

JOURNAL OF
Engineering Science
and Technology Review

 www.jestr.org

Journal of Engineering Science and Technology Review 7 (3) (2014) 96 – 107

Research Article

An Effective Hybrid Artificial Bee Colony Algorithm for Nonnegative Linear Least
Squares Problems

Xiangyu Kong1, 2, *, Sanyang Liu1 and Zhen Wang2

1 Dept. of Mathematics and Statistics, Xidian University, Xi’an 710071, China

2 Dept. of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan 750021, China

Received 2 March 2014; Accepted 19 July 2014

Abstract

An effective hybrid artificial bee colony algorithm is proposed in this paper for nonnegative linear least squares problems.
To further improve the performance of algorithm, orthogonal initialization method is employed to generate the initial
swarm. Furthermore, to balance the exploration and exploitation abilities, a new search mechanism is designed. The
performance of this algorithm is verified by using 27 benchmark functions and 5 nonnegative linear least squares test
problems. And the comparison analyses are given between the proposed algorithm and other swarm intelligence
algorithms. Numerical results demonstrate that the proposed algorithm displays a high performance compared with other
algorithms for global optimization problems and nonnegative linear least squares problems.

 Keywords: Artificial Bee Colony, Orthogonal Initialization Method, Nonnegative Linear Least Squares, Optimization Problem
 __

1. Introduction

The method of least squares is an important approach to
simulate the approximate solution of over determined
systems, i.e. sets of equations in which more equations than
unknowns. Least squares problems are divided into two
categories: linear least squares and non-linear least squares,
depending on whether or not the residuals are linear in all
unknowns. In mathematics and statistics, linear least squares
is an approach to fitting a statistics or a mathematical model
to data, in cases where the idealized value provided by the
model for any data point is expressed linearly in terms of the
unknown parameters of the model. The adapted model
results can be used to predict unobserved values from the
same system, to summarize the data, and to understand the
mechanisms that may underlie the system. Without loss of
generality, the Nonnegative Linear Least Squares (NLLS)
problem can be formulated as follows:

() ()2

0

1 1min ()
2 2

T

x
f x Ax b Ax b Ax b

≥
= − = − − (1)

where m nA R ×∈ ,m n≥ , ()rank A n= , mb R∈ .
 Over the past decade, solving the linear least squares via
using classical mathematical programming methods has
attracted much attention. These methods require matrix
updates or factorizations, and can become overmuch
expensive for very large-scale problems. Classical
optimization methods are highly sensitive to the initial point,
having very slow convergence and frequently converging to
local optimum solution.
 Motivated by foraging behavior of honey bees, Karaboga

in 2005 [1] proposed the artificial bee colony (ABC)
algorithm to optimize unconstrained problems. In a natural
bee swarm, there are three groups of bees including
employed bees, onlooker bees and scout bees. Half of the
colony consists of employed bees, and the other half
includes onlooker bees. A bee that is currently exploiting a
food source is named as an employed bee. Employed bees
perform waggle dance upon returning to the hive to
propagate the information of its food source to the rest of the
colony. A bee around the dance floor to choose any of the
employed bees to follow is called an onlooker bee. A bee
carrying out a random search for a new food source is
named as a scout bee. In ABC algorithm, each food source is
a possible solution for the problem under consideration and
the nectar amount of a food source represents the quality of
the solution represented by the fitness value. The ABC
algorithm starts with a population of randomly generated
food sources. Then the following three steps are repeated
until a termination criterion is satisfied [2]:

 1). Send the employed bees onto the food sources and
measure their nectar amounts.
 2). Select the food sources by the onlooker bees after
share the information of employed bees and determine one
nectar amount of the food sources.
 3). Determine the scout bees and randomly generate a
new food source.

 The initial population containing SN solutions is
generated randomly, SN is equal to the number of
employed bees. Each solution ()1,2,...,ix i SN= is an n-
dimensional real-valued vector.
 Let { }1 2, ,...,i i i inx x x x= represent the ith food source in
the population, and then each food source is formulated as
follows:

 * E-mail address: kxywz08@163.com
ISSN: 1791-2377 © 2014 Kavala Institute of Technology. All rights reserved.

Jestr

Xiangyu Kong, Sanyang Liu and Zhen Wang/Journal of Engineering Science and Technology Review 7 (3) (2014) 96 – 107

 97

()()min max min0,1 ,

1,2,..., , 1,2,...,

j j j
ix x rand x x

i SN j n

= + −

= =
 (2)

 These food sources are randomly assigned to SN
number of employed bees and their finesses are evaluated.
 The search equation for employed bees and onlooker
bees can be described as follows:

()() , , , ,new j i j i j i j k jx x x xφ= + − (3)

where { }1,2,...,k SN∈ , k j≠ and { }1,2,...,j n∈ are

randomly chosen indexes. ,i jφ is a uniform random number

in the range []1,1− . Once newx is obtained, a greedy
selection then performs between the old and candidate
solutions.
 In the onlooker bee stage, an onlooker bee selects a food
source ix depending on the probability value ip calculated
as follows:

1

i
i SN

ii

f
p

f
=

=
∑

 (4)

where if is the nectar amount (i.e., the fitness value) of the
ith food source ix . Obviously, the higher the if is, the more
probability that the ith food source is selected.
 In the basic ABC algorithm, if a food source ix cannot
be improved further through a predetermined number of
“limit”, the food source should be abandoned, and the
corresponding employed bee becomes a scout. The scout
produces a food source randomly, which can be defined as:

() ()min max min 0,1 ,

1,2,..., .

j j j j
ix x x x rand

j n

= + − ×

=
 (5)

 Compared with DE, PSO, and other intelligent
algorithms, the ABC algorithm shows better performance
than other algorithms [2]. Then, the ABC algorithm was
extended for constrained optimization problems in [3] and
was applied to medical pattern classification and clustering
problems [4, 5], to train neural networks [6, 7], to solve
clustering problem [8], TSP problems [9],a large-scale
capacitated facility location problem[10]. In this paper, an
effective hybrid artificial bee colony (EH-ABC) algorithm is
proposed for solving Nonnegative Linear Least Squares
problems. The orthogonal initialization method is employed
to generate initial population. Inspired by PSO and DE, a
new search mechanism is proposed. The experimental
results tested on 27 benchmark functions and a set of
Nonnegative Linear Least Squares problems show that the
EH-ABC algorithm can outperform ABC algorithm in most
of the experiments.
 Paper is organized as follows. In Section 2, the ABC
algorithm for solving Nonnegative Linear Least Squares
problems are introduced. In Section 3, simulation results of
ABC and EH-ABC are presented and compared. Finally, a
conclusion is provided.

2. The proposed ABC algorithm for Nonnegative Linear
Least Squares problems

2.1 Orthogonal initialization
Population initialization is an important step in swarm
intelligence-based algorithms, which can affect the quality
of solution. It is desirable that the initial population be
scattered uniformly over the feasible solution space, so that
the algorithm can search the whole solution space evenly.
Before an optimization problem is solved, there is no
information about the location of the solution. Notice that an
orthogonal array specifies a small number of combinations
that are scattered uniformly over the space of all possible
combinations. The orthogonal design can make the initial
population be scattered evenly over the solution space.
Therefore, in this paper we generate initial population by
using the orthogonal initialization method [11][12].
 The algorithm for generating an initial population is
given as follows.

Algorithm 1: Generation of Initial Population.

 Step 1: Divide the feasible solution space [,]l u into S
subspaces 1 1 2 2[,],[,], ,[,]S Sl u l u l uL based on the following
equations:

() ()(1) ,
1,2, , .

() ()() ,

i S

i S

u s l sl l i l
S

i S
u s l su u S i l

S

⎧ −⎛ ⎞= + − ⎜ ⎟⎪
⎪ ⎝ ⎠

=⎨
−⎛ ⎞⎪ = − − ⎜ ⎟⎪ ⎝ ⎠⎩

L (6)

 Here,

1
() () max{ }i ii D
u s l s u l

≤ ≤
− = − .

 Step2: Quantize subspace [,]i il u into 1Q levels based
on

1
1

1

, 1,

(1) , 2 1,
1

, ,

i

i i
ij i

i

l j

u l
l j j Q

Q
u j Q

α

=⎧
⎪

⎛ ⎞−⎪
= + − ≤ ≤ −⎨ ⎜ ⎟

−⎝ ⎠⎪
⎪ =⎩

 (7)

where 1Q is odd. Then, construct orthogonal array

1 1
1()NM ij M N

L Q a
×

⎡ ⎤= ⎣ ⎦ to select 1M individuals based on

11 12 1

21 22 2

1 21 1 1

1, 2, ,

1, 2, ,

1, 2, ,

(, , ,)

(, , ,)

(, , ,).

N

N

M M M N

a a N a

a a N a

a a N a

α α α

α α α

α α α

⎧
⎪
⎪
⎨
⎪
⎪
⎩

L

L

L
L

 (8)

 Here,

1 1()NML Q can be generated as follows. Select the

smallest 1J fulfilling 1
1 1(1) (1)JQ Q N− − ≥ .If 1

1 1(1) (1)JQ Q N− − = ,
then 'N N= else 1

1 1' (1) (1)JN Q Q= − − . Then, construct the

basic columns based on
1

1

1

1
1

1

kQj
Q

− −
= +

−
,

1 1
1

1 mod ,ij J k

ia Q
Q −

⎢ ⎥−
= ⎢ ⎥
⎣ ⎦

 for

11, ,i M= L , 11,k J= L . Construct the non-basic columns as

Xiangyu Kong, Sanyang Liu and Zhen Wang/Journal of Engineering Science and Technology Review 7 (3) (2014) 96 – 107

 98

1
1

1

1
1

1

kQj
Q

− −
= +

−
,

1(1)(1) 1()modj s Q t s ja a t a Q+ − − + = × + , for

1, , 1s j= −L ,
11, ,t Q= L . Thus, the orthogonal array

1

'
1()NML Q is constructed. Delete the last 'N N− columns of

1

'
1()NML Q to get

1 1()NML Q where 1
1 1

JM Q= .

 Step 3: Among the 1M S individuals, select SN
individuals having the smallest cost as the initial population.

2.2 New Search Equations
As we all known that how to balance exploration and
exploitation abilities to achieve good optimization
performance is an important problem for the population
based algorithms, such as GA, PSO, DE, and so on. The
exploration refers to the ability to search the unknown
regions in the solution space to find the global optimum,
while the exploitation refers to the ability to discover better
solutions based on the information of the previous good
solutions. Actually, the exploration and exploitation abilities
contradict with each other, so that the two abilities should be
well balanced. In ABC algorithm, the search equation
proposed is good at exploration but poor at exploitation. In
order to improve the exploitation, a new search mechanism
is proposed in this section.
 Differential evolution (DE) is a population based
algorithm, whose main strategy is to generate a new position
for an individual by calculating vector differences between
other randomly selected individuals in the population. It has
been shown the efficiency for many optimization problems
in real-world applications. It follows the general stages of an
evolutionary algorithm. In DE algorithm, three evolutionary
operations including mutation, crossover and selection will
be executed. There are several kinds of mutation operation,
which formulates different DE algorithms. Among them,
“DE/best/1” can improve the exploitation abilities of
algorithm, which can be described as follows:

DE/best/1: 1 2()i best r rv x F x x= + − , (9)

where {1,2, , }i SN∈ L ; 1r and 2r are different random
integer indices selected from {1,2, , }SNL ; bestx is the
global best solution; [0.5,1]F ∈ is a positive real number.
 Motivated by DE and based on the property of ABC
algorithm, a new search equation is proposed as follows:

, , , , 1,()i j best j i j i j r jv x x xϕ= + − , (10)

where {1,2, , }i SN∈ L ; 1r is integers randomly selected
from {1,2, , }SNL , and is different from i ; ,best jx is the

global best solution; {1,2, , }j D∈ L is a randomly selected
index; and [0,1]ijϕ ∈ is uniformly distributed random
number. Similar to DE, search equation (10) can improve
the convergence performance which can enhance the
exploitation ability of the algorithm.
 Inspired of PSO, in order to improve the exploitation
ability of ABC algorithm, takeing the advantages of the
search equation in PSO, Zhu et al. [13] proposed the g-best
ABC algorithm. In this paper, the modified search equation
is described as follows:

() ()ij ij ij ij kj ij j ijv x x x y xφ ϕ= + − + − , (11)

where { }1,2,...,k SN∈ is a random selected index which is

different from i , { }1,2,...,j D∈ is a random selected

index, jy is the j th element of the global best solution,

[1,1]ijφ ∈ − and [0,1.5]ijϕ ∈ are both uniformly distributed
random numbers. This search equation can also improve the
exploitation ability of the algorithm.

2.3 The proposed algorithm
From the above analysis, in order to take advantage of
search equation (10) and (11), a new algorithm is proposed
by hybridizing the two search equations. In the new artificial
bee colony algorithm, a selective probability p is introduced
to control the frequency of using search equation (10) and
(11). Thus, the main steps of the new artificial bee colony
algorithm with orthogonal initialization are given as follows.

Algorithm 2: Effective hybrid artificial bee colony
algorithm

1). Initialization: Preset selective probability p and
population size SN .
2). Perform Algorithm 1 to create an initial population,
calculate the function values of the population.
3). While (FE< Max. FE) do
4). for 1i = to SN do
5). Produce new solutions iv by using equation (10)

6). If () ()i if v f x< then i ix v=
7). else then
8). if (0,1)rand P< then
9). Produce new solutions iv by using equation (11)

10). if () ()i if v f x< then i ix v=
11). end if
12). end if
13). end if
14). end for
15). end while (FE= Max. FE)

3. Computational results and comparisons

In order to illustrate the efficiency of EH-ABC algorithm,
we test 27 benchmark functions and 5 nonnegative linear
least squares test problems in this section.

3.1 Experiments on 27 benchmark functions
3.1.1 Test functions
In this subsection, the EH-ABC algorithm proposed in this
paper is applied to minimize 27 benchmark functions, as
shown in Table 1 and 2. In Table 1, the dimensions of the
benchmark functions are given in the third column. In
function Hartman3,

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

T

a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828

T

p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

 In function

Xiangyu Kong, Sanyang Liu and Zhen Wang/Journal of Engineering Science and Technology Review 7 (3) (2014) 96 – 107

 99

a =

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

!

"

#
#
#
#

$

%

&
&
&
&

,

[]1 1,2,2,4,4,6,3,7,5,5
10

Tc = .

 The benchmark functions presented in Table 2 are tested
of dimension D=30 and D=60.

Tab.1. Benchmark functions 1f - 16f used in experiments. D: Dimension, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-
Separable.

Function Range D C Formulation
Beale [-4.5,4.5] 2 UN 2 2 2 3 2

1 1 1 2 1 1 2 1 1 2(1.5) (2.25) (2.625)f x x x x x x x x x= − + + − + + − +

Bohachevsky [-100,100] 2 MS 2 2
2 1 2 1 22 0.3cos(3) 0.4cos(4) 0.7f x x x xπ π= + − − +

Booth [-10,10] 2 MS 2 2
3 1 2 1 2(2 7) (2 5)f x x x x= + − + + −

Branin [-5,10]×
[0,15] 2 MS

2
2

4 2 1 1 12

5.1 5 16 10 1 cos 10
84

f x x x x
π ππ

⎛ ⎞ ⎛ ⎞= − + − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Colville [-10,10] 4 UN
2 2 2 2

5 1 2 1 3
2 2 2 2
3 4 2 4

100() (1) (1)

 90() 10.1((1) (1))

f x x x x

x x x x

= − + − + −

+ − + − + −

Easom [-100,100] 2 UN 2 2
6 1 2 1 2cos cos exp(() ())f x x x xπ π= − − − − −

GoldStein-
Price [-2,2] 2 MN

2
1 2

7 2 2
1 1 2 1 2 2

2
1 2

2 2
1 1 2 1 2 2

1 (1)

(19 14 3 14 6 3)

30 (2 3)

(18 32 12 48 36 27)

x x
f

x x x x x x

x x
x x x x x x

⎡ ⎤+ + +
= ⎢ ⎥

− + − + +⎢ ⎥⎣ ⎦

⎡ ⎤+ −
⋅ ⎢ ⎥

− + + − +⎢ ⎥⎣ ⎦

Hartman3 [0,1] 3 MN
4 3 2

8 1 1
exp ()i ij j iji j

f c a x p
= =

⎡ ⎤= − − −
⎣ ⎦∑ ∑ ; []1.0,1.2,3.0,3.2c =

Six Hump
Camel Back [-5,5] 2 MN 2 4 6 2 4

9 1 1 1 1 2 2 2
14 2.1 4 4
3

f x x x x x x x= − + + − +

Matyas [-10,10] 2 UN 2 2
10 1 2 1 20.26() 0.48f x x x x= + −

Perm [-D,D] 2 MN
22

11 1 1
(0.5)(() 1)n k k

ik i
f i x i

= =
⎡ ⎤= + −
⎣ ⎦∑ ∑

Powell [-4,5] 4 UN

/ 2 2
12 4 3 4 2 4 1 41

4 4
4 2 4 1 4 3 4

(10) 5(10)

 (10) 10(10)

n k
i i i ii

i i i i

f x x x x

x x x x
− − −=

− − −

= + + +

+ + + +

∑

PowerSum [0, D] 24 MN
24

13 1 1
()n k
i kk i

f x b
= =
⎡ ⎤= −
⎣ ⎦∑ ∑ ; []8,18,44,114b =

Shekel [0,10] 4 MN
14

2
14 1

1
()m
i ij ij

i
f x a c

−

=
=

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦
∑ ∑

Shubert [-10,10] 2 MN () ()5 5
15 1 21 1

cos((1)) cos((1))
i i

f i i x i i i x i
= =

= + + ⋅ + +∑ ∑

Trid6 [-36,36] 6 UN 2
16 11 2

(1)n n
i i ii i

f x x x −= =
= − −∑ ∑

Tab.2. Benchmark functions f17-f27 used in experiments. C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable, n=D.

Function Range C Formulation

Ackley [-32,32] MN 2
17 1 1

1 120exp 0.2 exp cos(2) 20n n
i ii i

f x x e
n n

π
= =

⎛ ⎞ ⎛ ⎞= − − − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑

Dixon-Price [-10,10] UN 2 2 2
18 1 12

(1) (2)n
i ii

f x i x x −=
= − + −∑

Griewank [-600,600] MN 2
19 1 1

1 cos 1
4000

nn i
ii i

x
f x

i= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∏

Levy [-10,10] MN

12 2 2
20 1 1

2 2

sin () (1) (1 10sin (1))

 (1) (1 10sin (2))

n
i ii

n n

f y y y

y y

π π

π

−

=
⎡ ⎤= + − + +⎣ ⎦

+ − +

∑
;

1
1 , 1, ,

4
i

i
x

y i n
−

= + = L .

Xiangyu Kong, Sanyang Liu and Zhen Wang/Journal of Engineering Science and Technology Review 7 (3) (2014) 96 – 107

 100

Michalewicz [0, π] MS () ()()22
21 1

sin sin
mn

i ii
f x ix π

=
= −∑ , 10m =

Rastrigin [-5.12,5.12] MS 2
22 1

10cos(2) 10n
i ii

f x xπ
=
⎡ ⎤= − +⎣ ⎦∑

Rosenbrock [-30,30] UN
1 2 2 2

23 11
[100() (1)]n

i i ii
f x x x−

+=
= − + −∑

Schwefel [-500,500] MS ()24 1
sinn
i ii

f x x
=

= −∑

Sphere [-100,100] US 2
25 1

n
ii

f x
=

=∑

SumSquares [-10,10] US 2
26 1

n
ii

f ix
=

=∑

Zakharov [-5,10] UN () ()
2 4

2
27 1 1 1

0.5 0.5n n n
i i ii i i

f x ix ix
= = =

= + +∑ ∑ ∑

3.1.2 Effects of selective probability p
In this subsection, we investigate the impact of selective
probability p on the new algorithm. Note that the test
function Colville, Dixon-Price, Six Hump Camel Back and
Schewefel are representative, so selective probability p is
tested according to these four functions. The ABCO
algorithm runs 30 times on each function, and the mean
values of the final results are plotted in Figure 1. As all the
test functions are minimization problems, the smaller the
mean values, the better it is.
 From Figure 1, we can see that the selective probability
p can affect the results. For these four test functions, better
results are obtained when p is around 0.5. Hence, the
selective probability p will be equal to 0.5 for all test
functions in the experiments.

(a) Colville Function

(b) Dixion Price Function

(c)Hump Function

(d)Schwefel Function

Fig.1. Results on four test functions with different selective probability
p.

3.1.3 Comparison of EH-ABC with ABC
In order to verify the performance of EH-ABC algorithm
proposed in this paper, this subsection presents a comparison
of EH-ABC algorithm with original ABC algorithm. In the
experiments, both EH-ABC and ABC use the same
parameter settings. The population size SN , limit, and
maximum number of cycle (MSN) are set to 60,
(/ 2)*SN D , 2000 for 30D = and 4000 for 60D = ,
respectively. All experiments are repeated 30 times.
 Table 3 and 4 shows the optimization results in terms of
best, worst, mean and std, which represents the best, the
worst, the mean, standard deviation of function value,
respectively. The best results are marked in bold. As shown
in Table 3 and 4, the mean function values of the EH-ABC
algorithm are equal or closer to the optimal ones than which
of the ABC algorithm, and the standard deviations are
relatively small. Particularly, EH-ABC algorithm
outperforms ABC algorithm on all test functions except
function 1f , 18f with dimension 30D = and 60D = , and

23f with dimension 60D = . At the mean time, the two
algorithms have the same mean function values on function

2f and 4f , which equal to the optimal ones. All these
results show that EH-ABC algorithm has the better
performance than ABC algorithm on unimodal and
multimodal problems.
 To further test the performance of EH-ABC algorithm,
we compare EH-ABC algorithm with other population based
algorithms, including some proposed ABC algorithms. The
experiments focus on the comparison of EH-ABC algorithm
with DE [2], PSO [2], CLPSO [12], CES [14], FES [15],
ESLAT [2], CMA-ES [16], GABC [13], I-ABC [16], PS-
ABC [16] and NABC [17]. For DE and PSO, the parameters
are chosen as in [2]. For the rest algorithms, the parameter
settings are followed the original papers of these algorithm.

Xiangyu Kong, Sanyang Liu and Zhen Wang/Journal of Engineering Science and Technology Review 7 (3) (2014) 96 – 107

 101

 Table 5 presents the comparison results of DE, PSO,
CES, FES, ESLAT, CMA-ES and EH-ABC. Table 6
represents the comparison results of EH-ABC with four
other ABC algorithms. In Table 5, results of DE, PSO, CES,
FES, ESLAT and CMA-ES can be found in [2]. Results of
GABC, I-ABC, PS-ABC and NABC in Table 6, can be
found in [17]. In Table 5 and 6, the best results among these
algorithms are shown in bold. The last row of Table 5 and
the last column of Table 6 show the statistical significance
level of the difference of the mean value of EH-ABC and the
best algorithm among the other algorithms in the table. Here,
“+” indicates the t value of 59 degrees of freedom which is
significant at a 0.06 level of significance by two-tailed test;
“ ⋅ ” represents the difference of mean values which is not
statistically significant; and “NA” means two algorithms
achieve the same accuracy results [18].
 From Table 5, it can be seen that EH-ABC algorithm
outperforms the other seven algorithms on all six test

functions. The comparison results show that EH-ABC
performs better than the other seven algorithms on whether
unimodal functions or multimodal functions.
 From the results in Table 6, EH-ABC outperforms
GABC on all six test functions. Even more, EH-ABC
outperforms all four ABC algorithms on function Ackley,
Rosenbrock and Schwefel. For function Griewank and
Rastrigin, EH-ABC has the same results with I-ABC and
PS-ABC which achieve the optimal results, while I-ABC
and PS-ABC perform better than EH-ABC on Sphere.
Compared with NABC, EH-ABC outperforms on all six
functions except function Rastrigin which obtained the same
result.
 In order to show the performance of EH-ABC algorithm
more clearly, Figure 2-4 shows the mean best function value
of ten test functions. It is clear that the EH-ABC algorithm
has higher convergence rate than the ABC algorithm has.

Tab.3. Best, worst, mean and standard deviation obtained by ABC and EH-ABC for functions f1-f16.

ABC EH-ABC

Best Mean Worst Std Best Mean Worst Std
f1 7.62e-11 2.49e-09 2.75e-08 5.03e-09 1.58e-10 1.91e-04 4.61e-03 8.38e-04
f2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f3 1.43e-19 7.74e-18 2.34e-17 6.69e-18 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f4 3.98e-01 3.98e-01 3.98e-01 0.00e+00 3.98e-01 3.98e-01 3.98e-01 0.00e+00
f5 4.29e-02 2.26e-01 4.97e-01 1.389e-01 8.72e-03 4.53e-02 1.26e-01 3.02e-02
f6 -1 -0.99997 -0.99981 5.48e-05 -1 -1 -1 0.00e+00
f7 3 3.000014 3.000257 4.97e-05 3 3 3 1.75e-15
f8 -3.86278 -3.86278 -3.86278 2.32e-15 -3.86278 -3.86278 -3.86278 2.71e-15
f9 4.65e-08 4.65e-08 4.65e-08 1.03e-16 4.65e-08 4.65e-08 4.65e-08 0.00e+00
f10 6.99e-17 8.26e-14 2.09e-12 3.82e-13 1.74e-16 2.99e-14 2.16e-13 4.63e-14
f11 8.30e+77 1.13e+83 1.13e+84 2.57e+83 2.27e+77 1.31e+81 8.12e+81 2.16e+81
f12 6.17e-07 2.68e-05 5.31e-05 1.59e-05 2.43e-08 1.08e-05 4.65e-05 1.15e-05
f13 7.21e-04 1.67e-02 4.74e-02 1.24e-02 1.93e-05 1.17e-02 3.94e-02 1.15e-02
f14 -10.5364 -10.5364 -10.5364 3.43e-15 -10.5364 -10.5364 -10.5364 2.14e-15
f15 -186.731 -186.731 -186.731 5.28e-15 -186.731 -186.731 -186.731 2.79e-14
f16 -50 -50 -50 9.27e-11 -50 -50 -50 1.50e-06

Tab.4. Best, worst, mean and standard deviation obtained by ABC and EH-ABC for functions f17-f27.

 D
ABC EH-ABC

Best Mean Worst Std Best Mean Worst Std

f17
30 0.00e+00 1.66e-15 1.78e-14 3.46e-15 0.00e+00 0.00e+00 0.00e+00 0.00e+00
60 0.00e+00 2.61e-15 1.42e-14 3.22e-15 0.00e+00 0.00e+00 0.00e+00 0.00e+00

f18
30 1.86e-05 9.93e-05 7.09e-04 1.24e-04 1.22e-01 3.67e-01 6.67e-01 1.87e-01
60 3.89e-05 1.83e-04 8.55e-04 1.49e-04 6.67e-01 6.67e-01 6.67e-01 1.78e-10

f19
30 0.00e+00 7.50e-04 2.25e-02 4.11e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00
60 0.00e+00 6.85e-16 1.61e-14 2.92e-15 0.00e+00 0.00e+00 0.00e+00 0.00e+00

f20
30 3.08e-16 5.06e-16 7.09e-16 7.35e-17 2.14e-31 1.66e-30 5.49e-30 1.19e-30
60 7.77e-16 1.21e-15 1.42e-15 1.53e-16 2.75e-30 9.36e-30 1.75e-29 4.45e-30

f21
30 -29.5462 -29.4879 -29.4313 2.97e-02 -29.6309 -29.6285 -29.6212 2.83e-03
60 -59.2538 -59.0873 -58.9513 7.21e-02 -59.5723 -59.5117 -59.4571 3.43e-02

f22
30 0.00e+00 3.22e-14 5.68e-14 2.86e-14 0.00e+00 0.00e+00 0.00e+00 0.00e+00
60 0.00e+00 1.74e-13 4.55e-13 1.11e-13 0.00e+00 5.31e-14 1.14e-13 5.77e-14

f23
30 3.76e-03 5.12e-02 2.10e-01 5.95e-02 1.49e-02 4.46e-02 8.35e-02 1.90e-02
60 2.15e-03 7.10e-02 3.34e-01 7.70e-02 8.04e-02 1.79e-01 2.60e-01 4.29e-02

f24
30 3.82e-04 4.13e-04 1.16e-03 1.44e-04 3.82e-04 3.82e-04 3.82e-04 8.48e-13
60 7.64e-04 7.90e+00 1.18e+02 3.00e+01 7.64e-04 7.64e-04 7.64e-04 2.28e-12

f25
30 4.02e-16 5.47e-16 7.07e-16 7.8e-17 4.97e-33 1.37e-32 2.48e-32 5.06e-33
60 1.1e-15 1.28e-15 1.44e-15 1.15e-16 5.24e-32 2.84e-31 5.73e-31 1.34e-31

f26
30 3.19e-16 5.25e-16 7.49e-16 9.11e-17 1.23e-31 4.11e-31 9.13e-31 2.07e-31
60 9.54e-16 1.21e-15 1.61e-15 1.68e-16 3.25e-30 1.05e-29 2.06e-29 4.01e-30

f27
30 1.58e+02 2.28e+02 2.83e+02 2.94e+01 2.25e+00 4.86e+00 9.79e+00 1.97e+00
60 5.08e+02 6.93e+02 7.89e+02 5.52e+01 2.25e+00 6.08e+00 15.01e+00 3.42e+00

Xiangyu Kong, Sanyang Liu and Zhen Wang/Journal of Engineering Science and Technology Review 7 (3) (2014) 96 – 107

 102

Tab.5. Comparison of EH-ABC with other algorithms.

 Ackley Griewank Rastrigin Rosenbrock Schwefel Sphere
Mean Mean Mean Mean Mean Mean

DE 3.99e-08 6.15e-04 1.47e+02 4.71e+03 7.27e+03 3.43e-14
PSO 3.23e-01 1.34e-02 3.85e+01 5.74e+03 4.16e+03 2.13e-16

CLPSO 2.01e-12 6.45e-13 2.57e-11 1.10e+01 1.19e+01 1.89e-19
CES 6.00e-13 6.00e-14 1.34e+01 2.77e+01 4.57e+03 1.70e-26
FES 1.20e-02 3.70e-02 1.60e-01 3.33e+01 1.31e+01 2.50e-04

ESLAT 1.80e-08 1.40e-03 4.65e+00 1.93e+00 1.03e+04 2.00e-17
CMA-ES 6.90e-12 7.40e-04 5.18e+01 4.00e-01 4.93e+03 9.70e-23
EH-ABC 0.00e+00 0.00e+00 0.00e+00 4.46e-02 3.82e-04 1.37e-32

Sig. + + + + + +

Tab.6. Comparison of EH-ABC with other ABC algorithms.

Fun GABC I-ABC PS-ABC NABC EH-ABC Sig. Mean Mean Mean Mean Mean
Ackley 7.78e-10 8.88e-16 8.88e-16 1.07e-13 0.00e+00 +

Griewank 6.96e-04 0.00e+00 0.00e+00 1.11e-16 0.00e+00 NA
Rastrigin 3.31e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 NA

Rosenbrock 7.48e+00 2.64e+01 1.59e+00 1.45e-01 4.46e-02 +
Schwefel 1.62e+02 3.18e+02 5.30e+00 5.73e-01 3.82e-04 +
Sphere 6.26e-16 0.00e+00 0.00e+00 5.43e-16 1.37e-32 ⋅

 (a) (b)

 (c) (d)

Fig.2. The convergence processes of ABC and EH-ABC on some test functions in Table 1.

Xiangyu Kong, Sanyang Liu and Zhen Wang/Journal of Engineering Science and Technology Review 7 (3) (2014) 96 – 107

 103

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Fig.3. The convergence processes of ABC and EH-ABC on some test functions in Table 2 with D=30.

Xiangyu Kong, Sanyang Liu and Zhen Wang/Journal of Engineering Science and Technology Review 7 (3) (2014) 96 – 107

 104

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Fig.4.The convergence processes of ABC and EH-ABC on some test functions in Table 2 with D=60.

3.2 Experiments on NLLS problems
3.2.1 Test problems
In this subsection, we perform five NLLS problems in order
to illustrate the implementation and efficiency of the EH-
ABC algorithm proposed in this paper. All five test
problems are illustrated as follows.

 NLLS 1: Consider the following NLLS problem, where
1 1 1
0 4 1
2 2 1

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

,
6
5
1

b
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

,

Xiangyu Kong, Sanyang Liu and Zhen Wang/Journal of Engineering Science and Technology Review 7 (3) (2014) 96 – 107

 105

The optimal solution is ()* 1,1,3 Tx = .
 NLLS 2: Let be a matrix whose diagonal elements are
500 and the non-diagonal elements are chosen randomly
from the interval such that A is symmetric. Let b Ae=
where e is n×1 vector whose elements are all equal to unity

such that ()* 1,1,...,1 T nx R= ∈ is the unique solution.

 NLLS 3: Let the matrix A is given by , 4i ia n= ,

, 1 1,i i i ia a n+ += = , , 0i ja = , 1,2,...,i n= . Let b Ae= . Thus

the unique solution is ()* 1,1,...,1 T nx R= ∈ .
 NLLS 4: Following we consider one randomly
generated NLLS problem where the data (),A b are

generated by the Matlab scripts: ()' ',0rand state , m=200,

n=100, (),A rand m n= , (),1b A ones n= ∗ , where
m nA R ×∈ ,and the unique solution is ()* 1,1,...,1 T nx R= ∈ .

 NLLS 5: Following we consider another randomly
generated NLLS problem where the data (),A b are

generated by the Matlab scripts: ()' ',0rand state , 100n = ,

()1 ,A rand n n= , ()1' 1 ,A A A n eye n n= ∗ + ∗ , (),1b A ones n= ∗ ,
here A is a positive definite symmetric matrix, and the
unique solution is ()* 1,1,...,1 Tx = .

3.2.2 Experiment results
Simulations were carried out to compare the optimization
capabilities of the EH-ABC algorithm with respect to
Classical ABC algorithm. To make the comparison fair, the
populations for all the competitor algorithms were initialized
using the same random food sources. In the experiments,
both EH-ABC and ABC use the same parameter settings.
The population size SN , limit, and maximum number of
cycle (MSN) are set to 60, (/ 2)*SN D , 1000, respectively.
To judge the accuracy of different algorithms, 30
independent runs of each of the two algorithms were carried
out and the best, the mean, the worst fitness values, and the
standard deviation (Std) were recorded. Table 7 compares
the algorithms on the quality of the optimum solution for
given NLLS problems, and the best results are marked in
bold.
 Figure 5-9 show the convergence and its boxplot figure
of the best fitness in the population for the different
algorithms. The values plotted for every generation are
averaged over 30 independent runs. As can be seen, the EH-
ABC algorithm is the best not only for simple NLLS
problems, but also for complex NLLS problems.

Tab.7. The statistical results for 30 runs tested on given NLLS problems.

Functions Algorithms Best Mean Worst Std
NLLS 1 ABC 2.36e-17 2.65e-16 7.49e-16 1.87e-16

 EH-ABC 7.05e-21 1.42e-17 1.38e-16 2.83e-17
NLLS 2 ABC 7.98e+01 2.53e+02 7.47e+02 1.69e+02

 EH-ABC 2.13e+01 3.85e+01 6.21e+01 9.13e+00
NLLS 3 ABC 4.93e+03 1.69e+04 3.77e+04 9.27e+04

 EH-ABC 2.36e+02 2.85e+02 3.61e+02 3.28e+01
NLLS 4 ABC 9.25e+01 1.66e+02 3.06e+02 4.94e+01

 EH-ABC 5.17e-01 9.71e-01 2.08e+00 4.23e-01
NLLS 5 ABC 2.52e+05 4.28e+05 6.52e+05 1.22e+05

 EH-ABC 6.40e+02 1.35e+03 3.43e+03 6.69e+02

(a) Convergence

 ABC EH-ABC

(b) Boxplot

Fig.5. The convergence and its boxplot of the best fitness for NLLS1.

 106

(a) Convergence

 ABC EH-ABC

(b) Boxplot

Fig.6. The convergence and its boxplot of the best fitness for NLLS2
with n=100.

(a) Convergence

 ABC EH-ABC

(b) Boxplot

Fig.7. The convergence and its boxplot of the best fitness for NLLS3
with n=100.

(a) Convergence

 ABC EH-ABC

 (b) Boxplot

Fig.8. The convergence and its boxplot of the best fitness for NLLS4
with n=100.

(a) Convergence

 ABC EH-ABC

(b) Boxplot

Fig.9. The convergence and its boxplot of the best fitness for NLLS5
with n=100.

4. Conclusions

Artificial bee colony is a new swarm-based optimization
technique which has shown to be competitive to other
population-based stochastic algorithms. However, ABC and
other stochastic algorithms suffer from the same problems,

 107

such as lower convergence speed and easily trapped in local
optima when handling complex multimodal problems. The
main reason is that the search pattern is good at exploration
but poor at exploitation. To overcome this issue, an effective
hybrid artificial bee colony algorithm (EH-ABC) is
proposed. In EH-ABC algorithm, orthogonal initial method
is employed and a new search mechanism is designed.
 To verify the performance of the proposed algorithm, a
set of 27 test functions and 5 nonnegative linear least
squares test problems are used in the experiments.
Comparison of EH-ABC with other algorithms indicates that
EH-ABC can effectively accelerate the convergence speed
and improve the accuracy of solutions. Therefore, the EH-
ABC algorithm proposed in our paper is more effective for
NLLS problems.

Acknowledgement

This work is supported by 2013 Narure Science Foundation
of Ningxia (No. NZ13096), 2013 Higher educational
scientific research project of Ningxia (No. NGY2013086),
2013 scientific research project of Beifang University of
Nationalities (2013XYZ021), institute of information and
system computation science of Beifang University
(13xyb01), National Nature Science Foundation of China
(No. 61373174) and Foundation of State Key Lab. of
Integrated Services Networks of China.

References

1. Dervis KARABOGA, “An Idea Based On Honey Bee Swarm for

Numerical Optimization”, Technical Report TR06, Erciyes
University, Engineering Faculty, Computer Engineering
Department, 2005.

2. Dervis Karaboga, Bahriye, Akay, “A comparative study of artificial
bee colony algorithm”, Applied Mathematics and Computation,
214(1), 2009, pp. 108-132.

3. Karaboga, D., Akay, B., “A modified Artificial Bee Colony (ABC)
algorithm for constrained optimization”, Applied Soft Computing,
11(3), 2011, pp. 3021-3031.

4. D. Karaboga, C. Ozturk, B. Akay, “Training neural networks with
ABC optimization algorithm on medical pattern classification”,
International Conference on Multivariate Statistical Modeling and
High Dimensional Data Mining (Kayseri, TURKEY), June 19-23,
2008.

5. C. Ozturk, D. Karaboga, “Classification by neural networks and
clustering with artificial bee colony (ABC) algorithm”, in
Proceedings of the 6th International Symposium on Intelligent and
Manufacturing Systems, Features, Strategies and Innovation
(Sakarya, Turkiye), October 14-17, 2008.

6. Karaboga, D., Akay, B., “Artificial bee colony (ABC) algorithm on
training artificial neural networks”, Signal Processing and
Communications Applications, 2007. SIU 2007. IEEE 15th, June
2007, pp. 1-4.

7. Karaboga, D., Akay, B., Ozturk, C., “Modeling decisions for
artificial intelligence, Artificial Bee Colony (ABC) Optimization
Algorithm for Training Feed-Forward Neural Networks”, LNCS
4617, Springer-Verlag, 2007, pp. 318-329.

8. Wenping Zou, Yunlong Zhu, Hanning Chen, and Xin Sui, “A
Clustering Approach Using Cooperative Artificial Bee Colony
Algorithm” , Discrete Dynamics in Nature and Society, vol. 2010,
Article ID 459796, 16 pages, 2010. doi:10.1155/2010/459796.

9. Sonam Mittal, Neha Nirwal,Harsh Sardana, “Enhanced artificial
bees colony algorithm for traveling salesman problem”, Journal of
Advanced Computing and Communication Technologies, 2(2),
2014, pp. 1-3.

10. Cabrera G Guillermo., Cabrera Enrique, Soto Ricardo, Miguel
Rubio L. Jose, Crawford Broderick, Paredes Fernando, “A Hybrid
Approach Using an Artificial Bee Algorithm with Mixed Integer
Programming Applied to a Large-Scale Capacitated Facility
Location Problem”, Mathematical Problems in Engineering, vol.
2012, Article ID 954249, 14 pages, 2012.
doi:10.1155/2012/954249.

11. Kong, X., et al. , “Hybrid Artificial Bee Colony Algorithm for
Global Numerical Optimization”, Journal of Computational
Information Systems, 8(6), 2012, pp. 2367-2374.

12. Liang, Jing J., Qin, A. K., Suganthan, Ponnuthurai Nagaratnam,
Baskar, S., “Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions”, IEEE Transactions
on Evolutionary Computation, 10 (3), 2006, pp. 281-295.

13. Zhu, Guopu, Kwong Sam, “Gbest-guided artificial bee colony
algorithm for numerical function optimization”, Applied
Mathematics and Computation, 217(7), 2010, pp. 3166-3173.

14. Yao, Xin, Liu, Yong, “Fast evolution strategies”, Lecture Notes in
Computer Science, 1213, 1997, pp. 467-496.

15. Hansen, Nikolaus, Ostermeier, Andreas, “Adapting arbitrary
normal mutation distributions in evolution strategies: the
covariance matrix adaptation”, Proceedings of the IEEE
Conference on Evolutionary Computation, May 1996, pp. 312-317.

16. Guoqiang Li, Niu Peifeng, Xiao Xingjun, “Development and
investigation of efficient artificial bee colony algorithm for
numerical function optimization”, Applied Soft Computing Journal,
12 (1), 2012, pp.320-332.

17. Xu Yunfeng, Fan Ping, Yuan Ling, “A Simple and Efficient
Artificial Bee Colony Algorithm,” Mathematical Problems in
Engineering, vol. 2013, Article ID 526315, 9 pages, 2013.
doi:10.1155/2013/526315.

18. Das Swagatam, Abraham Ajith, Chakraborty Uday K., Konar, Amit,
“Differential evolution using a neighborhood-based mutation
operator”, IEEE Transactions on Evolutionary Computation, 13(3),
2009, pp. 526-553.

