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Abstract 
  
The accurate and reliable online measurement of the product yield is very essential for the control and optimization of 
the biodiesel process. A biodiesel yield prediction model based on the fast decorrelated neural network ensembles 
(FDNNE) was established to enhance the estimated performance. The random vector functional link (RVFL) networks 
were inserted into the fast decorrelated neural network ensemble frame as the base model since it could provide better 
generalized performance and faster speed. The FDNNE product yield prediction model initializes the hidden layer 
parameters of base models randomly, and calculates the output layer parameters using the least square method with 
negative correlation learning. Simulation results show that the proposed method has relatively higher accuracy and 
reliability compared with the single RVFL model. 
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1. Introduction 
 
Due to the continuous decline of limited petroleum reserves 
and the growing environmental concerns, the use of 
biodiesel in recent years as a fuel in the existing diesel 
engines has gained much importance [1], [2], [3]. Although 
there are many researches on the synthesis technology of 
biodiesel, on the experimental data processing of biodiesel 
yield and analysis of the interaction between factors is still 
less. 
  In the biodiesel reaction, the yield as main quality index 
is affected by different parameters [4]. However, four main 
factors have been considered by researchers as follows: 
molar ratio between alcohol and oil, reaction time, catalyst, 
and reaction temperature [5], [6]. Magnetic resonance 
detection method is often used to measure the yield of 
biodiesel while on-line hardware sensors are difficult to 
meet the requirements of on-site monitoring and control due 
to big investments, poor reliability, and long response time. 
 Recently, ensemble methods have received considerable 
attentions because it can effectively improve the validity and 
credibility of the regression model through building a set of 
models [7], [8], [9]. Many novel machine learning 
techniques are proposed to train an ensemble model 
individually or collectively such as bagging, boosting and 
random forests [10], [11], [12], [13]. Alhamdoosh and Wang 
[14] proposed an efficient algorithm to build ensemble 
models in a very short time named fast decorrelated neural 
network ensembles (FDNNE) which employed the random 
vector functional link (RVFL) networks as base components 

and incorporated with the NCL strategy for building neural 
network ensembles. Negative correlation learning (NCL) 
[15] is an algorithm for training neural network ensemble 
with sound generalization capability through controlling the 
disagreement of base model. 
 In this paper, a fast biodiesel yield ensemble model using 
fast decorrelated neural network ensemble was established, 
which randomly initialized the hidden layer parameters of 
base RVFL networks, and then employed the least square 
method with negative correlation learning scheme to 
analytically calculate the output weights of these base 
networks. The proposed method was then verified by the 
experimental data of biodiesel product. The experimental 
results of the testing datasets demonstrated that the 
production yield ensemble model had the capacity of strong 
generalization and low computation load.  
 This paper is organized as follows: section 2 presents 
basics on RVFL neural networks, negative correlation 
learning and fast decorrelated neural network ensembles, 
section 3 focuses on the analysis of experiment results and 
section 4 presents the conclusions. 
 
 
2. Biodiesel yield ensemble model based on FDNNE 

algorithm 
 
2.1 The Description of the Biodiesel Process 

The experimental device used for continuous process of 
biodiesel synthesis under supercritical methanol is shown in 
Fig.1. Soybean oil was placed in vessel and heated to 35 ~ 
50°C, the solid catalyst was packed into fix bed reaction 
tubes using pressurized gas analyzer. The oil and methanol 
were pumped into the pipeline by a high pressure pump, 
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under the conditions of a total volume flow rate of 1 ~ 
4ml/min, after mixed in the pipeline into the reaction tube. 
The reaction temperature, pressure and the molar ratio of 
methanol to oil were controlled accurately by the reaction 
apparatus. The reactor temperature could be controlled 
between 260 ~ 400°C and the inter pressure was regulated 
between 13~24MPa by back pressure valve. The product 
effluent from the reaction tube was sampled after condenser 
pipe condensate.  

 

 
Fig. 1. Biodiesel Supercritical Synthesis Device 

  
 

2.2 RVFL Neural Network 

 For N  arbitrary distinct samples ( , ), 1,...,i i i N=x y , where 
T n

1 2[ , ,..., ] Ri i i inx x x= ∈x , T m
1 2[ , ,..., ] Ri i i imy y y= ∈y , 

RVFL neural network as single-layer feed-forward networks 
(SLFNs) is mathematically defined as:  
 

1
( ; ) ( )

L
T

k k k
k

f x G x bβ β ω
=

= ⋅ +∑                                         (1) 

 
 where dx R∈ is input vector, d

k Rω ∈ and kb R∈ are input 

weights and hidden layer biases, 1, 2,...[ ] L
L Rβ β β β= ∈ is the 

output layer weights, d  is the number of input layer, ( )G ⋅  
is the basis function, ( )f ⋅  is the output of neural network. In 
RVFL network, the parameters of the hidden layer are 
assigned randomly and independently of the training data; 
while the linear parameters kβ  of the output layer can be 
tuned using the least squares method. 
 Testing dataset with size N ʹ′  can be denoted 
by 1, 1 2 2{( ),( , )...( , )}t N ND x y x y x yʹ′ ʹ′= ， the generalization 

error tfE D（ ） of the RVFL network model is defined as the 
mean squares error (MSE) averaged over all possible 
realizations of tD  
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where ( )if x  is the predictive value of sample ( , )i ix y , iy is 

the expected output of ix . 
 
2.3 Negative Correlation Learning 

Negative correlation learning (NCL) is proposed to reduce 
the covariance among ensemble individuals while the 
variance and bias terms are not increased. Unlike traditional 
ensemble learning approaches, NCL is introduced to train 
base models simultaneously in a cooperative manner that 
decorrelates individual errors ie  [16]. Mathematically, the 
learning error of the i th sub-model given in Eq. (3) is 
modified to include a penalty term ip  as follows: 
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e f x y p xλ
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Where [0,1]λ ∈  is a regularizing factor. Set a training 
dataset tD  with size N, 1, 1 2 2{( ),( , )...( , )}t N ND x y x y x y= , 

where ix is the input of the neural network, iy is the expected 

output of ix . The important steps of negative correlation 
learning list as follows:  
Step1: Calculating the output of each sub-model ( )if ⋅ , and 
then compute the output of the whole ensemble ( )nf x   
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where M is the number of sub-model.  
Step2: Using the output of sub-model and the output of 
whole model to decide the penalty term ip  
 

( ( ) ( )) ( ( ) ( ))i i n n j n n
j i

p f x f x f x f x
≠

= − −∑                       (5) 

 
Step3: Adding the penalty term ip  into the error function, 
so the learning error of the i th sub- model could be defined 
as follows: 
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1[ ( ( ) ) ( )]
2

N

i i n n i n
n

e f x y p xλ
=

= − +∑                                (6) 

 
Step4: Applying the new learning error to the update the 
weights. 
 
2.4 Fast Decorrelated Neural Network Ensembles 

Due to the uncertainties in the learning process that are 
caused by the random initializations of basis functions, a 
single RVFL network can not guarantee the accuracy of the 
forecasts. A new ensemble learning approach, which uses 
RVFL networks as ensemble component is adopted and it is 
fitted in negative correlation learning framework. Since 
RVFL networks are used to populate the ensemble, the 
output of the i th base network is stimulated with an 
instance nx , which is given by 



Hongyan Shi, Bin Li, Xiu Wang, Ying Wang and Dresnutsky Wong 
/Journal of Engineering Science and Technology Review 7 (3) (2014) 158 - 163 

 

 160 

 

1

( ) ( )
L
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j

f x g xβ
=
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(7) 
 
where L  is the number of hidden neurons in the i th 
individual RVFL network, ijβ  is the output weight 

connecting the j th hidden neuron with the output neuron in 

the i th base model, ( ) ( , , )ij n j j ng x w b x=  is the output of 
the j th hidden neuron in the i th base model, and G  can be 
any squashing basis function. The parameters ( , )j jw b of 

the basis functions ijg  are randomly set while the only 

parameters to be tuned are the output weights ijβ . In order to 

get the best performance of model, 0ie∇ = , for 1,...,i M=  
should be satisfied , which leads to 
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∂ ∂∑   for 1,...j L=                                   (8) 

 
All base networks are assumed to have similar 

architecture and the same dataset is used to train all of them. 
It can get that  
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1,...,i M= , 1,...j L=  
 
where M is the number of sub-model, L  is the number of 
hidden neuron,λ  is a regularizing factor, and 1C , 2C are two 
constants. ( , , , )i j l kϕ represents the correlation between 
the j th hidden neuron of the i th individual RVFL network 

and the l th hidden neuron of the k th individual RVFL 
network, and ( , )i jϕ  represents the correlation between the 
 
 
j th hidden neuron of the i th base network and the target 

value.  To facilitate this computational task, this linear 
system in a matrix form can be designed by equation (14). 
 

corr ens hH B T=                                                                 (14) 
 
where corrH  is called the hidden correlation matrix, ensB is 

the global output weights matrix and hT  is the hidden-target 

matrix. corrH  is defined by equation (15) or (16). 
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where 

pm
L
⎡ ⎤= ⎢ ⎥⎣ ⎦

,    
qk
L
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                                             (17)                                                                                        

(( 1)mod ) 1n p L= − +                                              (18) 
(( 1)mod ) 1l q L= − +                                             (19) 

, 1,...,p q M L= ×                           
 

And mod is the modulo operation. ensB and hT are 
defined as follows: 
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The output weights ijβ  can be got by equation (22) 
  

1
ens corr hB H T−=                                                              (22) 

 
Then the output of i th base network, simulated with an 

sample nx  can be got by equation (7). Uniform averaging 
weights are used to combine ensemble base RVFL network, 
and the output of the ensemble can be obtained as follows:  
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2.5 FDNNE Algorithm 

Require: Training dataset tD , a basis function RRG →: ; 
default is Sigmoid, scaling coefficient ]0.1[∈λ , the size of 
base model L, and the number of base models M. 
Ensure: Trained DNNE model. 
 
1) Initialize the architecture of M SLFNs to be the ensemble 

base models. 
2) Initialize the basis functions of base models randomly 

i.e. jw , jb  are randomly set. 
3) Calculate the outputs of the hidden layers of base models 

for all examples in tD  i.e., calculate ( )ij ng x  

4) Calculate the constants 1C  and 2C . 
5) for p ← 1 to M × L do 

6)    
pm
L
⎡ ⎤← ⎢ ⎥⎣ ⎦

  

7)    (( 1)mod ) 1n p L← − +   
8)     for 1q← toM L× do 

9)         
qk
L
⎡ ⎤← ⎢ ⎥⎣ ⎦

 

10)       (( 1)mod ) 1l q L← − +  
11)       if m k=  then 
12)             1[ , ] ( , , , )corrH p q C m n k lϕ←  
13)        else 
14)          2[ , ] ( , , , )corrH p q C m n k lϕ←  
15)        end if 
16)    end for 
17) end for 
18) 1k ←  
19) for 1i← toM do 
20)   for 1j← to L do 
21)       [ ] ( , )hT k i jϕ←  
22)       1k k← +  
23)    end for 
24) end for  
25) Calculate 1

corrH − , the pseudo-inverse inverse of corrH . 
26) Calculate the estimated global output weights matrix 

ensB from Eq. (22). 
27) for 1i← to M do 
28) Output weights of base model: 

[( 1) 1: ]ensi B i L iL← − +  
29) end for 
30) return Ensemble model (DNNE). 
 
 
3. Results and discussion 
 
In this section, the performance of FDNNE with single 
RVFL network was compared by the analysis of biodiesel 
dataset, the yield index was predicted by analyzing 
temperature, pressure and volume ratio. All the experiments 
were carried out in a MATLAB 7.5.0 environment running 
with CPU 2.55GHz and 2GB RAM.  
 For RVFL networks, there is only one parameter with L 
hidden nodes needs to be determined. For the FDNNE 

network, three parameters with L hidden nodes, M sub-
models and the regularizing factor λ  are chosen. Taking the 
impact that the number of hidden nodes L to the 
performance of the ensemble into account, a number of 
experiments can be conducted by changing the number of L 
from 20 to 110 with the interval of 10 and keeping the other 
parameters same. Here M is 8 and λ is 0.6, 50 times are 
finished for every L.  
 In this paper, the root mean squares error (RMSE) and 
correlation coefficient ( 2R ) are calculated to reflect the 
performance of the models. RMSE metric is defined by 
Equation (24), which represents the smaller the RMSE, the 
better performance of the network.  
 

2

1 1

1 1( ( ) )
N M

i n n
n i

RMSE f x y
N M= =

= −∑ ∑                               (24) 

 
2R  is calculated by Equation (25), and 2 [0,1]R ∈ . If it is 

closer to one, the model will have better performance.  
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N N
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N N

i n i n n n
i i i i

N f x y f x y
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N f x f x N y y

= = =

= = = =

−
=

− −

∑ ∑ ∑

∑ ∑ ∑ ∑
          (25)                                                                                       

 
 Performance comparison of different number of hidden 
nodes is shown in Fig.2. Fig.3 illustrates how the number of 
the sub-model affects the accuracy of the model. Let M 
change in (2, 20) with the interval of 2 and keeping L and λ  
same. Not only does the number of hidden nodes impact the 
performance of the ensemble but also the size of the 
ensemble. Set L=100, λ =0.6, for every situation, it has 
finished 50 times, and the average RMSE and 2R are 
obtained. From Fig.3, it can be concluded that the best size 
of our ensemble is six. 
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Fig.2. Performance Comparison of Different Number of Hidden Nodes 
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Fig.3. Performance Comparison of Different Number of Sub-Models 
 

As shown in Figure 4, it is the comparison of the expected 
value and the predicted value of FDNNE. Figure 5 shows the 
comparison of RVFL network. In this experiments, L=100, 
M=6, andλ =0.6. After several experiments, it can be found 
that FDNNE perform better than RVFL network when the 
same numbers of hidden nodes are used. 
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Fig.4. Comparison of the Expected Value and Predicted Value of 
FDNNE network 
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Fig.5. Comparison of the Expected Value and Predicted Value of RVFL 
network 
 

The average value of RMSE and 2R of the training data 
and testing data after running 100 times are presented in 
Table 1, in which FDNNE training means that the input is 
the training dataset using FDNNE model, and FDNNE 
testing means the input is the testing dataset different from 
training data. It is clear that the RMSE of FDNNE model is 
smaller than RVFL networks model, and 2R of FDNNE 
model is closer to one. The performance of FDNNE model is 
better than RVFL networks. 

 
Tab.1. Comparison of testing FDNNE and single RVFL 

 FDNNE training RVFL training FDNNE testing RVFL testing 

RMSE 0.9985 1.5101 2.07846 2.2228 

R2 0.9866 0.9681 0.94916 0.94142 

 
4. Conclusions 
 

Although the RVFL modeling method has improved the 
generalized performance, it was difficult to achieve better 
stability. In this work, a biodiesel yield model was built 
using fast decorrelated neural network ensemble by building 
a set of models, rather than a single model.  
 The ensemble model employed random vector functional 
link (RVFL) networks as base model to initialize the hidden 
layer parameters of base models randomly and calculated the 
output analytical solution using the least square method with 
negative correlation learning. The experiment results show 
that the proposed model has a higher relatively accuracy and  
 

 
 
faster learning speed than the single RVFL model. In this 
study, the results are limited to the operating conditions in 
the laboratory and more industrial experiments should be 
done. 
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