

Journal of Engineering Science and Technology Review 7 (3) (2014) 32– 38

Research Article

Improved Algorithms OF CELF and CELF++ for Influence Maximization

Jiaguo Lv1,2, Jingfeng Guo2,* , Zhen Yang1, Wei Zhang1 and Allen Jocshi3

1 School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277100- China
2 School of Information Science and Engineering,Yanshan University, Qinhuangdao, 066004-China

3Network Information Center for Design and Analysis, MCCN Ltd, 11952 Gdansk- Poland

Received 15 December 2013; Accepted 2 June 2014

Abstract

Motivated by the wide application in some fields, such as viral marketing, sales promotion etc, influence maximization
has been the most important and extensively studied problem in social network. However, the most classical KK-Greedy
algorithm for influence maximization is inefficient. Two major sources of the algorithm’s inefficiency were analyzed in
this paper. With the analysis of algorithms CELF and CELF++, all nodes in the influenced set of u would never bring any
marginal gain when a new seed u was produced. Through this optimization strategy, a lot of redundant nodes will be
removed from the candidate nodes. Basing on the strategy, two improved algorithms of Lv_CELF and Lv_CELF++ were
proposed in this study. To evaluate the two algorithms, the two algorithms with their benchmark algorithms of CELF and
CELF++ were conducted on some real world datasets. To estimate the algorithms, influence degree and running time
were employed to measure the performance and efficiency respectively. Experimental results showed that, compared with
benchmark algorithms of CELF and CELF++, matching effects and higher efficiency were achieved by the new
algorithms Lv_CELF and Lv_CELF++. Solutions with the proposed optimization strategy can be useful for the decision-
making problems under the scenarios related to the influence maximization problem.

 Keywords: Social Network, Influence Propagation, Influence Maximization, CELF,CELF++, Lv_CELF, Lv_CELF++
 __

1. Introduction

Social network is used to describe a social structure made of
nodes that is tied by one or more types of relationships. As
the wide promotion and application of some huge social
network websites, such as Face book, Twitter, etc, social
network has played a more and more important role in
information diffusion.
 Motivated by the wide applications in viral marketing,
influence maximization was first proposed and studied as a
fundamental algorithmic problem by Domingos and
Richardson in [1,2]. Viral marketing is a new marketing
technique that employs the pre-existing social network for
the promotion of products. In viral marketing, when an
advertisement reaches a susceptible user, the user will be
infected, and shares the idea with others. So, with the word
of mouth from user to user, the advertisement will spread
quickly in the network, which is similar to the spreading of
viruses or computer viruses.
 In viral marketing, a few “influential” members of the
network will be targeted and given free samples of the
products. In this way, these “influential” members could
trigger a cascading influence since their friends will
recommend the product to other friends, and many
individuals will try it as a result. The wide application of the
social network websites, such as Facebook and Twitter,
provide opportunities to conduct large-scale online viral
marketing in these social networks. There are two most
important technologies that would enable such large-scale

online viral marketing, the modeling of influence diffusion
and the influence maximization problem.
 This work focuses on influence maximization, which is
the problem of finding a small set of most influential nodes
(seed nodes) in a social network that can maximize the
spread of influence. As for the influence maximization, it
was first studied as an algorithmic problem in [1,2].
However, in [3], Kempe et al. proposed two basic stochastic
influence cascade models, the independent cascade model
(ICM) and the linear threshold model (LTM). The two
models are extracted from the earlier works on social
network analysis, interactive particle systems, and
marketing. In ICM and LTM, a social network is modeled as
a directed graph G (V, E), where V is the node set, and E
denotes the edge set. In the graph G, a node v in V
represents an individual in the network, and an edge (u, v) in
E denotes the relationship from u to v. In ICM, each edge
has an activation probability. The influence is diffused by
those active nodes’ independently activating their inactive
neighbors based on their edge’s activation probability. In
LTM, each edge has an influence weight, and each node has
a threshold chosen uniformly at random. An inactive node
will be activated if the sum of its incoming edges’ weight
exceeds its threshold. In [3], Kempe et al. showed that both
models could be generalized and their generalized versions
were equivalent.
Under some diffusion model, the influence spread of a given
seed set is the expected number of the activated nodes when
the diffusion process ends. Given the budget k, the influence
maximization problem is to find a subset S of node set V
with k nodes, so that the influence spread of S is maximal. In
[3], Kempe et al. showed that the influence maximization

 * E-mail address: lvjiaguo2004@163.com
ISSN: 1791-2377 © 2014 Kavala Institute of Technology. All rights reserved.

Jestr

JOURNAL OF
Engineering Science
and Technology Review

 www.jestr.org

Jiaguo Lv, Jingfeng Guo, Zhen Yang, Wei Zhang and Allen Jocshi/Journal of Engineering Science and Technology Review 7 (3) (2014) 32 – 38

 33

problem under both propagation models was NP-hard, and
they proposed a greedy algorithm (KK-Greedy) for both
models. Moreover, they proved that KK-Greedy algorithm
could achieve an approximation ratio of 1-1/e.
 However, KK-Greedy relies on the computation of the
influence spread for a given seed set. In this algorithm, the
influence spread is estimated by the Monte-Carlo
simulations on influence cascade, which makes the
algorithm very inefficient. For a moderate size graph of 30K
nodes, the algorithm will run days to get a seed set of size
50.
To tackle the inefficiency of KK-Greedy, researchers have
done a lot of work to improve the efficiency of the
algorithm or to propose some new heuristic algorithms
([4],[5],[6], [7],[8],[9],[10]).
 The novelties of this study are summarized next. First,
two reasons of the inefficiency of KK-Greedy are analyzed.
Second, basing on the algorithm of CELF in [8] and the
algorithm of CELF++ in [9], two new algorithms of
Lv_CELF and Lv_CELF++ are proposed. Third,
experiments of these algorithms are conducted on some real
world datasets. And the experimental results show that both
of the two proposed algorithms run faster than CELF and
CELF++.
 Since Lv_CELF and Lv_CELF++ are orthogonal to the
algorithms which optimize the estimating of the influence
spread, the proposed algorithms can be combined with them
to achieve a highly scalable algorithm.
The remainder of this paper is organized as follows. Section
II surveys the related work of the propagation model and
influence maximization. Section III presents two improved
algorithms of Lv_CELF and Lv_CELF++ for influence
maximization. Section IV presents the related experiments
of the algorithms. Section V concludes this paper.

2. Related Work

Influence maximization was firstly studied as an algorithmic
problem by Domingos and Richardson in [1, 2]. In their
works, social networks were modeled as Markov random
fields, and the probability of a node’s being activated was a
function of both its intrinsic value and its active neighbors’
influence weights. Moreover, some methods that could
approximately determine the influential nodes have been
proposed in their works. However, influence maximization
was firstly formulated as a discrete optimization problem by
Kempe et al. in [3]. In their work, the researchers showed
that the optimization problem was NP-hard, and then they
proposed a greedy algorithm called KK-Greedy with an
approximation of 1-1/e. In [8], Leskovec et al. proposed a
“lazy-forward” strategy in choosing new seeds, which
significantly reduced the number of influence spread
evaluations. In [5], Chen et al. proposed a new heuristic
algorithm named “degree discount” for the uniform ICM
model in which all edge live probabilities were the same.
The algorithm was very efficient. However, in later
experiments, compared with KK-Greedy, the influence
spread of the algorithm was rather poor. Instead of using
Monto-Carlo simulations, in [5], Chen et al. also proposed a
new algorithm called NewGreedy with an alternate “live-
edge” selecting process. Moreover, combining with the
algorithm of CELF in [8], they proposed a more efficient
algorithm of MixedGreedy. With the local directed acyclic
graph of each node, Chen et al. proposed an efficient
algorithm named LDAG under the LTM in [6]. With the

local arborescence structure of every node, Wang et al.
proposed an efficient algorithm named PMIA under the ICM
in [7]. To further improve the efficiency of CELF, Goyal et
al. proposed an efficient algorithm named CELF++ in [9].
 In addition to the literatures above, there are many other
works for the influence maximization problem. Under the
LTM, with the concept of Shapley value in cooperative
game theory, a novel efficient algorithm called SPIN was
proposed in [10]. Different from other works, the complexity
of the influence maximization problem under deterministic
linear threshold model was studied in [11]. The researchers
showed that, for a given seed set, the exact computation of
the influence could be solved in polynomial time. Under the
susceptible/infected /susceptible (SIS) model, two influence
maximization problems were defined in [12].By constructing
a layered graph from the original work and applying the
bond percolation with two effective control strategies, the
authors solved the influence maximization problems
effectively. To study the influence diffusion of competitive
influences in social network, a game-theoretic model was
introduced in [13]. The relation between the diameter of the
network and the existence of the pure Nash equilibria of the
game was studied. The authors showed that if the diameter
was at most two then equilibrium existed in the game.
Different from other algorithms, an efficient algorithm for
influence maximization based on the ant colony optimization
was proposed in [14]. Motivated by the resource and time
constraints on viral marketing campaigns, two influence
maximization problems (MINTSS and MINTIME) were
studied in [15]. For MINTSS, the authors developed a
simple greedy algorithm and showed that the algorithms
could provide a bicriteria approximation. For MINTIME,
they showed that even bicriteria and tricriteria
approximations were hard to provide under several
conditions. Taking users’ preferences into account, a two-
stage mining algorithm (GAUP) for mining most
influential nodes on a specific topic was proposed in [16].
To solve the influence maximization problem based on a
realistic model, two efficient algorithms were proposed in
[17]. Employing the community structure, the number of
candidates of influential nodes was reduced greatly. So, the
two proposed algorithms were very efficient. Under the
LTM, by selecting the nodes with maximal potential
influence, a threshold-based heuristic algorithm (TBH) for
influence maximization was proposed in [18].

2.1 ICM
Now, let’s consider a directed graph G=(V,E) with edge
labels pp. For each edge (u,v) in E, pp(u,v) is the
propagation probability of the edge, which is the probability
that v is activated by u through the edge in the next time step
after u is activated.
 Given a seed set S (S⊆ V), the ICM works as follows.
Let St (St ⊆ V) be the node set whose nodes are activated at
step t (t≥0, and S0=S). At step t+1, every node u in St may
activate its out-neighbor v (v ∈ V- 0 i t iS≤ ≤U) with
independent probability pp(u,v). When St is φ, the process
will end at step t.
 Especially, each active node has only one chance to
activate its out-neighbors at the step that is right after the
node itself is activated. In the network G, given the seed set
S, the influence spread of S is denoted as δ(G,S), which is
the expected number of the activated nodes.

Jiaguo Lv, Jingfeng Guo, Zhen Yang, Wei Zhang and Allen Jocshi/Journal of Engineering Science and Technology Review 7 (3) (2014) 32 – 38

 34

2.2 KK-Greedy Algorithm
Given an input integer k, the influence maximization
problem is to find a subset S* (S*⊆ V, |S*|=k), such that δ
(G, S*)=max{δ(G,S)| S⊆ V,|S|=k }.
 From literature [3], it is known that the problem is NP-
hard, but a constant-ratio approximation algorithm is
available.
 A set function f on nodes of graph G(V,E) is a function f:
2V→R. Set function f is sub-modular if f(S∪{v})-f(S)≥f(T
∪{v})-f(T) for all v∈V-T and S ⊆ T. Intuitively, this
means that the function f has diminished marginal return.
Moreover, for all S⊆ T, if f(S)≤f(T) holds, the function f
is monotone.
 For any sub-modular and monotone function f with
f(φ)=0, the problem of finding a set S of size k that
maximizes f(S) can be approximated by a simple greedy
algorithm.
 Basing on this, Kempe et al. proposed the classic greedy
algorithm KK-Greedy in [3]. The algorithm builds the initial
seed set one node at a time, and always greedily chooses the
node with the largest marginal gain in influence.
 The algorithm is described in Algorithm 1.

Algorithm 1 KK-Greedy(G,k)

1) S=φ;
2) While |S|<k do
3) {
4) u= { }

\
argmax(| getInfluence(,S v) getInfluence(,S) |)
v V S

G G
∈

−U ;

5) S=S+{u};
6) }
7) Return S.

 In KK-Greedy, getInfluence(G,S) is used to get the
influenced node set for the seed set S in network G. The
major limitation of KK-Greedy lies in its inefficiency. The
inefficiency is two-folds:
 (1)With the method of Monte Carlo simulation, the
computation of getInfluence(G,S) is very time-consuming;
 (2)There are too many candidate nodes whose marginal
gains of influence need to be computed. As a matter of fact,
the algorithm will call function getInfluence O(nk) times,
where n is the number of nodes in network G.
 In recent years, to address the inefficiency of influence
maximization algorithm, researchers have proposed a lot of
excellent algorithms, like NewGreedy in [5], LDAG in [6],
and PMIA in [7], etc. To reduce the times of calling the
function getInfluence, researchers have proposed CELF in
[8] and CELF++ in [9]. To decrease the number of candidate
nodes and further improve the efficiency of influence
maximization, two improved algorithms for CELF and
CELF++ have been proposed in this work. Experimental
results show that, compared with the original benchmark
algorithms, the proposed algorithms have matching
performance and higher efficiency.

3. Improved Algorithms for CELF and CELF++

This section will detail the two improved algorithms for
CELF and CELF++.

3.1 CELF Algorithm
From the algorithm 1, it can be seen that, in KK-Greedy, in
order to choose a new seed node, each node in set V-S will
be examined to see if it has the maximal gain in influence.
That is, each v in V-S is chosen as the candidate seed node,
which greatly reduces the efficiency of KK-Greedy.
 Employing the sub-modularity of influence function,
basing on a “lazy-forward” optimization, Jure et al. proposed
the algorithm of CELF in [8]. The idea behind CELF is that
the marginal gain provided by a node in the current iteration
cannot be better than the marginal gain provided by the node
in the previous iteration.
 The algorithm works as follows. It maintains a table
Q<u, u.mg,u.flag> that is sorted by u.mg in decreasing
order. In table Q, a record corresponds to a node in the
network. In a record <u, u.mg,u.flag>, u.mg denotes the
marginal gain of node u w.r.t S, and u.mg is the iteration
number when u.mg is last updated.
 Algorithm of CELF is outlined in Algorithm 2.

Algorithm 2 CELF_Greedy(G,K)

1) S= φ;
2) Q=φ;
// First iteration
3) For each u in V do
4) {
5) u.mg=|getInfluence(G,{v})|;
6) u.flag=0;
7) add u to Q by u.mg in descending order ;
8) }
//CELF
9) While |S|<k do
10) {
11) u=Q[top];
12) if u.flag==|s| then
13) {
14) S=S+{u};
15) Q=Q-{u};
16) }
17) Else
18) {
19) u.mg=|getInfluence(G,S+{u})-getInfluence(G,S)|;
20) u.flag=|S|;
21) Resort Q by u.mg in descending order;
22) }
23) }
24) Return S.

 From algorithm 2, it can be seen that, in the first
iteration, the marginal gain u.mg of every node u in V-S will
be computed and the record of u will be added to Q in
decreasing order of u.mg (lines 3-9). Then, in each iteration,
for the first node u in Q, the algorithm will examine if u.mg
is last computed in the current iteration. If yes, due to the
sub-modularity, u must be the node with the greatest
marginal gain, and will be selected as the current seed (lines
14-18). Otherwise, the marginal gain u.mg will be
recomputed, the flag of u (u.flag) will be updated, and then
the table Q with the new u.mg will be resorted (lines 19-24).
Obviously, through the optimization, the algorithm of CELF
avoids the re-computation of u.mg for each node u in
repeated iterations.

Jiaguo Lv, Jingfeng Guo, Zhen Yang, Wei Zhang and Allen Jocshi/Journal of Engineering Science and Technology Review 7 (3) (2014) 32 – 38

 35

3.2 Lv_CELF Algorithm
The main idea of Lv_CELF is as follows. When a new seed
node u is produced, u.mgset is used to denote the marginal
influence set of u under the current seed set S. Apparently,
u.mgset=getInfluence(G,S+{u})-getInfluence (G,S).
 When node u becomes the new seed node, for each node
v in u.mgset, if node v will be selected as a new seed, it will
never get any marginal gain in influence. Because node v
can be activated by seed set S+{u}, all nodes that can be
influenced by node v can be activated by seed set S+{u} too.
Basing on this strategy, for algorithms of CELF and
CELF++, two improved algorithms of Lv_CELF and
Lv_CELF++ have been proposed.
 In Lv_CELF, the algorithm maintains a table
Q<u,u.mg,u.mgset, u.flag> that is sorted by u.mg in
decreasing order. Since the node in u.mgset can be activated
by seed set S+ {u}, so, when u is selected as the current
seed, all nodes in u.mgset will be removed from table Q.
In this way, many redundant candidate seed nodes are
removed from the table Q, and the times of re-computing
u.mg is greatly reduced.
 Algorithm Lv_CELF is described in Algorithm 3.

Algorithm 3 Lv_CELF _Greedy(G,K)

1) S= φ;
2) Q=φ;
3) For each u in V do
4) {
5) u.mgset=getInfluence(G,{u});
6) u.mg=|u.mgset|;
7) u.flag=0 ;
8) add u to Q by u.mg in descending order;
9) }
10) While |S|<k and |Q|>0 do
11) {
12) u=Q[top];
13) if u.flag==|s| then
14) {
15) S=S+{u};
16) Q=Q-u.mgset;
17) }
18) Else
19) {
20) u.mgset=getInfluence(G,S+{v})-

getInfluence(G,S);
21) u.mg=|u.mgset|;
22) u.flag=|S|;
23) Resort Q by u.mg in descending order;
24) }
25) }
26) Return S.
From algorithm 3, it can be seen that the optimization of

lv_CELF comes from line 16. In line 16, all nodes in
u.mgset are removed from Q, which is different from CELF.
By this way, the number of candidate nodes is reduced
greatly, and then it improves the efficiency greatly.

3.3 CELF++ Algorithm
From literature [9], it can be seen that the algorithm of
CELF++ is an improved version of CELF. Different from
CELF, CELF++ remains a table Q<u.mg1, u.prev_best,
u.mg2, u.flag> for all nodes that should be examined. In
table Q, u.mg1 is the size of marginal influence set of node u
under the current seed set S, namely, u.mg1=
|getInfluence(G,S+{u}) -getInfluence(G,S)|; u.prev_best is
the node with the maximum marginal gain among those

nodes examined in the current iteration before u; u.mg2
denotes the size of marginal influence set of u under the seed
set S+{u.prev_best}, namely, u.mg2= |getInfluence (G,S
+{u.prev_best}+{u})- getInfluence(G, S+{u.prev_best})|;
u.flag is the iteration number when u.mg1 is last updated.
 The main idea of CELF++ is that if the node u.prev_best
is chosen as a seed in the current iteration, the marginal gain
of u w.r.t S+{prev_best} in the next iteration doesn’t need to
be computed again. The algorithm of CELF++ is detailed in
algorithm 4. From algorithm 4, it can be seen that the
optimization comes from lines 26-27.

Algorithm 4 CELF++_Greedy(G,K)

1) S= φ;
2) Q=φ;
3) last_seed=null;
4) cur_best=null;
5) For each u in V do
6) {
7) u.mg1=|getInfluence(G,{u})|
8) u.prev_best=cur_best;
9) u.mg2=|getInfluence(G,{u.prev_best}+{u})-
 getInfluence(G, {u.prev_best})|;
10) u.flag=0;
11) add u to Q by u.mg in descending order;
12) update cur_best based on u.mg1;
13) }
14) While |S|<k do
15) {
16) u=Q[top];
17) If u.flag==|S| then
18) {
19) S=S+{u};
20) Q=Q-{u};
21) Last_seed=u;
22) cur_best=null;
23) }
24) Else
25) {
26) if (u.prev_best==last_seed) and (u.flag=|S|-1)

 then
27) u.mg1=u.mg2
28) else
29) {
30) u.mg1=|getInfluence(G,S+{u})-
 getInfluence(G,S)|;
31) u.mg2=|getInfluence(G,S+{prev_best}+{u})-
 getInfluence(G,S+{prev_best})|;
32) u.prev_best=cur_best ;
33) }
34) u.flag=|S|;
35) }
36) Resort Q by u.mg1 in descending order ;
37) }
38) Return S.

3.4 Lv_CELF++ Algorithm
Basing on the same idea as in Lv_CELF, the improved
algorithm of Lv_CELF++ for CELF++ has been proposed in
this work. Like the algorithms of CELF++, Lv_CELF++
maintains a table Q<u, u.mg1, u.mgset1,
u.mg2,u.mgset2,u.flag>. In table Q, u.mgset1 and u.mgset2
denote the influence sets of u.mg1 and u.mg2 respectively;
and other items have the same meanings as in CELF++.
 Lv_CELF++ is described in Algorithm 5.

Jiaguo Lv, Jingfeng Guo, Zhen Yang, Wei Zhang and Allen Jocshi/Journal of Engineering Science and Technology Review 7 (3) (2014) 32 – 38

 36

Algorithm 5 Lv_CELF++_Greedy (G, K)

1) S= φ;
2) Q=φ;
3) last_seed=null;
4) cur_best=null;
5) For each u in V do
6) {
7) u.mgset1=getInfluence(G,{u});
8) u.mg1=|u.mgset1|;
9) u.mgset2=getInfluence(G,{cur_best}|{u})-
 getInfluence(G,{cur_best});
10) u.mg2=|u.mgset2|;
11) u.prev_best=cur_best;
12) u.flag=0;
13) add u to Q by u.mg1 in descending order;
14) update cur_best based on u.mg1;
15) }
16) While |S|<k and |Q|>0 do
17) {
18) u=Q[top];
19) If u.flag==|S| then
20) {
21) S=S+{u};
22) Q=Q-u.mgset1;
23) Last_seed=u; cur_best=null;
24) }
25) Else
26) {
27) if u.prev_best==last_seed and u.flag=|S|-1
 then
28) {
29) u.mg1=u.mg2;
30) u.mgset1=u.mgset2;
31) }
32) else
33) {
34) u.mgset1= getInfluence(G,S+{u})-
 getInfluence(G,S);
35) u.mg1=| u.mgset1|;
36) u.mgset2=getInfluence(G,S+{prev_best}+

 {u})-getInfluence(G,S+{prev_best})
37) u.mg2=| u.mgset2|;
38) u.prev_best=cur_best;
39) }//if
40) u.flag=|S|;
41) }//IF
42) Resort Q by u.mg1 in descending order
43) }//While
44) Return S.

3.4 Complexity Comparison
As discussed before, Lv_CELF is the improved version of
CELF. For a candidate node u, the times of computing
marginal gain in Lv_CELF is equal to that in CELF.
However, with the adding of a new node to the current seed
set S, more nodes are removed from the candidate node set.
So, in terms of computational efficiency, Lv_CELF is higher
than CELF. As described above, Lv_CELF++ is the
improved version of CELF++. Because of the same idea
behind in Lv_CELF and in Lv_CELF++, the performance
comparison of Lv_CELF++ and CELF++ is similar to that
of Lv_CELF and CELF.

4. Experiments

To evaluate the improved algorithms of Lv_CELF and
Lv_CELF++, in this section, the algorithms of CELF,
CELF++, Lv_CELF and Lv_CELF++ are implemented. And
then the algorithms are conducted on some real world
datasets. In terms of efficiency, the running times of these
algorithms with different budget k are reported in this
section. To evaluate the performances of the algorithms, the
influence spreads of these algorithms with different budget k
are reported in this section.

For all the experiments in this paper, the ICM has been
selected as the influence propagating model.

This section first describes the data sets and the
experimental setup, and then demonstrates the performance
and efficiency of the algorithms on various data sets.

4.1 Dataset
The real world dataset in this study comes from Epinions.
Epinions is a well-known website for product ratings. The
format of the Epinons dataset is (id,whoid,whomid). It
means that the user whoid trusts the user whomid. Basing on
the dataset, the directed graph can be obtained. At the
beginning of running algorithms, for every edge (u,v), a
random value in [0,1] has been chosen as its activation
possibility.

All the experiments in this paper are running on a desktop
computer with:

(1)I5 2400S and 4GB of RAM;
(2) 32-bit Windows 7+Python2.6+Networkx0.9.

To evaluate the expected influence spread of see set S in

the social network G, the Monte-Carlo simulations method is
adopted. For each edge (u,v) , when node u is activated, it
will try to activate v R times. If the number of activation
exceeds R*0.6, u can activate v successfully. To evaluate the
performance of the algorithms, three different datasets with
various numbers of nodes and edges at random has been
chosen.

The statics of these three datasets are shown in Tab.1.

Tab. 1. Statics of datasets

id dataset nodes edges Avg. degree

1 data1 730 1094 2.9973

2 data2 3798 10601 5.2981

3 data3 18643 95724 10.2692

4.2 Experimental Results
To evaluate the performances of the algorithms, the
algorithms are conducted on dataset data1, data2 and data3.
The experimental results are shown in Fig. 1, Fig. 2, Fig. 3,
Fig. 4, Fig. 5 and Fig. 6.

The running times of these algorithms on dataset data1,
data2 and data3 are shown in Fig. 1, Fig. 3 and Fig. 5. From
the figures, it can be seen that Lv_CELF is more efficient
than CELF, and Lv_CELF++ is faster than CELF++.
Moreover, algorithm of CELF++ is much slower than CELF,
which is different from the results reported in [9]. Obviously,
Lv_CELF is the most efficient one among them.

The influence spreads of these algorithms on dataset data1,
data2 and data3 are shown in Fig. 2, Fig. 4 and Fig. 6. From
the figures, it can be seen that the influence spreads of the
four algorithms are matching.

Jiaguo Lv, Jingfeng Guo, Zhen Yang, Wei Zhang and Allen Jocshi/Journal of Engineering Science and Technology Review 7 (3) (2014) 32 – 38

 37

As for the scalability, when the network is given, with the
increasing of seed set size k, the running times of Lv_CELF
and Lv_CELF++ increase slowly. However, for a given seed
set size k, when the scale of the network is increasing, the
running times of the two algorithms increase quickly. So,
algorithms of Lv_CELF and Lv_CELF++ are not scalable.

0

1

2

3

4

5

6

7

8

9

10

10 20 30 40 50 60

celf++

lv_celf++

celf

lv_celf

K

Running	
 	
 time

Fig. 1. Running time of data1

0

50

100

150

200

250

300

10 20 30 40 50 60

celf++

lv_celf++

celf

lv_celf

Influence	
 Spread

K

Fig. 2. Influence spread of data1

0

50

100

150

200

250

300

350

400

450

10 20 30 40 50 60

celf++

lv_celf++

celf

lv_celf

Running	
 Time

K

Fig. 3. Running time of data2

0

200

400

600

800

1000

1200

10 20 30 40 50 60

celf++

lv_celf++

celf

lv_celf

Influence Spread

K

Fig. 4. Influence spread of data2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10 20 30 40 50 60

celf++

lv_celf++

celf

lv_celf

K

RunningTime

Fig. 5. Running time of data3

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 50 60

celf++

lv_celf++

celf

lv_celf

Influence Spread

K

Fig. 6. Influence spread of data3

5. Conclusion

The reasons of the inefficiency of KK_Greedy were first
analyzed in this paper. Then, in order to further improve the
efficiency of the greedy algorithm for influence
maximization in social network, two improved algorithm of
Lv_CELF and Lv_CELF++ for CELF and CELF++ were
proposed in this paper. Basing on the idea of eliminating the
redundant candidate seed nodes, the improved algorithms
further reduce the times of calling influence estimation
function, and improve the performance of the greedy
algorithm. The empirical studies on real world datasets show
that the two algorithms can achieve matching influence
spread with their benchmark algorithms, while being faster.

Acknowledgment

This work is partially supported by the scientific research
project of universities and colleges in Hebei province
(QN201483) and the Hebei province science and technology
basic condition platform construction project (14960112D).
.

Jiaguo Lv, Jingfeng Guo, Zhen Yang, Wei Zhang and Allen Jocshi/Journal of Engineering Science and Technology Review 7 (3) (2014) 32 – 38

 38

References

1. Domingos, P., Richardson, M., “Mining the network value of

customers”, Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining,
New York, USA, 2001, pp. 57-66.

2. Richardson, M., Domingos, P., “Mining knowledge-sharing sites
for viral marketing”, Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining,
New York, USA, 2002, pp. 61-70.

3. Kempe, D., Kleinberg, J., Tardos, É., “Maximizing the spread of
influence through a social network”, Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and
data mining, New York, USA, 2003, pp. 137-146.

4. Chen, W., Wang, C., Wang, Y., “Scalable influence maximization
for prevalent viral marketing in large-scale social networks”,
Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, New York, USA, 2010, pp.
1029-1038.

5. Chen, W., Wang, Y., Yang, S., “Efficient influence maximization
in social networks”, Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining,
New York, USA, 2009, pp. 199-208.

6. Chen, W., Yuan, Y., Zhang, L., “Scalable influence maximization
in social networks under the linear threshold model”, Proceedings
of 2010 IEEE 10th International Conference in Data Mining,
Washington, USA, 2010, pp. 88-97.

7. Wang C, Chen W, Wang Y., Scalable influence maximization for
independent cascade model in large-scale social networks. Data
Mining and Knowledge Discovery, 25(3), 2012, pp. 545-576.

8. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen,
J., Glance, N. “Cost-effective outbreak detection in networks”,
Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, New York, USA, 2007, pp.
420-429.

9. Goyal, A., Lu, W., Lakshmanan, L. V., “Celf++: optimizing the
greedy algorithm for influence maximization in social networks”,
Proceedings of the 20th international conference companion on
world wide web, New York, USA, 2011,pp. 47-48.

10. Narayanam, R., Narahari, Y., “A shapley value-based approach to
discover influential nodes in social networks”, IEEE Transactions
on Automation Science and Engineering, 8(1), 2011, pp.130-147.

11. Lu Z, Zhang W, Wu W, et al., “The complexity of influence
maximization problem in the deterministic linear threshold model”,
Journal of combinatorial optimization, 24(3), 2012, pp. 374-378.

12. Saito K, Kimura M, Ohara K, et al., “Efficient discovery of
influential nodes for SIS models in social networks”, Knowledge
and information systems, 30(3), 2012, pp. 613-635.

13. Alon N, Feldman M, Procaccia A D, et al., “A note on competitive
diffusion through social networks”, Information Processing Letters,
110(6), 2010, pp. 221-225.

14. Yang W S, Weng S X., “Application of the Ant Colony
Optimization Algorithm to the Influence-Maximization Problem”,
International Journal of Swarm Intelligence and Evolutionary
Computation, 1(1), 2012, pp.1- 8.

15. Goyal A, Bonchi F, Lakshmanan L V S, et al., “On minimizing
budget and time in influence propagation over social networks”,
Social Network Analysis and Mining, 3(2), 2013,pp.179-192.

16. Zhou J, Zhang Y, Cheng J., “Preference-based mining of top-K
influential nodes in social networks”, Future Generation Computer
Systems, 31, 2014, pp. 40-47.

17. Chen Y C, Peng W C, Lee S Y., “Efficient algorithms for influence
maximization in social networks”, Knowledge and information
systems, 33(3), 2012, pp.577-601.

18. Tian J T, Wang Y T, Feng X J., “A new hybrid algorithm for
influence maximization in social networks”, Jisuanji Xuebao
(Chinese Journal of Computers), 34(10), 2011, pp.1956-1965. (In
Chinese)

