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Abstract 
 
The main objective of this paper is to assess the effect of different normalization norms within multi-criteria decision-
making (MADM) models. Three well accepted MCDM tools, namely, preference ranking organization method for en-
richment evaluation (PROMETHEE), grey relation analysis (GRA) and technique for order preference by similarity to 
ideal solution (TOPSIS) methods are applied for solving a flexible manufacturing system (FMS) selection problem in a 
discrete manufacturing environment. Finally, by the introduction of different normalization norms to the decision algo-
rithms, its effct on the FMS selection problem using these MCDM models are also studied.  
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1. Introduction 
 
Remarkable development in human civilization has always 
been attained by the foundation of path-breaking technolo-
gies. The last few decades have witnessed exceptional ad-
vances in techno-commercial world. Survival of the manu-
facturing organizations in today’s worldwide competitive 
environment centrally depends on their flexibility in adopt-
ing faster technological innovations and novelties to meet 
the set enterprise goals. Increasing demand for utmost prod-
ucts with shorter life cycles has motivated the entire manu-
facturing society to look for some progressive computerized 
automated processes and systems. Today many manufactur-
ing organizations seek to maintain a competitive edge in the 
market place by exploiting the advantages of modern manu-
facturing technologies. One such technology which has 
become increasingly popular over the past few decades is 
flexible manufacturing system (FMS). An FMS is such a 
reprogrammable manufacturing system which is proficient 
in producing miscellaneous array of products without human 
intervention. An FMS is basically an advanced manufactur-
ing system (AMS), consisting of a set of alike and comple-
mentary numerically controlled machines, interconnected 
through an automated transportation system. It is designed to 
fabricate a variety of products in a large volume at a lower 
cost. Each process in FMS is managed by a dedicated com-
puter, known as FMS cell computer. Machine loading and 
unloading, part sequencing, route selection, tool changes and 
determination of spindle feed rate are conducted under the 
direct control of this FMS cell computer. Numerical control 
(NC) machine tools, automated material handling system 
(AMHS), automated guided vehicles (AGV), conveyors, 
automated storage and retrieval systems (AS/RS), industrial 
robots, control software, in-process storage inventories are 

the other main components of an FMS [1]. Several studies 
have been devoted to examine the potential benefits from 
implementing FMS in manufacturing industries. The main 
advantages of adopting FMS can be realized by its capability 
of producing a variety of items with superior product quali-
ty, reduced set-up time, improved product routing, reduced 
product completion time, increased machine and resource 
utilization, lesser floor space requirement, ability to handle 
changes and ability to quickly manage uncertain customer 
demands, leading to a highly efficient and focused approach 
towards manufacturing effectiveness. Due to these reasons, 
assessment, validation and selection of FMS have now been 
receiving noteworthy consideration in the manufacturing 
world. But FMS implementation is not an easy task to per-
form. It involves huge capital investment, administrative 
dedication, technological and organizational changes. It may 
leave a long term impact on the organization’s survival to 
improve and maintain the competitive advantage. So the 
selection of the most appropriate FMS from a set of realistic 
configurations requires an extensive analysis and evaluation 
in the presence of multiple conflicting criteria with several 
performance measures. Thus, efforts need to be widened to 
recognize those criteria that influence an FMS selection 
decision for a given application using some simple and 
logical methods to eliminate the infeasible alternatives. 
These FMS selection criteria can be classified as cardinal 
and ordinal criteria, or beneficial and non-beneficial criteria. 
Cardinal criteria are those which can be numerically charac-
terized, like capital and maintenance cost, floor space re-
quirement, reduction in work-in-process (WIP) etc. On the 
other hand, ordinal criteria are qualitative in nature, includ-
ing increase in market response, improvement in quality etc. 
In case of ordinal criteria, they are first expressed in linguis-
tic terms, which are then transformed into corresponding 
fuzzy numbers and lastly converted to crisp scores using 
some fuzzy conversion scales [2]. Reduction in WIP, im-
provement in quality etc. are beneficial criteria for which 
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higher values are preferable, whereas, capital and mainte-
nance cost, floor space requirement for FMS etc. are non-
beneficial criteria, always targeting for lower values. Thus, 
the manufacturing organizations should follow a multi-stage 
evaluation process for assessment of FMS investment. In the 
first stage, the organizations should collect technical data for 
preliminary FMS design based on some detailed process 
analysis, production time study, group technology considera-
tions and defining the basic requirements in terms of ma-
chines, supporting tools and other necessary accessories. 
The second stage deals with the validation of FMS imple-
mentation, taking into account both financial analysis and 
assessment of specific problems for which FMS is intended. 
In the third stage, the required capability of various FMS 
configurations and layouts are examined using some analyti-
cal capacity planning models. A detail description about this 
phase can be found in Solberg [4] and Suri [5]. This capacity 
planning stage initiates the bidding process and a request-
for-proposal (RFP) is issued to the prospective vendors to 
collect a comprehensive list about the overall system per-
formance of FMS alternatives. An effective RFP typically 
reflects the strategy and short/long term business objectives 
of the organization, depending upon which, the suppliers 
will be able to offer a similar perspective. Finally, a compar-
ative performance evaluation analysis is conducted to select 
the best suitable FMS system, addressing organizational 
requirements, priorities, operational constraints and vendors’ 
service quality etc. This stage involves critical examination 
about different FMS selection criteria and alternative con-
figurations which form the heart of the present research 
work.  
 In the past few decades, a good number of researchers 
have proposed and applied many decision-making tech-
niques to guide in dealing with the issue of evaluation and 
selection of advanced manufacturing technologies, like FMS 
for specific industrial applications. Analytic hierarchy pro-
cess (AHP) [6-9], data envelopment analysis (DEA) [10-14], 
mixed integer linear programming model [15], intelligent 
tools and expert systems [16], decision algorithm based on 
fuzzy set theory [17], TOPSIS [18], fuzzy multi-objective 
programming [19], axiomatic design method [20], digraph 
and matrix approach [21], artificial neural network [22], 
combinatorial mathematics [23], PROMETHEE [24], ana-
lytic network process (ANP) [25], preference selection index 
(PSI) method [26], GRA [27], principal component analysis 
(PCA) [28] etc methods have been apllied to solve the FMS 
selection problems. Although, MCDM methods are observed 
to have immense potential to deal with such complex deci-
sion-making problems in conflicting situations, no effort yet 
been put to show the effet of normalization techniques on 
the ranking performance of MCDM methods while solving 
the FMS slection problems in discrete m,anufacturing envi-
ronment. Also, very little attempt has been made to compare 
the relative performance of various MCDM methods em-
ployed under same decision-making situation. This paper 
mainly focuses on the applications of three popular MCDM 
tools, i.e. PROMETHEE, GRA and TOPSIS  methods for 
effectively solving the FMS selection problems. The effet of 
various normalization techniques on the ranking perfor-
mance of these MCDM methods have also been shown.  
 Sections 2, 3 and 4 of this paper deal with the detailed 
mathematical formulations of the three considered MCDM 
methods. In Section 5, a real time FMS selection problem is 
solved using these MCDM methods. A comparative study 
between these methods is shown in Section 6. The effects of 
normalization norms are presented in Section 7. Section 8 
concludes the paper. 

2. Preference Ranking Organization Method for En-
richment Evaluation (PROMETHEE) 
 
PROMETHEE method was developed by Brans in 1982, 
and further extended by Vincke and Brans in 1985 [4]. 
PROMETHEE is an preference function-based outranking 
method which can be effectively used for a finite set of 
alternatives to rank and select on the basis of some mutually 
independent and conflicting criteria. It is quite simpler in 
conception and application as compared to other MCDM 
methods. It is based on the pair-wise comparison of alterna-
tives, considering the deviations that the alternatives show 
according to each criterion. PROMETHEE I method can 
provide the partial ordering of the decision alternatives, 
whereas, PROMETHEE II can derive the full ranking of the 
alternatives. The procedural steps as involved in PROME-
THEE II method are enumerated as below [12,13]:  
 
Step 1: Normalize the decision matrix using the following 
equation: 
 
Rij = [xij - min(xij)]/[max(xij) - min(xij)]   (i = 1,2,…,n; j = 
1,2,…,m)                                                    (1) 
 
 For non-beneficial attributes, Eq. (2.28) can be rewritten 
as below:  
 
Rij = [max(xij) - xij]/[max(xij) - min(xij)]      (2) 
 
Step 2: Calculate the evaluative differences of ith alternative 
with respect to other alternatives. This step involves the 
calculation of differences in criteria values between different 
alternatives pair-wise.  
 
Step 3: Calculate the preference function, ( )'j i,iP . 

 
 The preference function is based on pair-wise compari-
sons. Here, the deviation between the evaluations of two 
alternatives on a particular criterion is considered. For small 
deviation, the decision maker will allocate a small prefer-
ence to the best alternative and even possibly no preference 
if he/she considers that this deviation is negligible. The 
larger the deviation, the larger is the preference. There is no 
objection to consider that these preferences are real numbers 
varying between 0 and 1. 
 For each criterion, the preference function translates the 
difference between the evaluations obtained by two alterna-
tives into a preference degree ranging from 0 to 1. In order 
to facilitate the selection of a specific preference function, 
the following six basic types are proposed by Brans and 
Mareschal [14], i.e. (a) Usual criterion, (b) U-shape criteri-
on, (c) V-shape criterion, (d) Level criterion, (e) V-shape 
with indifference criterion, and (f) Gaussian criterion. But 
these preference functions require the definition of some 
preferential parameters, such as preference and indifference 
thresholds. However, in real time applications, it may be 
difficult for the decision maker to specify which specific 
form of preference function is suitable for each criterion and 
also to determine the parameters involved. To avoid this 
problem, the following simplified preference function is 
usually adopted:  
 

jiij
'

j 'RRif0)i,i(P ≤=                                                 (3) 
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Step 4: Calculate the aggregated preference function taking 
into account the criteria weights.  
 
 Aggregated preference function,  
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Step 5:  Determine the leaving and the entering outranking 
flows using the following equations:  
 
 Leaving (positive) flow for ith alternative, 
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Entering (negative) flow for ith alternative, 
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−                         (7)     

 
 The leaving flow expresses how much an alternative 
dominates the other alternatives, while the entering flow 
denotes how much an alternative is dominated by the other 
alternatives.  
Step 6: Calculate the net outranking flow for each alterna-
tive. 
 

)i()i()i( −+ ϕ−ϕ=ϕ                                                        (8)         
 
Step 7: Determine the ranking of all the considered alterna-
tives depending on the values of φ(i). Thus, the best alterna-
tive is the one having the highest  φ(i) value.  
 
 These procedural steps of PROMETHEE II are intended 
to provide a complete ranking of a finite set of feasible al-
ternatives from the best to the worst.  
 
 
3. Grey Relational Analysis (GRA) Method 
 
The ‘grey’ means the primitive data with poor, incomplete 
and uncertain information in the grey system theory and the 
incomplete relation of information among this data is called 
the ‘grey relation’. GRA is a part of grey system theory, 
which is suitable for solving problems with complicated 
interrelationships between multiple factors and variables. 
The GRA method can be used to effectively solve complex 
interrelationships among multiple performance characteris-
tics through optimization of the grey relational grades. It 
makes use of grey relational generation and calculates the 
grey relational coefficients to solve uncertain systematic 
problems under the status of only partially known infor-
mation. The grey relational coefficient can express the rela-
tionship between the desired and actual results, and the grey 
relational grade is simultaneously computed and used to 
select and rank the candidate alternatives. As most of the 
MCDM methods take into account multiple dimensions in 
criteria and a single dimension in alternatives, the concept of 
forming order pairs in the GRA method while considering 
multiple dimensions of criteria with multi-dimensional alter-

natives is a merit for this decision model to solve different 
selection problems. 
 The main procedure of GRA method starts by translating 
the performance of all the alternatives into a comparability 
sequence. This step is called grey relational generation. 
Based on this sequence, a reference sequence (ideal target 
sequence) is defined. Then, the grey relational coefficients 
between all the comparability sequences and the reference 
sequence are computed. Finally, based on these grey rela-
tional coefficients, the grey relational grade between the 
reference sequence and every comparability sequence is 
calculated. If a comparability sequence translated from an 
alternative has the highest grey relational grade between the 
reference sequence and itself, that alternative will be the best 
choice. The procedural steps of GRA method are presented 
as below [15]:  
 
Step 1: Grey relation generation (normalization).  
When the units of various selection criteria are different, 
then it is required to process all the performance values for 
every alternative into a comparability sequence, called nor-
malization, i.e. grey relational generation or data pre-
processing. In a decision-making problem, if there are m 
alternatives and n criteria, the ith alternative can be expressed 
as Yi = (yi1,yi2,....,yij,...,yin), where yij is the performance 
value of criterion j of alternative i. The term Yi can be trans-
lated into the corresponding comparability sequence, Xi = 
(xi1,xi2,...,xij,…,xin) using Eq. (9) or Eq. (10). If the criterion 
is beneficial in nature, i.e. higher value is desirable, then the 
decision matrix can be normalized using Eq. (9). For non-
beneficial criteria, Eq. (10) can be used for normalization.   
 

}m,...,2,1i,ymin{}m,...,2,1i,ymax{
}m,...,2,1i,ymin{y

x
ijij

ijij
ij =−=

=−
=       (9)    

 

}m,...,2,1i,ymin{}m,...,2,1i,ymax{
y}m,...,2,1i,ymax{

x
ijij

ijij
ij =−=

−=
=    (10) 

 
Step 2: Define the reference sequence.  
After the grey relation generation procedure, the perfor-
mance values will lie between 0 and 1. For a criterion j of 
alternative i, if the value xij which is normalized using grey 
relation generation procedure, is equal to 1, or nearer to 1 
than the value of the other alternative, it means that the 
performance of alternative i is the best one for that criterion 
j. Therefore, an alternative will be the best choice if all of its 
performance values are closest to or equal to 1. The refer-
ence alternative is defined as X0 = (x01,x02,…,x0j,...,x0n) = 
(1,1,…,1,…,…,1) and it aims to find the alternative whose 
comparability sequence is the closest to the reference se-
quence.   
 
Step 3: Calculate the grey relational coefficient (γ).  
Grey relational coefficient is used to determine how close xij 
is to xoj. The grey relational coefficient can be calculated 
using Eq. (11). The larger the value of γ, the closer xij and x0i 
are. 

γ (x0i, xij ) =
Δmin +ζΔmax
Δij +ζΔmax

for i =1,2,...,m and j =1,2,...,n
                    (11)     
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where )x,x( iji0γ  is the grey relational coefficient between 

xij and xoj, ijj0ij xx −=Δ ,   

 
Δmin =min{Δij,1, 2,...,m; j =1,2,...,n},
Δmax =max{Δij, i =1,2,...,m; j =1,2,...,n}

 

 
 
and ζ is the distinguishing coefficient (ζ Є [0,1]), generally 
taken as 0.5. 
 The purpose of the distinguishing coefficient is to ex-
pand or compress the range of the grey relational coefficient.  
Step 4 Compute the grey relational grade.  
 After calculating the grey relational coeffi-
cient ( )iji0 x,xγ , the grey relational grade can be calculated 

using the following equation: 
 

( ) m,...,2,1ifor)x,x(wX,X
n

1j
ijiji0 =∑ γ=Γ

=
        (12)        

 

where ∑
=

=
n

1j
j 1w  and wj is the weight of jth criterion which 

generally depends on the decision maker. The grey relational 
grade represents the level of correlation between the refer-
ence sequence and the comparability sequence. If the com-
parability sequence for an alternative gets the highest grey 
relational grade with the reference sequence, it means that 
the comparability sequence is most similar to the reference 
sequence and that alternative will be the best choice to se-
lect. 
 
 
4. Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) Method  
 
In 1981, Yoon and Hwang [3] developed TOPSIS method 
based on the concept that the chosen alternative should have 
the shortest distance from the positive-ideal solution and the 
longest distance from the negative-ideal solution. The posi-
tive-ideal solution is a hypothetical solution for which all the 
criteria values correspond to the maximum criteria values in 
the database comprising the satisfying solutions and the 
negative-ideal solution is a hypothetical solution for which 
all the criteria values correspond to the minimum criteria 
values in the database. The TOPSIS method thus gives a 
solution that is not only closest to the hypothetically best, 
but also the farthest from the hypothetically worst. This 
method defines an index called ‘similarity index’ (or relative 
closeness) to the positive-ideal solution by combining the 
proximity to the positive-ideal solution and the remoteness 
from the negative-ideal solution. Then, it chooses an alterna-
tive with the maximum similarity to the positive-ideal solu-
tion. The TOPSIS method assumes that each criterion takes 
either monotonically increasing or monotonically decreasing 
utility, i.e. the larger the criteria outcome, the greater the 
preference for benefit attributes and the less the preference 
for cost attributes. Figure 1 shows that the locations of the 
positive-ideal (A+) and the negative-ideal (A-) solutions in a 
two-dimensional Euclidean space. The main steps involved 
in TOPSIS method are enlisted as follows: 
 

 

Attribute 1

A
ttr

ib
ut

e 
2

A1

A2

A3

A+

A-

Fig. 1. Euclidean distances to positive-ideal and negative-ideal solutions  
 
 
Step 1: Determine the goal or objective of the problem and 
identify the pertinent decision criteria. 
 
Step 2: This step represents a decision matrix based on all 
the information available on the alternatives and criteria. 
Each row of this matrix is allocated to one alternative and 
each column to one criterion. Therefore, an element xij of the 
decision matrix gives the value of jth criterion in original 
non-normalized form and unit for ith alternative. From this 
decision matrix, obtain the normalized decision matrix, Dij 
using the following equation: 
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                                                                              (13)  

 
Step 3: Obtain the weighted normalized matrix, Vij, by mul-
tiplying each element of the column of the matrix Dij with its 
associated weight wj. 
 

ijjij DwV =                                                    (14)  

 
Step 4: Derive the positive-ideal (best) and the negative-
ideal (worst) solutions using following expressions: 
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where J = ( j = 1,2,...,n)/j is associated with beneficial crite-
ria and J′ = ( j = 1,2,...,n)/j is associated with non-beneficial 
criteria.  
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 Vj
+ indicates the positive-ideal (best) value of the con-

sidered criteria among all the criteria for different alterna-
tives. In case of beneficial attributes, Vj

+ indicates the higher 
value of the criterion and on the other hand, for non-
beneficial attributes, Vj

+ indicates the lower value of the 
criterion. On the other hand, Vj

- indicates the negative-ideal 
(worst) value of the considered criteria among all the criteria 
for different alternatives. In case of beneficial attributes, Vj

- 
indicates the lower value of the criterion and the higher 
value of the criterion for non-beneficial attributes respective-
ly. 
Step 5: Calculate the separation measures of each alternative 
from the positive-ideal and the negative-ideal solutions 
using the following equations: 
 

( ) m,...,2,1i,VVS
5.0

n

1j

2
jiji =

⎭
⎬
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Step 6: The relative closeness of an alternative to the posi-
tive-ideal solution can be computed as follows: 
 

( )−+− += iiii SS/SP      (19)           
 
where Pi is the overall performance score for ith alternative. 
 
Step 7: Based on the overall performance scores, the alterna-
tives are ranked in descending order. 
 
 

5. FMS selection problem 
 
To demonstrate the computational flexibility and applicabil-
ity of PROMETHEE II, GRA and TOPSIS methods, the 
FMS selection problem of Karsak and Kuzgunkaya [19] is 
considered here. This FMS selection problem consists of 
eight FMS alternatives with seven FMS selection criteria 
and a fuzzy multi-objective programming approach was 
adopted by Karsak and Kuzgunkaya [19] to solve that prob-
lem. Rao and Parnichkun [23] solved the same FMS selec-
tion problem using a combinatorial mathematics (CM)-based 
decision-making method. In this present research work, the 
attributes considered are same as those of Karsak and 
Kuzgunkaya [19] and they are reduction in labour cost 
(RLC), reduction in WIP (RWP), reduction in set up cost 
(RSC), increase in market response (IMR), increase in quali-
ty (IQ), capital and maintenance cost (CMC) and floor space 
used (FSU). Among those, five criteria were expressed 
quantitatively and two criteria (IMR and IQ) were expressed 
qualitatively. In this FMS selection problem, RLC, RWP, 
RSC, IMR and IQ are beneficial in nature, so higher values 
are desirable. On the other hand, CMC and FSU are non-
beneficial criteria, and their lower values are preferable. Rao 
and Parnichkun [23] applied AHP method to calculate the 
normalized weights of the criteria as wRLC = 0.1129, wRWP = 
0.1129, wRSC = 0.0445, wIMR = 0.1129, wIQ = 0.2861, wCMC = 
0.2861 and wFSU = 0.0445. These criteria weights are used 
here for the subsequent analyses using the eight preference 
ranking-based methods. Table 1 presents the decision matrix 
as considered by Karsak and Kuzgunkaya [19]. The qualita-
tive measures of IMR and IQ criteria are converted into 
appropriate quantitative data using an 11-point fuzzy con-
version scale, as proposed by Rao and Parnichkun [23], and 
are given in Table 2. 

 
Table 1. Decision matrix of FMS selection problem [19] 

FMS RLC (%) RWP (%) RSC (%) IMR IQ CMC ($000) FSU (sq. ft.) 

1 30 23 5 Good Good 1500 5000 

2 18 13 15 Good Good 1300 6000 

3 15 12 10 Fair Fair 950 7000 

4 25 20 13 Good Good 1200 4000 

5 14 18 14 Worst Good 950 3500 

6 17 15 9 Good Fair 1250 5250 

7 23 18 20 Fair Good 1100 3000 

8 16 8 14 Worst Fair 1500 3000 
 
Table 2. Modified decision matrix 

FMS RLC RWP  RSC  IMR IQ CMC FSU 

1 30 23 5 0.745 0.745 1500 5000 

2 18 13 15 0.745 0.745 1300 6000 

3 15 12 10 0.5 0.5 950 7000 

4 25 20 13 0.745 0.745 1200 4000 

5 14 18 14 0.255 0.745 950 3500 

6 17 15 9 0.745 0.5 1250 5250 

7 23 18 20 0.5 0.745 1100 3000 

8 16 8 14 0.255 0.5 1500 3000 

 
 



Prasenjit Chatterjee and  Shankar Chakraborty/Journal of Engineering Science and Technology Review 7 (3) (2014) 141 – 150 
 

 

5.1 PROMETHEE II method 
At first, this FMS selection problem is solved using PRO-
METHEE II method. For this, the decision matrix, as given 
in Table 2, is first normalized using Eq. (1) or (2) depending 
on the nature of the considered attributes. The normalized 
decision matrix is shown in Table 3.  
 
Table 3. Normalized decision matrix 
FMS RLC RWP RSC IMR IQ CMC FSU 

1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 0.5000 

2 0.2500 0.3333 0.6667 1.0000 1.0000 0.3636 0.2500 

3 0.0625 0.2667 0.3333 0.5000 0.0000 1.0000 0.0000 

4 0.6875 0.8000 0.5333 1.0000 1.0000 0.5455 0.7500 

5 0.0000 0.6667 0.6000 0.0000 1.0000 1.0000 0.8750 

6 0.1875 0.4667 0.2667 1.0000 0.0000 0.4545 0.4375 

7 0.5625 0.6667 1.0000 0.5000 1.0000 0.7273 1.0000 

8 0.1250 0.0000 0.6000 0.0000 0.0000 0.0000 1.0000 

 
 
 The preference function and aggregated preference func-
tion values are calculated for all the pairs of alternatives, 
using Eq. (3) or (4) and (5) respectively. Now, the leaving 
and the entering flows for different FMS alternatives are 
computed using Eq. (6) and Eq. (7) respectively, and are 
given in Table 4. Then applying Eq. (8), the net outranking 
flow values for different FMS alternatives are calculated, as 
shown in Table 5. The FMS alternatives are now ranked 
according to the values of the net outranking flow as also 
exhibited in Table 5. The best choice of FMS for the given 
application is FMS 7, whereas, FMS 8 is the worst choice. 
 
Table 4. Leaving and entering flows for different FMS 
alternatives 

FMS φ+(i) φ-(i)  
1 0.3201 0.2030 
2 0.2294 0.1550 
3 0.1838 0.3552 
4 0.3307 0.0615 
5 0.3292 0.1391 
6 0.1139 0.3383 
7 0.3384 0.0686 
8 0.0313 0.5562 

 
 
Table 5. Net outranking flow values for FMS alternatives 

FMS φ(i) Rank 
1 0.1172 4 
2 0.0745 5 
3 -0.1714 6 
4 0.2692 2 
5 0.1901 3 
6 -0.2245 7 
7 0.2698 1 
8 -0.5248 8 

 
5.2 GRA method 
The modified decision matrix, as shown in Table 2, is first 
normalized using Eq. (9) or (10). The grey relational coeffi-

cients are now calculated using Eq. (11) and are shown in 
Table 6. Here, the value of the distinguishing coefficient 
(ζ ) is considered as 0.5. Based on the grey relational coef-
ficient values, the corresponding grey relational grade 
(GRG) for each FMS alternative is computed using Eq. (12), 
as given in Table 7. The alternative with the highest grey 
relational grade with the reference sequence is the best 
choice. From Table 7, it is observed that the grey relational 
grade for alternative FMS 7 is the highest and the ranking of 
the FMS alternatives is 7 > 4 > 5 > 1 > 2 > 3 > 6 > 8. Thus, 
FMS 7 is the best choice to select followed by FMS 4. FMS 
8 is the worst choice. 
 
Table 6. Grey relational coefficients 

FMS RLC RWP RSC IMR IQ CMC FSU 

1 1.0000 1.0000 0.3333 1.0000 1.0000 0.3333 0.5000 

2 0.4000 0.4286 0.6000 1.0000 1.0000 0.4400 0.4000 

3 0.3478 0.4054 0.4286 0.5000 0.3333 1.0000 0.3333 

4 0.6154 0.7143 0.5172 1.0000 1.0000 0.5238 0.6667 

5 0.3333 0.6000 0.5556 0.3333 1.0000 1.0000 0.8000 

6 0.3810 0.4839 0.4054 1.0000 0.3333 0.4783 0.4706 

7 0.5333 0.6000 1.0000 0.5000 1.0000 0.6471 1.0000 

8 0.3636 0.3333 0.5556 0.3333 0.3333 0.3333 1.0000 

 
 
Table 7. Grey relational grades 

FMS GRG Rank 
1 0.7573 4 
2 0.6629 5 
3 0.5569 6 
4 0.7870 2 
5 0.7755 3 
6 0.4817 7 
7 0.8130 1 
8 0.3763 8 

 
5.3 TOPSIS method 
As the seven considered FMS selection criteria are having 
different units, it is necessary to normalize their values using 
Eq. (13) and obtain the normalized decision matrix. The 
weighted normalized decision matrix is developed using Eq. 
(14), as shown in Table 8. The positive-ideal and the nega-
tive-ideal solutions are determined by choosing the maxi-
mum and minimum criteria values in Table 9 depending on 
whether the criterion is beneficial or non-beneficial in na-
ture. The separation measures are computed using Eq. (17) 
and Eq. (18), as given in Table 10. 
 
Table 8. Weighted normalized decision matrix 

FMS RLC RWP RSC IMR IQ CMC FSU 

1 0.0586 0.0556 0.0060 0.0498 0.1135 0.1228 0.0164 

2 0.0351 0.0314 0.0179 0.0498 0.1135 0.1065 0.0197 

3 0.0293 0.0290 0.0119 0.0334 0.0762 0.0778 0.0230 

4 0.0488 0.0484 0.0155 0.0498 0.1135 0.0983 0.0131 

5 0.0273 0.0435 0.0167 0.0171 0.1135 0.0778 0.0115 

6 0.0332 0.0363 0.0107 0.0498 0.0762 0.1024 0.0172 

7 0.0449 0.0435 0.0239 0.0334 0.1135 0.0901 0.0098 

8 0.0312 0.0193 0.0167 0.0171 0.0762 0.1228 0.0098 
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Table 9. Positive-ideal and negative-ideal solutions 
Crite-

ria 
RLC RWP RSC IMR IQ CMC FSU 

Vi
+ 0.058

6 
0.055

6 
0.023

9 
0.049

8 
0.113

5 
0.077

8 
0.009

8 
Vi

- 0.027
3 

0.019
3 

0.006
0 

0.017
1 

0.076
2 

0.122
8 

0.023
0 

 
 
Table 10. Separation measures 

FMS Si
+ Si

- 
1 0.0551 0.0693 
2 0.0535 0.0556 
3 0.0667 0.0493 
4 0.0341 0.0675 
5 0.0520 0.0652 
6 0.0626 0.0432 
7 0.0338 0.0642 
8 0.0837 0.0174 

 
 Using these separation measures, the relative closeness 
(Pi) values of all the FMS alternatives to the positive-ideal 
solution are estimated using Eq. (19) and are shown in Table 
11. The FMS with the highest Pi value is the best choice. 
Table 11 shows the ranking preorders of the FMS alterna-
tives as 4 > 7 > 1 > 5 > 2 > 3 > 6 > 8, indicating FMS 4 as 
the best choice, followed by FMS 7 for the given applica-
tion. 
 
Table 11. Relative closeness values for FMS alternatives 

FMS Pi Rank 
1 0.5570 3 
2 0.5098 5 
3 0.4250 6 
4 0.6644 1 
5 0.5565 4 
6 0.4085 7 
7 0.6553 2 
8 0.1722 8 

 
 
6. Comparative analysis 
 
The aim of the comparative  analysis is to test the level of 
ranking agreement between the three MCDM methods for 
the considered FMS selection problem. Weights and perfor-
mance measures in the evaluation matrix are held constant 
for each of these methods. Three tests are performed to 
measure the level of ranking agreement: 
 

a) In the first test, similarity of rankings produced by 
all the considered MCDM methods is determined 
by Kendall’s coefficient of concordance (z) value 
using Eq. (20). The z value ranges from 0 to 1. 
Higher the value of z, better is the rank similarity 
between the considered methods. A z value of one 
indicates a perfect match between the results ob-
tained by the available methods. 
 

( )mm3k212
1

m
1i

2

m

m
1i Si

Si

z
−

∑ = ⎟⎟
⎟

⎠

⎞

⎜⎜
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⎝

⎛ ∑ =−

=    (20)     

 
where, m denotes number of alternatives and  k is 
the number of MCDM methods, which equals 3 for 
this paper and 
Si is the sum of ranks assigned to a decision alter-
native i across all k MCDM methods. 

b) In the second test, similarity between two sets of 
rankings is validated using Spearman’s rank corre-
lation coefficient (rs), as given by Eq. (21). Usual-
ly, rs value lies between –1 and +1, where the value 
of +1 indicates a perfect match between two sets of 
rank orderings and a –1 value indicates a strong 
negative correlation between the methods. 
 

)1m2(m

m
1i D2i61rs
−

∑ =−=     (21) 

 
where, Di is the difference between ranks Ri and R/

i 
and n is the number of alternatives.   

c) Average rs value between these MCDM methods is 
also computed to determine the mean ranking 
agreement among themselves. 

 
 In order to compare the relative performances of the 
three MCDM methods with respect to the CM-based deci-
sion-making approach, as adopted by Rao and Parnichkun 
[23] for solving this FMS selection problem, the results of 
the three performance tests are now discussed. Fig. 2 and 
Table 12 show the ranking preorders of the FMS alternatives 
as obtained using different MCDM methods.  
 The overall ranking agreement between all the consid-
ered methods is first determined using z  value. For this 
FMS selection problem, the z value is obtained as 0.9554, 
which indicates an almost perfect rank conformity between 
these methods.  
 The rs values are then calculated for all the pairs of these 
methods. Table 13 exhibits that the rs values between differ-
ent pairs of methods lie in a range of 0.9047 and 1.0000 
signifying almost perfect agreement between these methods.  
 Average rs value between these MCDM methods, as 
shown in Table 13, is also computed to determine the mean 
ranking agreement among themselves. 
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Fig. 2. Comparative rankings for FMS selection problem 

 
 

Table 12. Ranking preorders obtained from different 
MCDM methods 

FMS CM-based ap-
proach [23] 

PROMETHEE 
II GRA TOPSIS 

1 3 4 4 3 
2 4 5 5 5 
3 7 6 6 6 
4 2 2 2 1 
5 5 3 3 4 
6 6 7 7 7 
7 1 1 1 2 
8 8 8 8 8 

 
Table 13. Spearman’s rank correlation coefficient values 

Method PROMETHEE 
II GRA TOPSIS 

Mea
n rs 
val-
ue 

Rao and Parnichkun 
[23] 0.9047 0.9047 0.9285 0.91

26 

PROMETHEE II  1.0000 0.9667 0.98
335 

GRA   0.9667 0.98
335 

 
 
7. Effect of normalization norm 
 
It is a well known fact that any MCDM model may lack in 
the delivery of the absolute optimum solution, although, they 
are capable of deciding over the best options among some 
predetermined alternatives. Also, if not properly assigned, 
normalization norms within the solution methods may fail to 
reveal the actual decision. In fact, while the normalization 
process scales the criteria values to be approximately of the 
same magnitude, different normalization techniques may 
yield different solutions and, therefore, may cause deviation 
from the originally recommended solutions. This paper 
particularly concentrates on the effect of different normaliza-
tion methods in the context of MCDM models, with specific 
concentration to the domain of FMS selection problem. 
 To investigate the influences of different normalization 
procedures on the ranking performance of the considered 
MCDM methods while solving the given FMS selection 

problem, the following five different normalization ap-
proaches are considered [154] here. 
 

a) Vector normalization (VN) method 
     

∑

=
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m
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b) Weitendorf’s linear normalization (WLN) 

method 
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c) Jüttler’s-Körth’s normalization ( JKN) method 
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d) Non-linear normalization (NLN) method 
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where xij is the performance of ith alternative with respect to 
jth criterion and rij is the normalized xij value. 
 Table 14 shows the ranking performance for the three 
MCDM methods with respect to different normalization 
procedures. From this table, it is clearly revealed that the 
PROMETHEE II method remains less affected by different 
normalization procedures with the highest mean rs value of 
0.9167, on the other hand, TOPSIS is the most sensitive 
MCDM method with the least mean rs value of 0.5654.  
 When the mean rs values for the four normalization 
procedures are computed separately for different MCDM 
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methods as showm in Fig. 3 (a) and (b), it is highlighted that 
the vector normalization (VN) is the most preferred proce-

dure. The effectiveness of the remaining normalization pro-
cedures are more or less the same. 

 
 
 
Table 14. Ranking performance for different normalization procedures 

MCDM                
method 

Normalization 
norm 

Alternative 

rs Mean rs 
FMS 1 FMS 2 FMS 3 FMS 4 FMS 5 FMS 6 FMS 7 FMS 8 

TOPSIS 

VN 1 3 8 2 6 5 4 7 0.6905 

0.5654 
WLN 1 2 8 3 5 7 4 6 0.6429 

JKN 1 2 8 3 7 6 5 4 0.3333 

NLN 1 3 8 2 7 5 4 6 0.5952 

PROMETHEE II 

VN 3 5 7 1 4 6 2 8 0.9762 

0.9167 
WLN 5 4 6 3 1 7 2 8 0.7857 

JKN 4 5 6 2 3 7 1 8 0.9524 

NLN 4 5 6 2 3 7 1 8 0.9524 

GRA 

VN 3 5 7 1 4 6 2 8 0.9762 

0.880 
WLN 2 5 6 3 1 7 4 8 0.7857 

JKN 4 5 6 2 3 7 1 8 0.9524 

NLN 1 5 6 3 2 7 4 8 0.8095 
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Fig. 3. Mean rs values of different MCDM and normalization methods 
 

 
8. Conclusion and discussion 
 
All the three considered MCDM methods are quite capable 
in solving real time FMS selection decision-making prob-
lems and the rankings of the FMS alternatives as obtained by 
these methods are almost similar to those observed by the 
past researchers. The rs values are considered here as a 
measure to check the similarity between two set of order-
ings. High rs values suggest that any of these MCDM meth-
ods may be applied to solve any of the decision-making 
problems. Hence, it is advisable that the decision makers 
should focus more on the development of the related deci-
sion matrix by choosing the appropriate criteria values, and 
not on selecting a particular MCDM method to implement. 
Among the four methods as adopted to normalize the criteria 
values in the decision matrices, it is observed that the vector 
normalization procedure is the most preferred choice. 
PROMETHEE II method remains lessaffected by different 
normalization procedures, on the other hand, TOPSIS is the 
most sensitive MCDM method. The average rs values for the 
four normalization procedures also highlight that the vector 
normalization (VN) is the most preferred procedure.
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