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Abstract 
 

An effective hybrid artificial bee colony algorithm is proposed in this paper for nonnegative linear least squares problems. 
To further improve the performance of algorithm, orthogonal initialization method is employed to generate the initial 
swarm. Furthermore, to balance the exploration and exploitation abilities, a new search mechanism is designed. The 
performance of this algorithm is verified by using 27 benchmark functions and 5 nonnegative linear least squares test 
problems. And the comparison analyses are given between the proposed algorithm and other swarm intelligence 
algorithms. Numerical results demonstrate that the proposed algorithm displays a high performance compared with other 
algorithms for global optimization problems and nonnegative linear least squares problems. 

 
 Keywords: Artificial Bee Colony, Orthogonal Initialization Method, Nonnegative Linear Least Squares, Optimization Problem 
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1. Introduction 
 
The method of least squares is an important approach to 
simulate the approximate solution of over determined 
systems, i.e. sets of equations in which more equations than 
unknowns. Least squares problems are divided into two 
categories: linear least squares and non-linear least squares, 
depending on whether or not the residuals are linear in all 
unknowns. In mathematics and statistics, linear least squares 
is an approach to fitting a statistics or a mathematical model 
to data, in cases where the idealized value provided by the 
model for any data point is expressed linearly in terms of the 
unknown parameters of the model. The adapted model 
results can be used to predict unobserved values from the 
same system, to summarize the data, and to understand the 
mechanisms that may underlie the system. Without loss of 
generality, the Nonnegative Linear Least Squares (NLLS) 
problem can be formulated as follows: 
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≥
= − = − −        (1) 

 
where m nA R ×∈ ,m n≥ , ( )rank A n= , mb R∈ . 
 Over the past decade, solving the linear least squares via 
using classical mathematical programming methods has 
attracted much attention. These methods require matrix 
updates or factorizations, and can become overmuch 
expensive for very large-scale problems. Classical 
optimization methods are highly sensitive to the initial point, 
having very slow convergence and frequently converging to 
local optimum solution. 
 Motivated by foraging behavior of honey bees, Karaboga 

in 2005 [1] proposed the artificial bee colony (ABC) 
algorithm to optimize unconstrained problems. In a natural 
bee swarm, there are three groups of bees including 
employed bees, onlooker bees and scout bees. Half of the 
colony consists of employed bees, and the other half 
includes onlooker bees. A bee that is currently exploiting a 
food source is named as an employed bee. Employed bees 
perform waggle dance upon returning to the hive to 
propagate the information of its food source to the rest of the 
colony. A bee around the dance floor to choose any of the 
employed bees to follow is called an onlooker bee. A bee 
carrying out a random search for a new food source is 
named as a scout bee. In ABC algorithm, each food source is 
a possible solution for the problem under consideration and 
the nectar amount of a food source represents the quality of 
the solution represented by the fitness value. The ABC 
algorithm starts with a population of randomly generated 
food sources. Then the following three steps are repeated 
until a termination criterion is satisfied [2]: 
 
 1). Send the employed bees onto the food sources and 
measure their nectar amounts. 
 2). Select the food sources by the onlooker bees after 
share the information of employed bees and determine one 
nectar amount of the food sources. 
 3). Determine the scout bees and randomly generate a 
new food source. 
 
 The initial population containing SN  solutions is 
generated randomly, SN  is equal to the number of 
employed bees. Each solution ( )1,2,...,ix i SN=  is an n-
dimensional real-valued vector. 
 Let { }1 2, ,...,i i i inx x x x= represent the ith food source in 
the population, and then each food source is formulated as 
follows: 
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( )( )min max min0,1 ,

1,2,..., , 1,2,...,

j j j
ix x rand x x

i SN j n

= + −

= =
                    (2) 

 
 These food sources are randomly assigned to SN  
number of employed bees and their finesses are evaluated. 
 The search equation for employed bees and onlooker 
bees can be described as follows:  
 

( )( ) , , , ,new j i j i j i j k jx x x xφ= + −                       (3) 

 
where { }1,2,...,k SN∈ , k j≠ and { }1,2,...,j n∈ are 

randomly chosen indexes. ,i jφ  is a uniform random number 

in the range [ ]1,1− . Once newx  is obtained, a greedy 
selection then performs between the old and candidate 
solutions. 
 In the onlooker bee stage, an onlooker bee selects a food 
source ix  depending on the probability value ip  calculated 
as follows: 
 

1

i
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=
∑

                                   (4) 

 
where if  is the nectar amount (i.e., the fitness value) of the 
ith food source ix . Obviously, the higher the if  is, the more 
probability that the ith food source is selected. 
 In the basic ABC algorithm, if a food source ix  cannot 
be improved further through a predetermined number of 
“limit”, the food source should be abandoned, and the 
corresponding employed bee becomes a scout. The scout 
produces a food source randomly, which can be defined as: 
 

( ) ( )min max min 0,1 ,

1,2,..., .

j j j j
ix x x x rand

j n

= + − ×

=
         (5) 

 
 Compared with DE, PSO, and other intelligent 
algorithms, the ABC algorithm shows better performance 
than other algorithms [2]. Then, the ABC algorithm was 
extended for constrained optimization problems in [3] and 
was applied to medical pattern classification and clustering 
problems [4, 5], to train neural networks [6, 7], to solve 
clustering problem [8], TSP problems [9],a large-scale 
capacitated facility location problem[10]. In this paper, an 
effective hybrid artificial bee colony (EH-ABC) algorithm is 
proposed for solving Nonnegative Linear Least Squares 
problems. The orthogonal initialization method is employed 
to generate initial population. Inspired by PSO and DE, a 
new search mechanism is proposed. The experimental 
results tested on 27 benchmark functions and a set of 
Nonnegative Linear Least Squares problems show that the 
EH-ABC algorithm can outperform ABC algorithm in most 
of the experiments. 
 Paper is organized as follows. In Section 2, the ABC 
algorithm for solving Nonnegative Linear Least Squares 
problems are introduced. In Section 3, simulation results of 
ABC and EH-ABC are presented and compared. Finally, a 
conclusion is provided. 
 

2. The proposed ABC algorithm for Nonnegative Linear 
Least Squares problems 
 
2.1 Orthogonal initialization 
Population initialization is an important step in swarm 
intelligence-based algorithms, which can affect the quality 
of solution. It is desirable that the initial population be 
scattered uniformly over the feasible solution space, so that 
the algorithm can search the whole solution space evenly. 
Before an optimization problem is solved, there is no 
information about the location of the solution. Notice that an 
orthogonal array specifies a small number of combinations 
that are scattered uniformly over the space of all possible 
combinations. The orthogonal design can make the initial 
population be scattered evenly over the solution space. 
Therefore, in this paper we generate initial population by 
using the orthogonal initialization method [11][12]. 
 The algorithm for generating an initial population is 
given as follows. 
  
Algorithm 1: Generation of Initial Population. 
 
 Step 1: Divide the feasible solution space [ , ]l u  into S  
subspaces 1 1 2 2[ , ],[ , ], ,[ , ]S Sl u l u l uL  based on the following 
equations: 
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 Here, 

1
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 Step2: Quantize subspace [ , ]i il u  into 1Q  levels based 
on 
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where 1Q is odd. Then, construct orthogonal array 

1 1
1( )NM ij M N

L Q a
×

⎡ ⎤= ⎣ ⎦  to select 1M  individuals based on 

 

11 12 1

21 22 2

1 21 1 1

1, 2, ,

1, 2, ,

1, 2, ,

( , , , )

( , , , )

( , , , ).

N

N

M M M N

a a N a

a a N a

a a N a

α α α

α α α

α α α

⎧
⎪
⎪
⎨
⎪
⎪
⎩

L

L

L
L

                   (8) 

  
 Here, 

1 1( )NML Q  can be generated as follows. Select the 

smallest 1J fulfilling 1
1 1( 1) ( 1)JQ Q N− − ≥ .If 1

1 1( 1) ( 1)JQ Q N− − = , 
then 'N N=  else 1

1 1' ( 1) ( 1)JN Q Q= − − . Then, construct the 

basic columns based on
1

1

1

1
1

1

kQj
Q

− −
= +

−
, 

1 1
1

1 mod ,ij J k

ia Q
Q −

⎢ ⎥−
= ⎢ ⎥
⎣ ⎦

 for 

11, ,i M= L , 11,k J= L . Construct the non-basic columns as 
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1
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−
, 

1( 1)( 1) 1( )modj s Q t s ja a t a Q+ − − + = × + , for 

1, , 1s j= −L , 
11, ,t Q= L . Thus, the orthogonal array 

1

'
1( )NML Q  is constructed. Delete the last 'N N−  columns of 

1

'
1( )NML Q  to get 

1 1( )NML Q  where 1
1 1

JM Q= . 

 Step 3: Among the 1M S  individuals, select SN  
individuals having the smallest cost as the initial population. 
 
2.2 New Search Equations 
As we all known that how to balance exploration and 
exploitation abilities to achieve good optimization 
performance is an important problem for the population 
based algorithms, such as GA, PSO, DE, and so on. The 
exploration refers to the ability to search the unknown 
regions in the solution space to find the global optimum, 
while the exploitation refers to the ability to discover better 
solutions based on the information of the previous good 
solutions. Actually, the exploration and exploitation abilities 
contradict with each other, so that the two abilities should be 
well balanced. In ABC algorithm, the search equation 
proposed is good at exploration but poor at exploitation. In 
order to improve the exploitation, a new search mechanism 
is proposed in this section. 
 Differential evolution (DE) is a population based 
algorithm, whose main strategy is to generate a new position 
for an individual by calculating vector differences between 
other randomly selected individuals in the population. It has 
been shown the efficiency for many optimization problems 
in real-world applications. It follows the general stages of an 
evolutionary algorithm. In DE algorithm, three evolutionary 
operations including mutation, crossover and selection will 
be executed. There are several kinds of mutation operation, 
which formulates different DE algorithms. Among them, 
“DE/best/1” can improve the exploitation abilities of 
algorithm, which can be described as follows: 
 
DE/best/1: 1 2( )i best r rv x F x x= + − ,                (9) 
 
where {1,2, , }i SN∈ L ; 1r  and 2r  are different random 
integer indices selected from {1,2, , }SNL ; bestx  is the 
global best solution; [0.5,1]F ∈  is a positive real number. 
 Motivated by DE and based on the property of ABC 
algorithm, a new search equation is proposed as follows: 
 
, , , , 1,( )i j best j i j i j r jv x x xϕ= + − ,                 (10) 

 
where {1,2, , }i SN∈ L ; 1r  is integers randomly selected 
from {1,2, , }SNL , and is different from i ; ,best jx  is the 

global best solution; {1,2, , }j D∈ L  is a randomly selected 
index; and [0,1]ijϕ ∈  is uniformly distributed random 
number. Similar to DE, search equation (10) can improve 
the convergence performance which can enhance the 
exploitation ability of the algorithm. 
 Inspired of PSO, in order to improve the exploitation 
ability of ABC algorithm, takeing the advantages of the 
search equation in PSO, Zhu et al. [13] proposed the g-best 
ABC algorithm. In this paper, the modified search equation 
is described as follows: 
 

( ) ( )ij ij ij ij kj ij j ijv x x x y xφ ϕ= + − + − ,                            (11) 

where { }1,2,...,k SN∈  is a random selected index which is 

different from i , { }1,2,...,j D∈  is a random selected 

index, jy  is the j th element of the global best solution, 

[ 1,1]ijφ ∈ −  and [0,1.5]ijϕ ∈  are both uniformly distributed 
random numbers. This search equation can also improve the 
exploitation ability of the algorithm. 
 
2.3 The proposed algorithm 
From the above analysis, in order to take advantage of 
search equation (10) and (11), a new algorithm is proposed 
by hybridizing the two search equations. In the new artificial 
bee colony algorithm, a selective probability p is introduced 
to control the frequency of using search equation (10) and 
(11). Thus, the main steps of the new artificial bee colony 
algorithm with orthogonal initialization are given as follows. 
 
Algorithm 2: Effective hybrid artificial bee colony 
algorithm 
 
1). Initialization: Preset selective probability p and 
population size SN . 
2). Perform Algorithm 1 to create an initial population, 
calculate the function values of the population. 
3). While (FE< Max. FE) do 
4).  for 1i =  to SN  do 
5).   Produce new solutions iv  by using equation (10) 

6).   If ( ) ( )i if v f x<  then i ix v=  
7).     else then 
8).        if (0,1)rand P<  then 
9).           Produce new solutions iv  by using equation (11) 

10).            if ( ) ( )i if v f x<  then i ix v=  
11).            end if 
12).       end if 
13).     end if 
14).  end for 
15). end while (FE= Max. FE) 

 
3. Computational results and comparisons 
 
In order to illustrate the efficiency of EH-ABC algorithm, 
we test 27 benchmark functions and 5 nonnegative linear 
least squares test problems in this section. 
 
3.1 Experiments on 27 benchmark functions 
3.1.1 Test functions 
In this subsection, the EH-ABC algorithm proposed in this 
paper is applied to minimize 27 benchmark functions, as 
shown in Table 1 and 2. In Table 1, the dimensions of the 
benchmark functions are given in the third column. In 
function Hartman3,  

 
3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

T

a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828

T

p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
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⎣ ⎦

. 

 
 In function  
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a =

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

!

"

#
#
#
#

$

%

&
&
&
&

, 

[ ]1 1,2,2,4,4,6,3,7,5,5
10

Tc = . 

 
 The benchmark functions presented in Table 2 are tested 
of dimension D=30 and D=60. 

Tab.1. Benchmark functions 1f - 16f  used in experiments. D: Dimension, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-
Separable. 

Function Range D C Formulation 
Beale [-4.5,4.5] 2 UN 2 2 2 3 2

1 1 1 2 1 1 2 1 1 2(1.5 ) (2.25 ) (2.625 )f x x x x x x x x x= − + + − + + − +  

Bohachevsky [-100,100] 2 MS 2 2
2 1 2 1 22 0.3cos(3 ) 0.4cos(4 ) 0.7f x x x xπ π= + − − +  

Booth [-10,10] 2 MS 2 2
3 1 2 1 2( 2 7) (2 5)f x x x x= + − + + −  

Branin [-5,10]×  
[0,15] 2 MS 

2
2

4 2 1 1 12

5.1 5 16 10 1 cos 10
84

f x x x x
π ππ

⎛ ⎞ ⎛ ⎞= − + − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Colville [-10,10] 4 UN 
2 2 2 2

5 1 2 1 3
2 2 2 2
3 4 2 4

100( ) ( 1) ( 1)

      90( ) 10.1(( 1) ( 1) )

f x x x x

x x x x

= − + − + −

+ − + − + −
 

Easom [-100,100] 2 UN 2 2
6 1 2 1 2cos cos exp( ( ) ( ) )f x x x xπ π= − − − − −  

GoldStein- 
Price [-2,2] 2 MN 

2
1 2

7 2 2
1 1 2 1 2 2

2
1 2

2 2
1 1 2 1 2 2

1 ( 1)

(19 14 3 14 6 3 )

30 (2 3 )
       

(18 32 12 48 36 27 )

x x
f

x x x x x x

x x
x x x x x x

⎡ ⎤+ + +
= ⎢ ⎥

− + − + +⎢ ⎥⎣ ⎦

⎡ ⎤+ −
⋅ ⎢ ⎥

− + + − +⎢ ⎥⎣ ⎦

 

Hartman3 [0,1] 3 MN 
4 3 2

8 1 1
exp ( )i ij j iji j

f c a x p
= =

⎡ ⎤= − − −
⎣ ⎦∑ ∑ ; [ ]1.0,1.2,3.0,3.2c =  

Six Hump 
Camel Back [-5,5] 2 MN 2 4 6 2 4

9 1 1 1 1 2 2 2
14 2.1 4 4
3

f x x x x x x x= − + + − +  

Matyas [-10,10] 2 UN 2 2
10 1 2 1 20.26( ) 0.48f x x x x= + −  

Perm [-D,D] 2 MN 
22

11 1 1
( 0.5)(( ) 1)n k k

ik i
f i x i

= =
⎡ ⎤= + −
⎣ ⎦∑ ∑  

Powell [-4,5] 4 UN 

/ 2 2
12 4 3 4 2 4 1 41

4 4
4 2 4 1 4 3 4

( 10 ) 5( 10 )

        ( 10 ) 10( 10 )

n k
i i i ii

i i i i

f x x x x

x x x x
− − −=

− − −

= + + +

+ + + +

∑  

PowerSum [0, D] 24 MN 
24

13 1 1
( )n k
i kk i

f x b
= =
⎡ ⎤= −
⎣ ⎦∑ ∑ ; [ ]8,18,44,114b =  

Shekel [0,10] 4 MN 
14

2
14 1

1
( )m
i ij ij

i
f x a c

−

=
=

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦
∑ ∑  

Shubert [-10,10] 2 MN ( ) ( )5 5
15 1 21 1

cos(( 1) ) cos(( 1) )
i i

f i i x i i i x i
= =

= + + ⋅ + +∑ ∑  

Trid6 [-36,36] 6 UN 2
16 11 2

( 1)n n
i i ii i

f x x x −= =
= − −∑ ∑  

 
 
Tab.2. Benchmark functions f17-f27 used in experiments. C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable, n=D. 
 

Function Range C Formulation 

Ackley [-32,32] MN 2
17 1 1

1 120exp 0.2 exp cos(2 ) 20n n
i ii i

f x x e
n n

π
= =

⎛ ⎞ ⎛ ⎞= − − − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑  

Dixon-Price [-10,10] UN 2 2 2
18 1 12

( 1) (2 )n
i ii

f x i x x −=
= − + −∑  

Griewank [-600,600] MN 2
19 1 1

1 cos 1
4000

nn i
ii i

x
f x

i= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∏  

Levy [-10,10] MN 

12 2 2
20 1 1

2 2

sin ( ) ( 1) (1 10sin ( 1))

        ( 1) (1 10sin (2 ))

n
i ii

n n

f y y y

y y

π π

π

−

=
⎡ ⎤= + − + +⎣ ⎦

+ − +

∑
; 

1
1 , 1, ,

4
i

i
x

y i n
−

= + = L .
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Michalewicz [0, π ] MS ( ) ( )( )22
21 1

sin sin
mn

i ii
f x ix π

=
= −∑ , 10m =  

Rastrigin [-5.12,5.12] MS 2
22 1

10cos(2 ) 10n
i ii

f x xπ
=
⎡ ⎤= − +⎣ ⎦∑  

Rosenbrock [-30,30] UN 
1 2 2 2

23 11
[100( ) ( 1) ]n

i i ii
f x x x−

+=
= − + −∑  

Schwefel [-500,500] MS ( )24 1
sinn
i ii

f x x
=

= −∑  

Sphere [-100,100] US 2
25 1

n
ii

f x
=

=∑  

SumSquares [-10,10] US 2
26 1

n
ii

f ix
=

=∑  

Zakharov [-5,10] UN ( ) ( )
2 4

2
27 1 1 1

0.5 0.5n n n
i i ii i i

f x ix ix
= = =

= + +∑ ∑ ∑  

 
3.1.2 Effects of selective probability p 
In this subsection, we investigate the impact of selective 
probability p on the new algorithm. Note that the test 
function Colville, Dixon-Price, Six Hump Camel Back and 
Schewefel are representative, so selective probability p is 
tested according to these four functions. The ABCO 
algorithm runs 30 times on each function, and the mean 
values of the final results are plotted in Figure 1. As all the 
test functions are minimization problems, the smaller the 
mean values, the better it is. 
 From Figure 1, we can see that the selective probability 
p can affect the results. For these four test functions, better 
results are obtained when p is around 0.5. Hence, the 
selective probability p will be equal to 0.5 for all test 
functions in the experiments. 
 

 
(a) Colville Function 

 
(b) Dixion Price Function 

 
(c)Hump Function 

 
(d)Schwefel Function 

Fig.1. Results on four test functions with different selective probability 
p. 
 
 
3.1.3 Comparison of EH-ABC with ABC 
In order to verify the performance of EH-ABC algorithm 
proposed in this paper, this subsection presents a comparison 
of EH-ABC algorithm with original ABC algorithm. In the 
experiments, both EH-ABC and ABC use the same 
parameter settings. The population size SN , limit, and 
maximum number of cycle (MSN) are set to 60, 
( / 2)*SN D , 2000 for 30D =  and 4000 for 60D = , 
respectively. All experiments are repeated 30 times. 
 Table 3 and 4 shows the optimization results in terms of 
best, worst, mean and std, which represents the best, the 
worst, the mean, standard deviation of function value, 
respectively. The best results are marked in bold. As shown 
in Table 3 and 4, the mean function values of the EH-ABC 
algorithm are equal or closer to the optimal ones than which 
of the ABC algorithm, and the standard deviations are 
relatively small. Particularly, EH-ABC algorithm 
outperforms ABC algorithm on all test functions except 
function 1f , 18f  with dimension 30D =  and 60D = , and 

23f  with dimension 60D = . At the mean time, the two 
algorithms have the same mean function values on function 

2f  and 4f , which equal to the optimal ones. All these 
results show that EH-ABC algorithm has the better 
performance than ABC algorithm on unimodal and 
multimodal problems. 
 To further test the performance of EH-ABC algorithm, 
we compare EH-ABC algorithm with other population based 
algorithms, including some proposed ABC algorithms. The 
experiments focus on the comparison of EH-ABC algorithm 
with DE [2], PSO [2], CLPSO [12], CES [14], FES [15], 
ESLAT [2], CMA-ES [16], GABC [13], I-ABC [16], PS-
ABC [16] and NABC [17]. For DE and PSO, the parameters 
are chosen as in [2]. For the rest algorithms, the parameter 
settings are followed the original papers of these algorithm. 
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 Table 5 presents the comparison results of DE, PSO, 
CES, FES, ESLAT, CMA-ES and EH-ABC. Table 6 
represents the comparison results of EH-ABC with four 
other ABC algorithms. In Table 5, results of DE, PSO, CES, 
FES, ESLAT and CMA-ES can be found in [2]. Results of 
GABC, I-ABC, PS-ABC and NABC in Table 6, can be 
found in [17]. In Table 5 and 6, the best results among these 
algorithms are shown in bold. The last row of Table 5 and 
the last column of Table 6 show the statistical significance 
level of the difference of the mean value of EH-ABC and the 
best algorithm among the other algorithms in the table. Here, 
“+” indicates the t value of 59 degrees of freedom which is 
significant at a 0.06 level of significance by two-tailed test; 
“ ⋅ ” represents the difference of mean values which is not 
statistically significant; and “NA” means two algorithms 
achieve the same accuracy results [18]. 
 From Table 5, it can be seen that EH-ABC algorithm 
outperforms the other seven algorithms on all six test 

functions. The comparison results show that EH-ABC 
performs better than the other seven algorithms on whether 
unimodal functions or multimodal functions. 
 From the results in Table 6, EH-ABC outperforms 
GABC on all six test functions. Even more, EH-ABC 
outperforms all four ABC algorithms on function Ackley, 
Rosenbrock and Schwefel. For function Griewank and 
Rastrigin, EH-ABC has the same results with I-ABC and 
PS-ABC which achieve the optimal results, while I-ABC 
and PS-ABC perform better than EH-ABC on Sphere. 
Compared with NABC, EH-ABC outperforms on all six 
functions except function Rastrigin which obtained the same 
result. 
 In order to show the performance of EH-ABC algorithm 
more clearly, Figure 2-4 shows the mean best function value 
of ten test functions. It is clear that the EH-ABC algorithm 
has higher convergence rate than the ABC algorithm has. 
 

 
Tab.3. Best, worst, mean and standard deviation obtained by ABC and EH-ABC for functions  f1-f16. 
 

 
ABC EH-ABC 

Best Mean Worst Std Best Mean Worst Std 
f1 7.62e-11 2.49e-09 2.75e-08 5.03e-09 1.58e-10 1.91e-04 4.61e-03 8.38e-04 
f2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 
f3 1.43e-19 7.74e-18 2.34e-17 6.69e-18 0.00e+00 0.00e+00 0.00e+00 0.00e+00 
f4 3.98e-01 3.98e-01 3.98e-01 0.00e+00 3.98e-01 3.98e-01 3.98e-01 0.00e+00 
f5 4.29e-02 2.26e-01 4.97e-01 1.389e-01 8.72e-03 4.53e-02 1.26e-01 3.02e-02 
f6 -1 -0.99997 -0.99981 5.48e-05 -1 -1 -1 0.00e+00 
f7 3 3.000014 3.000257 4.97e-05 3 3 3 1.75e-15 
f8 -3.86278 -3.86278 -3.86278 2.32e-15 -3.86278 -3.86278 -3.86278 2.71e-15 
f9 4.65e-08 4.65e-08 4.65e-08 1.03e-16 4.65e-08 4.65e-08 4.65e-08 0.00e+00 
f10 6.99e-17 8.26e-14 2.09e-12 3.82e-13 1.74e-16 2.99e-14 2.16e-13 4.63e-14 
f11 8.30e+77 1.13e+83 1.13e+84 2.57e+83 2.27e+77 1.31e+81 8.12e+81 2.16e+81 
f12 6.17e-07 2.68e-05 5.31e-05 1.59e-05 2.43e-08 1.08e-05 4.65e-05 1.15e-05 
f13 7.21e-04 1.67e-02 4.74e-02 1.24e-02 1.93e-05 1.17e-02 3.94e-02 1.15e-02 
f14 -10.5364 -10.5364 -10.5364 3.43e-15 -10.5364 -10.5364 -10.5364 2.14e-15 
f15 -186.731 -186.731 -186.731 5.28e-15 -186.731 -186.731 -186.731 2.79e-14 
f16 -50 -50 -50 9.27e-11 -50 -50 -50 1.50e-06 

 
Tab.4. Best, worst, mean and standard deviation obtained by ABC and EH-ABC for functions f17-f27. 
 

 D  
ABC EH-ABC 

Best Mean Worst Std Best Mean Worst Std 

f17 
30 0.00e+00 1.66e-15 1.78e-14 3.46e-15 0.00e+00 0.00e+00 0.00e+00 0.00e+00 
60 0.00e+00 2.61e-15 1.42e-14 3.22e-15 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

f18 
30 1.86e-05 9.93e-05 7.09e-04 1.24e-04 1.22e-01 3.67e-01 6.67e-01 1.87e-01 
60 3.89e-05 1.83e-04 8.55e-04 1.49e-04 6.67e-01 6.67e-01 6.67e-01 1.78e-10 

f19 
30 0.00e+00 7.50e-04 2.25e-02 4.11e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 
60 0.00e+00 6.85e-16 1.61e-14 2.92e-15 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

f20 
30 3.08e-16 5.06e-16 7.09e-16 7.35e-17 2.14e-31 1.66e-30 5.49e-30 1.19e-30 
60 7.77e-16 1.21e-15 1.42e-15 1.53e-16 2.75e-30 9.36e-30 1.75e-29 4.45e-30 

f21 
30 -29.5462 -29.4879 -29.4313 2.97e-02 -29.6309 -29.6285 -29.6212 2.83e-03 
60 -59.2538 -59.0873 -58.9513 7.21e-02 -59.5723 -59.5117 -59.4571 3.43e-02 

f22 
30 0.00e+00 3.22e-14 5.68e-14 2.86e-14 0.00e+00 0.00e+00 0.00e+00 0.00e+00 
60 0.00e+00 1.74e-13 4.55e-13 1.11e-13 0.00e+00 5.31e-14 1.14e-13 5.77e-14 

f23 
30 3.76e-03 5.12e-02 2.10e-01 5.95e-02 1.49e-02 4.46e-02 8.35e-02 1.90e-02 
60 2.15e-03 7.10e-02 3.34e-01 7.70e-02 8.04e-02 1.79e-01 2.60e-01 4.29e-02 

f24 
30 3.82e-04 4.13e-04 1.16e-03 1.44e-04 3.82e-04 3.82e-04 3.82e-04 8.48e-13 
60 7.64e-04 7.90e+00 1.18e+02 3.00e+01 7.64e-04 7.64e-04 7.64e-04 2.28e-12 

f25 
30 4.02e-16 5.47e-16 7.07e-16 7.8e-17 4.97e-33 1.37e-32 2.48e-32 5.06e-33 
60 1.1e-15 1.28e-15 1.44e-15 1.15e-16 5.24e-32 2.84e-31 5.73e-31 1.34e-31 

f26 
30 3.19e-16 5.25e-16 7.49e-16 9.11e-17 1.23e-31 4.11e-31 9.13e-31 2.07e-31 
60 9.54e-16 1.21e-15 1.61e-15 1.68e-16 3.25e-30 1.05e-29 2.06e-29 4.01e-30 

f27 
30 1.58e+02 2.28e+02 2.83e+02 2.94e+01 2.25e+00 4.86e+00 9.79e+00 1.97e+00 
60 5.08e+02 6.93e+02 7.89e+02 5.52e+01 2.25e+00 6.08e+00 15.01e+00 3.42e+00 
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Tab.5. Comparison of EH-ABC with other algorithms. 
 

 Ackley Griewank Rastrigin Rosenbrock Schwefel Sphere 
Mean Mean Mean Mean Mean Mean 

DE 3.99e-08 6.15e-04 1.47e+02 4.71e+03 7.27e+03 3.43e-14 
PSO 3.23e-01 1.34e-02 3.85e+01 5.74e+03 4.16e+03 2.13e-16 

CLPSO 2.01e-12 6.45e-13 2.57e-11 1.10e+01 1.19e+01 1.89e-19 
CES 6.00e-13 6.00e-14 1.34e+01 2.77e+01 4.57e+03 1.70e-26 
FES 1.20e-02 3.70e-02 1.60e-01 3.33e+01 1.31e+01 2.50e-04 

ESLAT 1.80e-08 1.40e-03 4.65e+00 1.93e+00 1.03e+04 2.00e-17 
CMA-ES 6.90e-12 7.40e-04 5.18e+01 4.00e-01 4.93e+03 9.70e-23 
EH-ABC 0.00e+00 0.00e+00 0.00e+00 4.46e-02 3.82e-04 1.37e-32 

Sig. + + + + + + 
 
Tab.6. Comparison of EH-ABC with other ABC algorithms. 
 

Fun GABC I-ABC PS-ABC NABC EH-ABC Sig. Mean Mean Mean Mean Mean 
Ackley 7.78e-10 8.88e-16 8.88e-16 1.07e-13 0.00e+00 + 

Griewank 6.96e-04 0.00e+00 0.00e+00 1.11e-16 0.00e+00 NA 
Rastrigin 3.31e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 NA 

Rosenbrock 7.48e+00 2.64e+01 1.59e+00 1.45e-01 4.46e-02 + 
Schwefel 1.62e+02 3.18e+02 5.30e+00 5.73e-01 3.82e-04 + 
Sphere 6.26e-16 0.00e+00 0.00e+00 5.43e-16 1.37e-32 ⋅  

 

     
                (a)                                                                                                       (b) 

     
            (c)                                                                                                      (d) 

Fig.2. The convergence processes of ABC and EH-ABC on some test functions in Table 1. 
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     (a)                                                                                                      (b) 

     
     (c)                                                                                                   (d) 

     
    (e)                                                                                                    (f) 

     
    (g)                                                                                                     (h) 

Fig.3. The convergence processes of ABC and EH-ABC on some test functions in Table 2 with D=30. 
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    (a)                                                                                        (b) 

     
    (c)                                                                                (d) 

     
   (e)                                                                                 (f) 

     
    (g)                                                                                          (h) 

Fig.4.The convergence processes of ABC and EH-ABC on some test functions in Table 2 with D=60. 

 
3.2 Experiments on NLLS problems 
3.2.1 Test problems 
In this subsection, we perform five NLLS problems in order 
to illustrate the implementation and efficiency of the EH-
ABC algorithm proposed in this paper. All five test 
problems are illustrated as follows. 

 NLLS 1: Consider the following NLLS problem, where 
1 1 1
0 4 1
2 2 1

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

, 
6
5
1

b
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
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The optimal solution is ( )* 1,1,3 Tx = . 
 NLLS 2: Let be a matrix whose diagonal elements are 
500 and the non-diagonal elements are chosen randomly 
from the interval such that A is symmetric. Let b Ae=  
where e is n×1 vector whose elements are all equal to unity 

such that ( )* 1,1,...,1 T nx R= ∈  is the unique solution. 

 NLLS 3: Let the matrix A is given by , 4i ia n= , 

, 1 1,i i i ia a n+ += = , , 0i ja = , 1,2,...,i n= . Let b Ae= . Thus 

the unique solution is ( )* 1,1,...,1 T nx R= ∈ . 
 NLLS 4: Following we consider one randomly 
generated NLLS problem where the data ( ),A b  are 

generated by the Matlab scripts: ( )' ',0rand state , m=200, 

n=100, ( ),A rand m n= , ( ),1b A ones n= ∗ , where 
m nA R ×∈ ,and the unique solution is ( )* 1,1,...,1 T nx R= ∈ . 

 NLLS 5: Following we consider another randomly 
generated NLLS problem where the data ( ),A b  are 

generated by the Matlab scripts: ( )' ',0rand state , 100n = , 

( )1 ,A rand n n= , ( )1' 1 ,A A A n eye n n= ∗ + ∗ , ( ),1b A ones n= ∗ , 
here A  is a positive definite symmetric matrix, and the 
unique solution is ( )* 1,1,...,1 Tx = . 

 
3.2.2 Experiment results 
Simulations were carried out to compare the optimization 
capabilities of the EH-ABC algorithm with respect to 
Classical ABC algorithm. To make the comparison fair, the 
populations for all the competitor algorithms were initialized 
using the same random food sources. In the experiments, 
both EH-ABC and ABC use the same parameter settings. 
The population size SN , limit, and maximum number of 
cycle (MSN) are set to 60, ( / 2)*SN D , 1000, respectively. 
To judge the accuracy of different algorithms, 30 
independent runs of each of the two algorithms were carried 
out and the best, the mean, the worst fitness values, and the 
standard deviation (Std) were recorded. Table 7 compares 
the algorithms on the quality of the optimum solution for 
given NLLS problems, and the best results are marked in 
bold. 
 Figure 5-9 show the convergence and its boxplot figure 
of the best fitness in the population for the different 
algorithms. The values plotted for every generation are 
averaged over 30 independent runs. As can be seen, the EH-
ABC algorithm is the best not only for simple NLLS 
problems, but also for complex NLLS problems. 
 

Tab.7. The statistical results for 30 runs tested on given NLLS problems. 

Functions Algorithms Best Mean Worst Std 
NLLS 1 ABC 2.36e-17 2.65e-16 7.49e-16 1.87e-16 

 EH-ABC 7.05e-21 1.42e-17 1.38e-16 2.83e-17 
NLLS 2 ABC 7.98e+01 2.53e+02 7.47e+02 1.69e+02 

 EH-ABC 2.13e+01 3.85e+01 6.21e+01 9.13e+00 
NLLS 3 ABC 4.93e+03 1.69e+04 3.77e+04 9.27e+04 

 EH-ABC 2.36e+02 2.85e+02 3.61e+02 3.28e+01 
NLLS 4 ABC 9.25e+01 1.66e+02 3.06e+02 4.94e+01 

 EH-ABC 5.17e-01 9.71e-01 2.08e+00 4.23e-01 
NLLS 5 ABC 2.52e+05 4.28e+05 6.52e+05 1.22e+05 

 EH-ABC 6.40e+02 1.35e+03 3.43e+03 6.69e+02 

 

 
(a) Convergence 

 
              ABC                                        EH-ABC 

(b) Boxplot 

Fig.5. The convergence and its boxplot of the best fitness for NLLS1. 
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(a) Convergence 

 
               ABC                                        EH-ABC 

(b) Boxplot 

Fig.6. The convergence and its boxplot of the best fitness for NLLS2 
with n=100. 

  
(a) Convergence 

 
             ABC                                          EH-ABC 

(b) Boxplot 

Fig.7. The convergence and its boxplot of the best fitness for NLLS3 
with n=100. 

 

  
(a) Convergence 

 
             ABC                                             EH-ABC 

 (b) Boxplot 

Fig.8. The convergence and its boxplot of the best fitness for NLLS4 
with n=100. 

 
(a) Convergence 

 
            ABC                                            EH-ABC 

(b) Boxplot 

Fig.9. The convergence and its boxplot of the best fitness for NLLS5 
with n=100. 

 
4. Conclusions 
 
Artificial bee colony is a new swarm-based optimization 
technique which has shown to be competitive to other 
population-based stochastic algorithms. However, ABC and 
other stochastic algorithms suffer from the same problems, 
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such as lower convergence speed and easily trapped in local 
optima when handling complex multimodal problems. The 
main reason is that the search pattern is good at exploration 
but poor at exploitation. To overcome this issue, an effective 
hybrid artificial bee colony algorithm (EH-ABC) is 
proposed. In EH-ABC algorithm, orthogonal initial method 
is employed and a new search mechanism is designed. 
 To verify the performance of the proposed algorithm, a 
set of 27 test functions and 5 nonnegative linear least 
squares test problems are used in the experiments. 
Comparison of EH-ABC with other algorithms indicates that 
EH-ABC can effectively accelerate the convergence speed 
and improve the accuracy of solutions. Therefore, the EH-
ABC algorithm proposed in our paper is more effective for 
NLLS problems. 
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