seeds, which 
significantly reduced the number of influence spread 
evaluations. In [5], Chen et al. proposed a new heuristic 
algorithm named “degree discount” for the uniform ICM 
model in which all edge live probabilities were the same. 
The algorithm was very efficient. However, in later 
experiments, compared with KK-Greedy, the influence 
spread of the algorithm was rather poor. Instead of using 
Monto-Carlo simulations, in [5], Chen et al. also proposed a 
new algorithm called NewGreedy with an alternate “live-
edge” selecting process. Moreover, combining with the 
algorithm of CELF in [8], they proposed a more efficient 
algorithm of MixedGreedy. With the local directed acyclic 
graph of each node, Chen et al. proposed an efficient 
algorithm named LDAG under the LTM in [6]. With the 

local arborescence structure of every node, Wang et al. 
proposed an efficient algorithm named PMIA under the ICM 
in [7]. To further improve the efficiency of CELF, Goyal et 
al. proposed an efficient algorithm named CELF++ in [9]. 
 In addition to the literatures above, there are many other 
works for the influence maximization problem. Under the 
LTM, with the concept of Shapley value in cooperative 
game theory, a novel efficient algorithm called SPIN was 
proposed in [10]. Different from other works, the complexity 
of the influence maximization problem under deterministic 
linear threshold model was studied in [11]. The researchers 
showed that, for a given seed set, the exact computation of 
the influence could be solved in polynomial time. Under the 
susceptible/infected /susceptible (SIS) model, two influence 
maximization problems were defined in [12].By constructing 
a layered graph from the original work and applying the 
bond percolation with two effective control strategies, the 
authors solved the influence maximization problems 
effectively. To study the influence diffusion of competitive 
influences in social network, a game-theoretic model was 
introduced in [13]. The relation between the diameter of the 
network and the existence of the pure Nash equilibria of the 
game was studied. The authors showed that if the diameter 
was at most two then equilibrium existed in the game. 
Different from other algorithms, an efficient algorithm for 
influence maximization based on the ant colony optimization 
was proposed in [14]. Motivated by the resource and time 
constraints on viral marketing campaigns, two influence 
maximization problems (MINTSS and MINTIME) were 
studied in [15]. For MINTSS, the authors developed a 
simple greedy algorithm and showed that the algorithms 
could provide a bicriteria approximation.  For MINTIME, 
they showed that even bicriteria and tricriteria 
approximations were hard to provide under  several  
conditions. Taking users’ preferences into account, a  two-
stage  mining  algorithm  (GAUP)  for mining  most  
influential  nodes  on  a  specific  topic was proposed in [16]. 
To solve the influence maximization problem based on a 
realistic model, two efficient algorithms were proposed in 
[17]. Employing the community structure, the number of 
candidates of influential nodes was reduced greatly. So, the 
two proposed algorithms were very efficient. Under the 
LTM, by selecting the nodes with maximal potential 
influence, a threshold-based heuristic algorithm (TBH) for 
influence maximization was proposed in [18]. 
 
2.1 ICM 
Now, let’s consider a directed graph G=(V,E) with edge 
labels pp. For each edge (u,v) in E, pp(u,v) is the 
propagation probability of the edge, which is the probability 
that v is activated by u through the edge in the next time step 
after u is activated. 
 Given a seed set S (S⊆ V), the ICM works as follows. 
Let St  (St ⊆ V) be the node set whose nodes are activated at 
step t (t≥0, and S0=S). At step t+1, every node u in St may 
activate its out-neighbor v (v ∈ V- 0 i t iS≤ ≤U ) with 
independent probability pp(u,v). When St is φ, the process 
will end at step t.  
 Especially, each active node has only one chance to 
activate its out-neighbors at the step that is right after the 
node itself is activated. In the network G, given the seed set 
S, the influence spread of S is denoted as δ(G,S), which is 
the expected number of the activated nodes. 
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2.2 KK-Greedy Algorithm 
Given an input integer k, the influence maximization 
problem is to find a subset S*  (S*⊆ V, |S*|=k), such  that  δ
(G, S*)=max{δ(G,S)| S⊆ V,|S|=k }.  
 From literature [3], it is known that the problem is NP-
hard, but a constant-ratio approximation algorithm is 
available. 
 A set function f on nodes of graph G(V,E) is a function f: 
2V→R. Set function f is sub-modular if f(S∪{v})-f(S)≥f(T
∪{v})-f(T) for all v∈V-T and S ⊆ T. Intuitively, this 
means that the function f has diminished marginal return. 
Moreover, for all S⊆ T, if f(S)≤f(T) holds, the function f  
is monotone.  
 For any sub-modular and monotone function f with 
f(φ)=0, the problem of finding a set S of size k that 
maximizes f(S) can be approximated by a simple greedy 
algorithm.  
 Basing on this, Kempe et al. proposed the classic greedy 
algorithm KK-Greedy in [3]. The algorithm builds the initial 
seed set one node at a time, and always greedily chooses the 
node with the largest marginal gain in influence. 
 The algorithm is described in Algorithm 1.  
 
Algorithm 1 KK-Greedy(G,k) 
 

1) S=φ;  
2) While |S|<k do 
3) { 
4)    u= { }

\
argmax(| getInfluence( ,S v ) getInfluence( ,S) |)
v V S

G G
∈

−U ; 

5)    S=S+{u}; 
6) } 
7) Return S. 

 
 In KK-Greedy, getInfluence(G,S) is used to get the 
influenced node set for the seed set S in network G. The 
major limitation of KK-Greedy lies in its inefficiency. The 
inefficiency is two-folds:  
 (1)With the method of Monte Carlo simulation, the 
computation of getInfluence(G,S) is very time-consuming; 
 (2)There are too many candidate nodes whose marginal 
gains of influence need to be computed. As a matter of fact, 
the algorithm will call function getInfluence O(nk) times, 
where n is the number of nodes in network G.  
 In recent years, to address the inefficiency of influence 
maximization algorithm, researchers have proposed a lot of 
excellent algorithms, like NewGreedy in [5], LDAG in [6], 
and PMIA in [7], etc. To reduce the times of calling the 
function getInfluence, researchers have proposed CELF in 
[8] and CELF++ in [9]. To decrease the number of candidate 
nodes and further improve the efficiency of influence 
maximization, two improved algorithms for CELF and 
CELF++ have been proposed in this work. Experimental 
results show that, compared with the original benchmark 
algorithms, the proposed algorithms have matching 
performance and higher efficiency. 
 
 
3. Improved Algorithms for CELF and CELF++ 
 
This section will detail the two improved algorithms for  
CELF and CELF++.  

 

3.1 CELF Algorithm 
From the algorithm 1, it can be seen that, in KK-Greedy, in 
order to choose a new seed node, each node in set V-S will 
be examined to see if it has the maximal gain in influence. 
That is, each v in V-S is chosen as the candidate seed node, 
which greatly reduces the efficiency of KK-Greedy.  
 Employing the sub-modularity of influence function, 
basing on a “lazy-forward” optimization, Jure et al. proposed 
the algorithm of CELF in [8]. The idea behind CELF is that 
the marginal gain provided by a node in the current iteration 
cannot be better than the marginal gain provided by the node 
in the previous iteration.  
 The algorithm works as follows. It maintains a table 
Q<u, u.mg,u.flag> that is sorted by u.mg in decreasing 
order. In table Q, a record corresponds to a node in the 
network. In a record <u, u.mg,u.flag>, u.mg denotes the 
marginal gain of node u w.r.t S, and u.mg is the iteration 
number when u.mg is last updated.  
 Algorithm of CELF is outlined in Algorithm 2. 
 
Algorithm 2 CELF_Greedy(G,K) 
 

1) S= φ;  
2) Q=φ; 
// First iteration  
3) For each u in V do 
4) { 
5)     u.mg=|getInfluence(G,{v})|; 
6)     u.flag=0; 
7)     add u to Q by u.mg in descending order ; 
8)      } 
//CELF 
9) While |S|<k do 
10)  { 
11)    u=Q[top]; 
12)    if u.flag==|s| then 
13)    { 
14)      S=S+{u}; 
15)      Q=Q-{u}; 
16)    } 
17)   Else 
18)    {  
19)       u.mg=|getInfluence(G,S+{u})-getInfluence(G,S)|; 
20)       u.flag=|S|;  
21)       Resort Q by u.mg in descending order;  
22)         } 
23)   } 
24) Return S. 

 
 From algorithm 2, it can be seen that, in the first 
iteration, the marginal gain u.mg of every node u in V-S will 
be computed and the record of u will be added to Q in 
decreasing order of u.mg (lines 3-9). Then, in each iteration, 
for the first node u in Q, the algorithm will examine if u.mg 
is last computed in the current iteration. If yes, due to the 
sub-modularity, u must be the node with the greatest 
marginal gain, and will be selected as the current seed (lines 
14-18). Otherwise, the marginal gain u.mg will be 
recomputed, the flag of u (u.flag) will be updated, and then 
the table Q with the new u.mg will be resorted (lines 19-24). 
Obviously, through the optimization, the algorithm of CELF 
avoids the re-computation of  u.mg for each node u in 
repeated iterations. 

 



Jiaguo Lv, Jingfeng Guo, Zhen Yang, Wei Zhang and Allen Jocshi/Journal of Engineering Science and Technology Review 7 (3) (2014) 32 – 38 
 

 35 

3.2 Lv_CELF Algorithm 
The main idea of Lv_CELF is as follows. When  a new seed 
node u is produced, u.mgset is used to denote the marginal 
influence set of u under the current seed set S. Apparently, 
u.mgset=getInfluence(G,S+{u})-getInfluence (G,S).  
 When node u becomes the new seed node, for each node 
v in u.mgset, if node v will be selected as a new seed, it will 
never get any marginal gain in influence. Because node v 
can be activated by seed set S+{u}, all nodes that can be 
influenced by node v can be activated by seed set S+{u} too.  
Basing on this strategy, for algorithms of CELF and 
CELF++, two improved algorithms of Lv_CELF and 
Lv_CELF++ have been proposed. 
 In Lv_CELF, the algorithm maintains a table 
Q<u,u.mg,u.mgset, u.flag> that is sorted by u.mg in 
decreasing order. Since the node in u.mgset can be activated 
by seed set S+ {u}, so, when u is selected as the current 
seed, all nodes in u.mgset will be removed from table Q.  
In this way, many redundant candidate seed nodes are 
removed from the table Q, and the times of re-computing 
u.mg is greatly reduced.  
 Algorithm Lv_CELF is described in Algorithm 3. 
 
Algorithm 3 Lv_CELF _Greedy(G,K) 

1) S= φ;  
2) Q=φ; 
3) For each u in V do 
4) { 
5)      u.mgset=getInfluence(G,{u}); 
6)      u.mg=|u.mgset|; 
7)      u.flag=0 ; 
8)      add u to Q by u.mg in descending order; 
9)  } 
10) While |S|<k and |Q|>0 do 
11)  {  
12)     u=Q[top]; 
13)     if u.flag==|s| then 
14)      {  
15)         S=S+{u}; 
16)         Q=Q-u.mgset; 
17)       } 
18)     Else 
19)      { 
20)         u.mgset=getInfluence(G,S+{v})- 

getInfluence(G,S); 
21)         u.mg=|u.mgset|; 
22)         u.flag=|S|; 
23)         Resort Q by u.mg in descending order; 
24)      } 
25)  } 
26) Return S. 
From algorithm 3, it can be seen that the optimization of 

lv_CELF comes from line 16. In line 16, all nodes in 
u.mgset are removed from Q, which is different from CELF. 
By this way, the number of candidate nodes is reduced 
greatly, and then it improves the efficiency greatly. 

 
3.3 CELF++ Algorithm 
From literature [9], it can be seen that the algorithm of 
CELF++ is an improved version of CELF. Different from 
CELF, CELF++ remains a table Q<u.mg1, u.prev_best, 
u.mg2, u.flag> for all nodes that should be examined. In 
table Q, u.mg1 is the size of marginal influence set of node u 
under the current seed set S, namely, u.mg1= 
|getInfluence(G,S+{u}) -getInfluence(G,S)|; u.prev_best is 
the node with the maximum marginal gain among those 

nodes examined in the current iteration before u; u.mg2 
denotes the size of marginal influence set of u under the seed 
set S+{u.prev_best},  namely,  u.mg2=  |getInfluence (G,S 
+{u.prev_best}+{u})- getInfluence(G, S+{u.prev_best})|; 
u.flag is the iteration number when u.mg1 is last updated.  
 The main idea of CELF++ is that if the node u.prev_best 
is chosen as a seed in the current iteration, the marginal gain 
of u w.r.t S+{prev_best} in the next iteration doesn’t need to 
be computed again. The algorithm of CELF++ is detailed in 
algorithm 4. From algorithm 4, it can be seen that the 
optimization comes from lines 26-27. 

 
Algorithm 4 CELF++_Greedy(G,K) 

1) S= φ; 
2) Q=φ; 
3) last_seed=null;  
4) cur_best=null; 
5) For each u in V do 
6) { 
7)     u.mg1=|getInfluence(G,{u})| 
8)     u.prev_best=cur_best; 
9)     u.mg2=|getInfluence(G,{u.prev_best}+{u})- 
                      getInfluence(G, {u.prev_best})|; 
10)     u.flag=0; 
11)     add u to Q by u.mg in descending order; 
12)     update cur_best based on u.mg1; 
13)  } 
14) While |S|<k do 
15) {  
16)     u=Q[top]; 
17)     If u.flag==|S| then 
18)     {  
19)        S=S+{u}; 
20)        Q=Q-{u}; 
21)        Last_seed=u;  
22)        cur_best=null; 
23)      } 
24)     Else 
25)     { 
26)        if (u.prev_best==last_seed) and (u.flag=|S|-1)  

           then 
27)              u.mg1=u.mg2 
28)        else 
29)         { 
30)            u.mg1=|getInfluence(G,S+{u})- 
                             getInfluence(G,S)|; 
31)            u.mg2=|getInfluence(G,S+{prev_best}+{u})- 
                             getInfluence(G,S+{prev_best})|; 
32)            u.prev_best=cur_best  ; 
33)         } 
34)      u.flag=|S|; 
35)      } 
36)       Resort Q by u.mg1 in descending order ; 
37)  } 
38)  Return S.  

 
3.4 Lv_CELF++ Algorithm 
Basing on the same idea as in Lv_CELF, the improved 
algorithm of Lv_CELF++ for CELF++ has been proposed in 
this work. Like the algorithms of CELF++, Lv_CELF++ 
maintains a table Q<u, u.mg1, u.mgset1, 
u.mg2,u.mgset2,u.flag>. In table Q, u.mgset1 and u.mgset2 
denote the influence sets of u.mg1 and u.mg2 respectively; 
and other items have the same meanings as in CELF++.  
 Lv_CELF++ is described in Algorithm 5. 
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Algorithm 5 Lv_CELF++_Greedy (G, K) 
 

1) S= φ;  
2) Q=φ; 
3) last_seed=null;  
4) cur_best=null; 
5) For each u in V do 
6)  {  
7)    u.mgset1=getInfluence(G,{u}); 
8)    u.mg1=|u.mgset1|; 
9)    u.mgset2=getInfluence(G,{cur_best}|{u})-  
                         getInfluence(G,{cur_best}); 
10)    u.mg2=|u.mgset2|; 
11)    u.prev_best=cur_best; 
12)    u.flag=0; 
13)    add u to Q by u.mg1 in descending order; 
14)    update cur_best based on u.mg1; 
15)   } 
16) While |S|<k and |Q|>0 do 
17)   {  
18)     u=Q[top]; 
19)     If u.flag==|S| then 
20)     {  
21)        S=S+{u}; 
22)        Q=Q-u.mgset1; 
23)        Last_seed=u; cur_best=null;   
24)      } 
25)     Else   
26)     { 
27)      if u.prev_best==last_seed and u.flag=|S|-1  
             then 
28)         {  
29)            u.mg1=u.mg2; 
30)            u.mgset1=u.mgset2; 
31)          } 
32)        else 
33)         { 
34)            u.mgset1= getInfluence(G,S+{u})- 
                                  getInfluence(G,S); 
35)            u.mg1=| u.mgset1|; 
36)            u.mgset2=getInfluence(G,S+{prev_best}+ 

                          {u})-getInfluence(G,S+{prev_best}) 
37)            u.mg2=| u.mgset2|; 
38)            u.prev_best=cur_best; 
39)           }//if 
40)          u.flag=|S|; 
41)     }//IF 
42)   Resort Q by u.mg1 in descending order  
43)  }//While 
44) Return S. 

 
3.4 Complexity Comparison 
As discussed before, Lv_CELF is the improved version of 
CELF. For a candidate node u, the times of computing 
marginal gain in Lv_CELF is equal to that in CELF. 
However, with the adding of a new node to the current seed 
set S, more nodes are removed from the candidate node set. 
So, in terms of computational efficiency, Lv_CELF is higher 
than CELF. As described above, Lv_CELF++ is the 
improved version of CELF++. Because of the same idea 
behind in Lv_CELF and in Lv_CELF++, the performance 
comparison of Lv_CELF++ and CELF++ is similar to that 
of Lv_CELF and CELF. 
 
 

4. Experiments 
 
To evaluate the improved algorithms of Lv_CELF and 
Lv_CELF++, in this section, the algorithms of CELF, 
CELF++, Lv_CELF and Lv_CELF++ are implemented. And 
then the algorithms are conducted on some real world 
datasets. In terms of efficiency, the running times of these 
algorithms with different budget k are reported in this 
section. To evaluate the performances of the algorithms, the 
influence spreads of these algorithms with different budget k 
are reported in this section.  

For all the experiments in this paper, the ICM has been 
selected as the influence propagating model. 

This section first describes the data sets and the 
experimental setup, and then demonstrates the performance 
and efficiency of the algorithms on various data sets. 
 
4.1 Dataset 
The real world dataset in this study comes from Epinions.  
Epinions is a well-known website for product ratings. The 
format of the Epinons dataset is (id,whoid,whomid). It 
means that the user whoid trusts the user whomid. Basing on 
the dataset, the directed graph can be obtained. At the 
beginning of running algorithms, for every edge (u,v), a 
random value in [0,1]  has been chosen as its activation 
possibility.  

All the experiments in this paper are running on a desktop 
computer with: 

 
(1)I5 2400S and 4GB of RAM; 
(2) 32-bit Windows 7+Python2.6+Networkx0.9. 
 
To evaluate the expected influence spread of see set S in 

the social network G, the Monte-Carlo simulations method is 
adopted. For each edge (u,v) , when node u is activated, it 
will try to activate v R times. If the number of activation 
exceeds R*0.6, u can activate v successfully. To evaluate the 
performance of the algorithms, three different datasets with 
various numbers of nodes and edges at random has been 
chosen.  

The statics of these three datasets are shown in Tab.1. 
 
Tab. 1.  Statics of datasets 
 

id dataset nodes edges Avg. degree 

1 data1 730 1094 2.9973 

2 data2 3798 10601 5.2981 

3 data3 18643 95724 10.2692 
 
4.2 Experimental Results 
To evaluate the performances of the algorithms, the 
algorithms are conducted on dataset data1, data2 and data3. 
The experimental results are shown in Fig. 1, Fig. 2, Fig. 3, 
Fig. 4, Fig. 5 and Fig. 6.  

The running times of these algorithms on dataset data1, 
data2 and data3 are shown in Fig. 1, Fig. 3 and Fig. 5. From 
the figures, it can be seen that Lv_CELF is more efficient 
than CELF, and Lv_CELF++ is faster than CELF++. 
Moreover, algorithm of CELF++ is much slower than CELF, 
which is different from the results reported in [9]. Obviously, 
Lv_CELF is the most efficient one among them. 

The influence spreads of these algorithms on dataset data1, 
data2 and data3 are shown in Fig. 2, Fig. 4 and Fig. 6. From 
the figures, it can be seen that the influence spreads of the 
four algorithms are matching.  
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As for the scalability, when the network is given, with the 
increasing of seed set size k, the running times of Lv_CELF 
and Lv_CELF++ increase slowly. However, for a given seed 
set size k, when the scale of the network is increasing, the 
running times of the two algorithms increase quickly. So, 
algorithms of Lv_CELF and Lv_CELF++ are not scalable. 
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Fig. 1. Running time of data1 
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Fig. 2. Influence spread of data1 
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Fig. 3. Running time of data2 
 
 

0

200

400

600

800

1000

1200

10 20 30 40 50 60

celf++

lv_celf++

celf

lv_celf

Influence Spread

K

 
Fig. 4. Influence spread of data2 
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Fig. 5. Running time of data3 
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Fig. 6. Influence spread of data3 
 

 
 
5. Conclusion 
 
The reasons of the inefficiency of KK_Greedy were first 
analyzed in this paper. Then, in order to further improve the 
efficiency of the greedy algorithm for influence 
maximization in social network, two improved algorithm of 
Lv_CELF and Lv_CELF++ for CELF and CELF++ were 
proposed in this paper. Basing on the idea of eliminating the 
redundant candidate seed nodes, the improved algorithms 
further reduce the times of calling influence estimation 
function, and improve the performance of the greedy 
algorithm. The empirical studies on real world datasets show 
that the two algorithms can achieve matching influence 
spread with their benchmark algorithms, while being faster. 
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