

Journal of Engineering Science and Technology Review 7 (3) (2014) 1 – 6

Research Article

Two Stage Secure Dynamic Load Balancing Architecture for SIP Server Clusters

G. Vennila* and MSK. Manikandan

Department of Electronics and Communication Engineering, Thiagarajar College of Engg., Madurai, INDIA

Received 7 July 2014; Accepted 1 August 2014

Abstract

Session Initiation Protocol (SIP) is a signaling protocol emerged with an aim to enhance the IP network capabilities in
terms of complex service provision. SIP server scalability with load balancing has a greater concern due to the dramatic
increase in SIP service demand. Load balancing of session method (request/response) and security measures optimizes
the SIP server to regulate of network traffic in Voice over Internet Protocol (VoIP). Establishing a honeywall prior to the
load balancer significantly reduces SIP traffic and drops inbound malicious load. In this paper, we propose Active Least
Call in SIP Server (ALC_Server) algorithm fulfills objectives like congestion avoidance, improved response times,
throughput, resource utilization, reducing server faults, scalability and protection of SIP call from DoS attacks. From the
test bed, the proposed two-tier architecture demonstrates that the ALC_Server method dynamically controls the overload
and provides robust security, uniform load distribution for SIP servers.

Keywords: Load balancer; honeywall; SIP; VoIP; overload; Least Session

1. Introduction

SIP is a VoIP signaling communication protocol used for
establishing, modifying, controlling and terminating
multimedia session such as video and voice call over IP
based network. SIP based telephony is an alternative method
to Public Switched Telephone Network (PSTN) due to its
greater flexibility and lower costs [1-2]. Due to rapid growth
and increasing demand of SIP deployments in VoIP
network, it's necessary to handle overload and customer
service demand.
 Load balancing in SIP server become a powerful
solution to various problem like security, scalability,
reliability and management[3]. Increasing SIP signaling
traffic causes overload in server, measuring factors such as
throughput, response time and CPU utilization are
significantly affected. This paper presents and analyzes load
balancing algorithm for distributing load by eradicating
signaling attack and anomaly load using honeywall which
are unlikely to the SIP server. We develop a set of rules for
above in the honeywall thus, work task of the load balancer
enhanced furthermore. As part of an overall security
approach, the proposed two tier architecture maintains SIP
application performance and availability, thus allowing time
for segregation and blocking of attack traffic.

Proposed ALC_Server algorithm is implemented in the
load balancer which forwards the SIP request of the
corresponding call to its corresponding server thus,
eliminating the problem of incomplete sessions after heavy
load. The main goal of ALC_Server load balancer is that
route a new call towards the SIP server that has lest number
of active call which has least number of BYE_ACK method.
In case any server in the VoIP network has same number of

least call and methods, we make use of FIFO fashion. We
compare our load balancer with Least Session Method
(LSM) and measure various parameters such as throughput,
CPU Utilization and response time.

1.1 SIP Overview
SIP is a standard protocol for multimedia conferencing
defined by an Internet Engineering Task Force (IETF)[2].
SIPs are location-independent with negotiate session
characteristics and support other protocols, identify and
carry out multimedia session. SIP session negotiation is
accomplished with the help of Session Description Protocol
(SDP) and Real time Transport Protocol (RTP) is
responsible for multimedia transactions over IP network[1].
This RTP in conjunction with Real-time Transport Control
Protocol (RTCP) provides session synchronization and other
media transaction statistics. SIP is a transaction based
protocol similar to the HTTP method. Each SIP transaction
consists of a client request that invokes a specific method on
the server and generates corresponding response.

A complete SIP transaction is established between two
user agents that close after a period of time called as SIP call
or dialog. SIP transactions are considered as either INVITE
or Non-INVITE, an INVITE transaction establishes a long
conversation which includes an acknowledgement (ACK)
without failure of closing response (e.g 200 OK). A new
transaction begins, when the BYE message is generated to
its corresponding INVITE request. An INVITE transaction
consumes more processing time than BYE method [3].
Figure 1 shows the SIP client A and B initiate and receive
sessions.

The SIP client A generates an INVITE request and sends
it to the SIP client B. The main principle of a SIP server is to
forward requests to clients closer to its destination. The SIP
proxy servers are more light-weight compared to PSTN
because it can only route call without maintaining any

Jestr

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

 * E-mail address: vennilatg@tce.edu

ISSN: 1791-2377 © 2014 Kavala Institute of Technology. All rights reserved.

G. Vennila and MSK. Manikandan/Journal of Engineering Science and Technology Review 7 (3) (2014) 1 – 6

 2

session details. The request may traverse via one or more
servers. Media session is exchanged and then the call is
terminated by sending a BYE message. After completing SIP
transaction, SIP clients uses cryptographic algorithms to
encrypt/decrypt the voice packets.

Fig. 1. An example SIP message flow

 The rest of this paper is structured as follows: Section 2
describes related work. Section 3 illustrates proposed two
tier architecture. Experimentation and performance results
are shown in section 4 and 5. Section 6 concludes the paper.

2. Related works

Load distribution and balancing in SIP servers are some of
the areas in VoIP network that are extensively in focus
today. In particular, the problems of optimal load
distribution in distributed computing environment is studied
using queuing models [4].The overload control mechanism
using dispatchers for SIP server clusters are discussed in [5-
6]. SIP based failover and load distribution method for
routing a call to the SIP server and various prevention
methods are given in [7-8].

In SIP based cluster architecture, three issues are
considered to avoid SIP failover with a single point of
failure, health monitoring of proxy server and load balancing
of SIP proxy servers [9]. SIP server performance gets
degraded due to retransmission and anomaly load [10]. To
prevent this problem window based overload control
algorithm is proposed [11]. Some of the overload control
mechanism cannot handle overload condition effectively. To
detect overload at the downstream server and control
retransmission rate from upstream server a novel algorithm
is presented in [12]. A Distributed End-to-End Overload
Control (DEOC) mechanism provides high throughput and
responds faster to the abrupt variation of the load generation
[13]. SIP server performance varied depending on how the
server is configured. The measuring parameters of server
like throughput, response time and CPU utilization also gets
affected due to authentication scheme used in the server,
whether the transaction is stateful or stateless and type of
protocol used (TCP, UDP) are discussed in [14]. Over load
control methods are applied in either end to end or hop-by-
hop scheme. Hop-by-Hop overload control is simple and
balance loads in VoIP networks with many SIP clients. Over
load control loop method applied in an end-to-end system
controls overload in the entire path of the SIP request, from

user agent client to user agent server. But this method needs
prior information about load from all SIP servers and update
load status on the potential possible path to a destination
[15].

SIP configured in both Back to Back User Agent
(B2BUA) and proxy modes, simulation results are presented
in [16]. Attacks in VoIP systems causes damage and are
more imaginative. The security status of VoIP systems are
observed with the help of a honeynet environment. The
result describes existing prevention techniques utilized to
recognize and analyze attacks in production environment
[17]. A comparison of existing algorithms like round robin,
random, SITA-E and dynamic schemes with demonstrating
results is explained in [18]. If a newly generated request
arrives randomly to the system, the servers become
significantly loaded. For this situation, a main objective of
load sharing to transfer request from heavily loaded to
lightly loaded servers using ALC_Server scheme is
discussed in this paper. Thus, there is no SIP server in idle or
waiting state. To the best of our knowledge, a secure
uniform load distribution with honeywall and performance
comparison with existing algorithm (LSM) towards multiple
servers has not been considered in the earlier works.

3. Proposed two tier SIP architecture

In this section, we propose to combine two methods in two
tier architecture to improve scalability, security and
reliability by adding an additional stage which do not affect
the media session.

3.1 Secure first tier honeywall architecure
Honeywall is the first element to capture the load from the
SIP clients. Honeywall provides a transparent gateway to the
honeynet system. A honeypot is virtually installed in the SIP
server to trace the attacker. This honeynet topology is
completely untraceable by an attacker. The proposed
honeywall architecture offers three functionalities such as
data capture, data control and data analysis [19]. Sebek
performs as a data capturing tool, intended to capture SIP
load on a server, it secretly stores the results in log directory.
The result directory logs are used to study the behavior of
attack traffic like type of attacks and protocols used by an
attacker.

This logged activity is sent out in the form of sebek
packets. Sebek packet data taken from the pcap files with the
help of wireshark and sebek scripts are analyzed. Snort
inline tool is used to control and analyze the SIP call flow
rate based on rules written in this mode. SIP packets are
compared against inline rule-sets and actions are taken to
decide whether to allow or drop the packets with the help of
iptables. We used walleye for data analysis and its interface
is remotely accessible from the honeywall. The data analysis
interface is the most powerful user interface for analyzing
both real-time and previously archived SIP network packet.
This log result includes pcap data, packet payload, real time
SIP call flows, inbound and outbound data traffic, action
taken out by the snort, sebek based data log and honeywall
activity summary. Figure 2* depicts honeywall
implementation in VoIP architecture. This first tier
architecture consists of a honeynet and SIP clients. A
honeypot is a trap set to the attacker to analyze the attacker
methodology and alerts the SIP servers regarding the
malicious packets that bypass the load balancers. A

G. Vennila and MSK. Manikandan/Journal of Engineering Science and Technology Review 7 (3) (2014) 1 – 6

 3

Honeynet is a network of honeypots organized in a VoIP
environment.

Fig. 2. Secure two tier SIP architecture

Here, honeywall is the major contribution for reducing
the load towards the load balancer acts like a security wall
that prevents the entry of unwanted flooding towards SIP
server clusters. This architecture creates a high control and
monitoring of all kinds of SIP clients and VoIP network
activity.

3.2 Second tier load balancer architecure
Load balancing is significantly more important due to
overload and anomaly traffic. Our load balancer has a choice
to select the server during reception of new INVITE
messages and Non-INVITE methods can only be forwarded
to the respective servers handling the corresponding session.
The implemented ALC_Server algorithm dynamically
measures server parameters such as capacity, speed, number
of active sessions and work assigned to a server based on
sending request to a server and then receiving response from
the server. To evaluate the health of the server, load balancer
always observes response from every SIP server. The SIP
server is configured to utilize the proposed algorithm which
makes decision to select the server with the least number of
active calls and BYE_ACK method to ensure that the load of
the active requests are balanced by the server.

In the two tier architecture, SIP clients generates request
to the load balancer. Before that, honeywall gateway reduces
SIP traffic towards the server and the proposed ALC_Server
algorithm selects a proper SIP server to handle all the
incoming requests. Each response from SIP servers at first
go through honeywall, then the load balancer, it is then
forwarded to the appropriate SIP clients. By monitoring
these transactions, the load balancer algorithm computes
server completed transactions and updates the work assigned
to each SIP server in the network. Figure 3 illustrates the
pseudocode and working flow model for the proposed
system.

The captured SIP packets from honeywall are forwarded
towards the load balancer. If the received session request is a
new INVITE method, the load balancer assigns it to the new
SIP server based on least number of active calls and
BYE_ACK method. Otherwise, ALC_Server scheme
forwards the packets to the corresponding servers handling
the existing sessions thereby call synchronization before and
after the load is achieved. The health of SIP servers are
checked using the updation table entries for the SIP request
and response methods.

Fig. 3. Pseudocode for ALC_Server algorithm

3.3 Existing algorithm
LSM method routes a new call towards the SIP server that
has least active number of session instead of least active
calls. Here, session defines that the each SIP request and
responses are initiated by the client and server. The main
limitation of this method is that each session has different
cost, consumes more resources and takes longer idle period
to complete a call [3]. For example, an INVITE request takes
longer period to complete a call. But the BYE request
consumes fewer resources and takes short period of time for
a call. At the same time existing requests are not forwarded
to corresponding handling server. This method automatically
achieves less percentage of call completion rate and
throughput.

4. Experimental test bed

Figure 4 demonstrates experimental test bed of honeywall
with load balancer implementation. The test bed consists of
a load balancer algorithm and honeywall implemented in
the server, SIPp load generator and OpenSER SIP server.
Oprofile tool is used to monitor the CPU profiles,
performance and utilization where as Nmon presents all the
important tuning information on screen.

Fig. 4. Experimental testbed

4.1 Work load generator
We use open source SIPp traffic generator tool to generate a
maximum of 9000 calls/sec. It is a XML configurable packet

G. Vennila and MSK. Manikandan/Journal of Engineering Science and Technology Review 7 (3) (2014) 1 – 6

 4

generator, composed of event driven architecture. SIPp
contain different scenarios like User Agent Client (UAC)
and User Agent Server (UAS) which launches multiple calls
with INVITE and BYE methods. We make use of UAC
scenario model consisting of an INVITE request method in
which the OPENSER SIP server responds with 100
TRYING, 180 RINGING and 200 OK response methods.
UAC loads are increased every 30 seconds by 10 and with a
pause time of 30s to 1 min. After pausing a call to UAC
model, the SIP clients immediately sends a BYE message to
terminate the session. Then the server returns a 200 OK
response code. We implement two architectural methods
which include,

a. Load balancer with honeywall
b. Load balancer without honeywall

4.2 SIP Server
OPENSER back-end SIP proxy server is installed in redhat
linux environment. We use five back-end servers to analyze
and evaluate the overall performance of our algorithm. The
request rate starts initially with 5 calls per second (cps) and
gradually increases every second. After 10 seconds request
rate is increased by 50 cps. Network analyser tool
(Wireshark) analyzes SIP packet flow which is established
in client and server machines. Initially, load is distributed
uniformly, all SIP clients obtained increased rate of received
calls after 1 additional cps until the experimental rate is
reach.

4.3 Honeywall
The honeywall is the primary element for entry and exit of
VoIP network traffic. The honeywall actively monitors,
analyzes and controls the incoming traffic to the load
balancer. The main idea of implementing a honeywall is to
reduce the workload of the load balancer by eliminating
suspicious traffic at the initial stage itself. Honeywall logs
provide us evident results of the various kinds of attack,
traffic and the techniques used. Honeywall is configured
[19] and Hwctl control command line is utilized for
changing and updating the value of the honeywall variable.
In general, Honeywall has three interfaces (eth 0, 1, 2); we
used interface eth 2 for handling SIP management traffic.
The honeywall then transmits the incoming load to the level
II load balancer architecture.

5. Performance Analyses
In this section, we quantitatively evaluate the performance of
proposed two-tier architecture for scalability with security
using the experimental testbed.

5.1 Throughput
Throughput is defined as the number of requests completed
per second by the SIP server. We compute the maximum
throughput of a SIP client node to be 6804 cps for honeywall
with pause and 6513 cps for honeywall without pauses. Two
parameters with and without pauses ensure that ALC_Server
load balancer provides promising results even with
uninterrupted overloading of the server.

Fig. 5. ALC_ Server load balancer throughput comparison with offered
load towards the server

This is significantly proved from the figure 5 which gives

maximum throughput for honeywall without pauses. The
same scheme without honeywall provides throughput of
about 5620 cps without pause and 5467 cps with pause. The
reason behind this drop is because the honeywall limits the
incoming floods towards the SIP load balancer according to
the proposed rules inside the honeywall to block the
incoming load.

5.1.1 Peak throughput
Figure 6 shows that peak throughput of two different load
balancers when increasing number of nodes in the test bed
environment.

Fig. 6. Peak throughput

 We implement LSM algorithm in SIP server which
achieves maximum peak throughput of 1831 for the 8 nodes.
For the same number of nodes ALC_Server load balancer
achieves highest peak throughput of 2632 calls/sec because
of that reduced response time is obtained.

5.2 Response time
Response time is defined as the time duration between when
a request (INVITE/BYE) is sent and the successful 200 OK is
received. For response time calculation y axis is represented
in logarithmic scale. Our load generator can produce an
aggregate request rate of 9000 cps with respective pauses to
ensure that the response time is reduced by limiting the load
request by the honeywall. We observed the response time
between 3000 to 9000 cps and there was an increase in
response time slightly from 3000 cps without pauses when
honeywall is used. This shows that reduced response time
than the system without honeywall. There is a slight
degradation in response times from 4500 cps in without
honeywall and pause as shown in figure 7.

G. Vennila and MSK. Manikandan/Journal of Engineering Science and Technology Review 7 (3) (2014) 1 – 6

 5

Fig. 7. Average response time versus generated load

5.3 CPU Utilization
A comparative study of different loads carried out in the test
bed for CPU utilization is shown in figure 8. The graph
shows the percentage level of CPU utilization over different
loads. The x-axis represents the load generation (cps), and
the y-axis represents the percentage of utilization. We
observed a maximum 96.97 % of CPU is utilized around
6000 cps using honeywall without pause when SIP specific
servers are used. It is obvious that many servers may be
powerful than others and its CPU utilization varies
depending on the load and type of request that limits the
resources. When the OPENSER SIP server is overloaded,
the CPU utilization is close to 100%.

Fig. 8. CPU utilization comparison with offered load

5.4 SIP Call completion rate
From SIP client's perspective, the call completion rate is
important. Figure 9 depicts number of calls generated vs

completion rate.

Fig. 9. Successful completed SIP calls

The processing time of LSM method varies with SIP call
length. Because each SIP calls have different number of
transaction and consumes more server resources. So the
successful number of call completion rate in LSM is lower
than ALC_server method. Proposed load balancer handles
maximum of 570 calls in honeywall implementation, 523
calls without honeywall implementation and 460 calls are
completed in LSM method out of 600 calls.

6. Conclusion

Our proposed two tier architecture of VoIP network
evidently increases reliability, security and scalability. The
experimental test bed results help in managing the incoming
IP traffic and dropping the malicious packets before load
distribution across multiple SIP servers. On the other hand
our algorithm provides better response time, maximizes
throughput and CPU utilization. The dramatic reduction in
response time is achieved by ALC_Server algorithm in the
load balancer along with honeywall implementation.
Operation of honeywall at the earlier stage greatly reduces
the work of the load balancer spending its time in processing
and balancing the unwanted malicious flooding packets
targeting the SIP server. Thus honeywall with load balancer
provides improved efficiency in terms of security and traffic
management in a VoIP honeynet environment.

References

1. Schulzrinne, H., and Rosenberg, J., "The Session Initiation
Protocol", IEEE Communication Magazine, vol.38, pp.134-141,
2000.

2. Rosenberg, J., "SIP: Session Initiation Protocol”, RFC3261.
3. Hongbo Jiang, Arun Iyengar, Erich Nahum, Wolfgang Segmuller,

Asser N. Tantawi and Charles P.Wright, "Design, Implementation,
and Performance of a Load Balancer for SIP Server Clusters",
IEEE/ACM Transactions on Networking, vol.20 (4),pp.1190-1202,
2012.

4. Kameda, H., Li, J., Kim, C., and Zhang, Y., "Optimal Load
Balancing in Distributed Computer Systems", Springer-Verlag,
vol. 32(2), pp.445- 465, 1997.

5. Bryhni, H., Klovning, E., Oivind Kure, "A comparison of load
balancing techniques for scalable web servers", IEEE Network,
vol. 14, 2000.

6. Suryanarayanan, K., Christensen, KJ., "Performance evaluation of
new methods of automatic redirection for load balancing of apache

servers distributed in the Internet", International IEEE Conference
on Local Computer Networks, USA, 644-651, 2000.

7. Kundan Singh and Henning Schulzrinne "Failover and Load
Sharing in SIP Telephony", Journal of Computer
Communications, vol. 35(5), pp. 927-942, 2007.

8. Xu, C., and Lau, F., "Load-Balancing in Parallel Computers",
Theory and Practice, Kluwer Academic, 1997.

9. Alireza, K., Mehdiagha, S., and Mohammad, G., " Two stage
architecture for load balancing and failover in SIP network",
Middle-East Journal of Scientific Research, vol.6, pp.88-92, 2010.

10. Azhari, SV., Homayouni,M., Nemati,H., Enayatizadeh, J., Akbari,
A., " Overload control in SIP networks using no explicit feedback:
A window based approach," Journal of Computer
Communications, vol.35, pp.1472–1483, 2012.

11. Hilt, V., and Widjaja, I., "Controlling overload in networks of SIP
servers", IEEE International Conference on Network Protocols
(ICNP 2008) , pp.83-93,2008.

G. Vennila and MSK. Manikandan/Journal of Engineering Science and Technology Review 7 (3) (2014) 1 – 6

 6

12. Liao, J., Wang, J., Li, T., and Zhu, X., "A distributed end-to-end
overload control mechanism for networks of SIP servers," Journal
of Computer Networks, vol. 56(12),pp. 2847-2868, 2012.

13. Hong, Y., Huang, C., and Yan, J., "Controlling retransmission rate
for mitigating SIP overload", IEEE International Conference on
Communications (ICC), pp.1-5, June 2011.

14. Nahum, EM., Tracey, J., and Wright, CP., "Evaluating SIP server
performance", SIGMETRICS, Performance Evaluation Review,
vol. 35, pp. 349-350,2007.

15. Widjaja, I., Hilt, V., and Schulzrinne, H., "Session Initiation
Protocol (SIP) Overload Control," Internet Draft, Sipping
Working Group, January 2008.

16. Miroslav, V., Jan, R., "Methodology for SIP Infrastructure
Performance Testing", WSEAS Transactions on Computers, vol.9,
2010.

17. Gruber, M., Fankhauser, F., Taber, S., Schanes, C., and Grechenig,
T., "Security status of VoIP based on the observation of real-world
attacks on a honeynet", 3rd IEEE International Conference on
Information Privacy, Security, Risk and Trust, pp.1041-1047,
2011.

18. Harchol-Balter, M., Crovella, M., and Murta, CD., "On choosing a
taskassignment policy for a distributed server system,” Journal of
Parallel Distributed Computer, vol. 59(2), pp. 204–228, 1999.

19. http://www.honeynet.pk/honeywall/roo/page3.html

