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Abstract 
 

Monitoring data on an earth-rockfill dam constitutes a form of spatial data. Such data include much uncertainty owing to 
the limitation of measurement information, material parameters, load, geometry size, initial conditions, boundary 
conditions and the calculation model. So the cloud probability density of the monitoring data must be addressed. In this 
paper, the cloud theory model was used to address the uncertainty transition between the qualitative concept and the 
quantitative description. Then an improved algorithm of cloud probability distribution density based on a backward cloud 
generator was proposed. This was used to effectively convert certain parcels of accurate data into concepts which can be 
described by proper qualitative linguistic values. Such qualitative description was addressed as cloud numerical 
characteristics-- {Ex, En, He}, which could represent the characteristics of all cloud drops. The algorithm was then 
applied to analyze the observation data of a piezometric tube in an earth-rockfill dam. And experiment results proved that 
the proposed algorithm was feasible, through which, we could reveal the changing regularity of piezometric tube’s water 
level.  And the damage of the seepage in the body was able to be found out. 
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1. Introduction 
 
There is inherent uncertainty in the monitoring data of an 
earth-rockfill dam. So the analysis is closely related to the 
probability density of the monitoring data. High possibility 
data in the domain of data make a greater contribution to 
knowledge than low possibility data due to the randomness 
of monitoring data. If the probability density of data is 
overlooked, the data may become a departure from the value 
of the real knowledge. 
 In light of the uncertainties and complexities in dam 
engineering problems, risk analysis is more essential now 
than ever before [1]. Many methods have been proposed to 
solve the problem of uncertainty. The stochastic theory and 
fuzzy mathematics have proved to be key solutions for 
handling the fuzziness or randomness in spatial data. 
 As for the stochastic theory, Wu [2] thought that the 
spatial variability of soil properties was mainly dominated 
by their geological provenance, so the constraint random 
field was proposed and implemented utilizing random field 
theory and regionalized variable theory of geo-statistics to 
ensure that the random field realizations exactly match the 
parameters at the sample locations. LI [3] proposed a  
probability  method  for  infinite slope  stability  analysis  
considering  the  variation  of  soil  shear  strength  
parameters  with  depth. Since the gravity dam and its 
foundation bore great loads and the operating conditions 
were very complex, the random FEM was used by Erfeng 
Zhao to calculate the effects under environmental loads [4]. 

Mechanical time-varying characteristics parameters of 
gravity dam foundation were calculated dynamically based 
on a hierarchical diagonal neural network with monitoring 
data. 
 However, only random uncertainties were considered for 
damage identification in most monitoring approaches. And 
fuzzy constitued a kind of uncertainty too. So an optimal 
group of damage fuzzy sets was used to classify a set of 
observations at any unknown state of damage under the 
principles of fuzzy pattern recognition based on maximum 
approaching degree [5]. Fuzzy mathematics were adopted to 
deal with the dam monitoring data and the membership 
function of the fuzzy matrix was established under the 
principle of maximum membership and evaluation set given 
that the relationship between monitoring variables of dam 
safety monitoring was fuzzy [6]. The main character of the 
fuzzy support vector machine was introduced and its formal 
description in detail was given by Long [7]. Then, a new 
method of fuzzy support vector machine was subjected to 
training and testing processes. 
 From the analysis above, it is clear that only randomness 
or fuzziness was considered in these papers. So in order to 
reduce the influence of fuzziness and randomness, cloud 
theory was proposed to cope with fuzziness and randomness, 
and the advantage of transition between the qualitative 
concept and quantitative description. In cloud theory, the 
observation data were incomplete samples of parent 
populations. So the probability distribution density of the 
parent population that described the observation data was the 
mathematical expectation function of the cloud model that 
consisted of cloud drops corresponded with the data.  This 
was derived from the observed data and it was used by the 
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cloud model’s sample characteristics to estimate the parent 
population characteristics. The estimation error between the 
cloud model’s sample and the parent population would be 
greatly reduced if the cloud probability distribution density 
and radiation energy of the corresponding data were fully 
taken into consideration. 
 
 
2. Cloud Probability Distribution Density Algorithm 
 
2.1 Cloud model [8] 
Definition of cloud model: Suppose U is the set U={u} 
which is the universe of discourse, and T is a term associated 
with U. The membership degree of u is in U to the term T, 
CT(u)∈[0,1] is a random number with a stable tendency. 
The cloud of T is a mapping from the universe of discourse 
U to the unit interval [0, 1]. 
 There is: 
 
CT(u):U→[0,1]; u∈U; u→∀ CT(u) 
 
 The cloud model (Li et al, 1995) is a model of 
uncertainty transition between a linguistic term of a 
qualitative concept and its numerical representation. The 
cloud model can be characterized by three digital 
parameters-C(Ex, En, He), the expected value-Ex represents 
the center of gravity of a cloud, the entropy-En is a 
measurement of the fuzziness of the concept over the 
universe of discourse, which shows how many elements 
could be accepted by the term-C, and the hyper entropy-He 
is a measurement of the uncertainty of entropy-En. The 
larger the value of He, the more random the set of 
membership degrees is distributed. Figure 1 shows the three 
numerical characteristics of the cloud model. 
 

 
 
 
 Through statistical analysis, the cloud drops that 
contribute to qualitative concept-C in universe-U, are within 
interval [Ex-3En, Ex+3En], and the contribution rate is 
99.74%. The cloud drops within interval [Ex-0.67En, 
Ex+0.67En] account for 22.33% of the total quantitative 
numerical, and the contribution rate is 50%. These cloud 
drops are called the “backbone element”; the cloud drops 
within interval [Ex-En, Ex+En] account for 34.33% of the 
total quantitative numerical, and the contribution rate is 
68.26%. These cloud drops are called the “basic element”; 
the cloud drops within interval [Ex-3En, Ex-2En] and 
[Ex+2En, Ex+3En] account for 34.33% of the total 

quantitative numerical, and the contribution rate is 27.18%. 
These cloud drops are called the “peripheral element”; the 
cloud drops within interval [Ex-2En, Ex-En] and [Ex+En, 
Ex+2En] account for 34.33% of the total quantitative 
numerical, and the contribution rate is 4.3%. These cloud 
drops are called the “weak peripheral element”. The 
contribution of cloud drops in different regions to the 
qualitative concept is shown in Figure 1. 
 
2.2 Cloud probability distribution density 
Suppose Ln = {l1, l2, …, ln} are the cloud drops of samples-W 
to concept-T in universe-L. Samples-W comes from the 
parent population-Ω, and n is the sample size, f(l) is the 
probability density function of parent population-
Ω.WSuppose x=φ(l-li), (i=1,2,… ,n). There is a Borel 
measurable function within ∞ ∞( -­‐ , + ) , which represents 
stochastic membership conception T of x, as is denoted by 
CT(x). The membership conception-T’s data energy of li can 
be radiated to l. Suppose ti= “around of li”, and the initial 
distribution of radiated cloud drops can be expressed 
by ( ) ( ) ( ( ))T T iQ x C x C g l l=∑ =∑ − . CT(x) is a radiation 
brightness function for conception-T in universe-L. 

( ) / , 0ix l l d d= − >  can be deduced from  x=φ(l-li), in which 
d is called radiation unit, and formula (1) is deduced to be[9]: 
 

1 1

1 1ˆ ( ) ( ) ( )
n n

i
T T

i i

l lf l C x C
n nd d= =

−
= =∑ ∑                           (1) 

 
 From formula (1) we can see that the cloud probability 
distribution density is an estimation of the parent cloud 
model according to data radiation. CT(x) and d are keys to 
radiation estimation. It is important to obtain an appropriate 
radiation brightness function and the radiation unit through 
sample-W. Cloud drops radiation takes into consideration 
randomness and fuzziness at the same time, selects the 
radiation spot of the data energy as the kernel, and 
redistributes the total radiation brightness of the sample-W. 
Thus, new membership sets Q(x)={ Q1/nd, Q2/nd,…,Qn/nd} 
of concept-T have taken shape. It is a random distribution in 
the basic universe-L by the cloud drops radiation. When 

( ) /ix l l d= − , then  Qn/nd is the kernel estimation (Parzen, 
1962). According to formula (1), the probability density of 
cloud drops can be estimated based on the data radiation 
energy of cloud drops. In contrast, the initial concept sets 
can be established from the probability density function of 
spatial data distribution through cloud transformation. 
Obviously, it is an inverse cloud process. Data radiation 
provides an inverse explanation for cloud transformation 
from the perspective of physics. 
 The derivative of the radiation brightness function can be 
expressed as: 
 

0 0
0 0 0

( ) ( )( )( ) lim lim T TT
T x x

C x x C xC xC x
x xΔ → Δ →

+Δ −Δ
ʹ′ = =

Δ Δ
         (2) 

 
 Which is shown in Figure 2. 
 The radiation brightness function CT(x) must match the 
constraint condition [10]: 

10 ( )
2TC x
πσ

≤ ≤                                                               (3) 
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Fig. 1. Cloud model 
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( ) ( ) 1T TR
C x dx C x dx

+∞

−∞
= =∫ ∫                                            (4) 

 

| |
lim ( ) 0Tx

xC x
→∞

=                                                                    (5) 

 

( ) 0T
R

xC x dx =∫                                                                     (6) 

 
2 2( )T

R

x C x dx σ=∫                                                                 (7) 

 

2 1( )
2T

R

C x dx
πσ

=∫                                                            (8) 

 

 
 
 
 According to formulae (3) ~ (8), another characteristic of 
the radiation brightness function can be demonstrated. 
 Suppose li is an independent random observation in data 
space-R, the expectation of formula (1) can be expressed as: 

 
1 1ˆ ( ) ( ) ( ) ( )

1 ( ) ( )

i
n T T

i i R

T
n R

l l l xEf l EC C f x dx
nd d nd d
l xC f l x dx

d d

− −
= =

−
= −

∑ ∑∫

∫
       

       (9)   

 
1ˆ( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( )

T
R

R R

l xEf l f l f l x f l C dx
d d

A x dx A x dx A x dx
η η−

−
− = − −

= ≤ +

∫

∫ ∫ ∫
                (10) 

 In formula (10), η is a neighborhood of 0. If η→0, then 

( )
n

A x dx∫ →arbitrarily small, which can be addressed as O1, 

then 
 

1

1

1 2 3

1ˆ ( ) ( ) ( ) ( )

1( ) ( )

1sup ( ) ( ) ( ) ( )

T
R

T
R

T T
R R

xEf l f l O f l x C dx
d d

xf l C dx
d d

x x xO C f x dx f l C dx
d d d d

O O O

η

η

η

−

−

−

− ≤ + −

+

≤ + +

≤ + +

∫

∫

∫ ∫

                 (11) 

 

 If η→∞, then 
d
η
→∞ . After that, according to formula 

(5), O2→0 can be obtained. Finally,  3 ( )T

R
d

O C x dx
η
−

= ∫ , 

lim
n

R
d
η

→∞
→ , and based on formula (4), O3→0 can be obtained.

 So ˆlim ( ) ( )
n
Ef l f l

→∞
=  can be demonstrated. 

 
2.3 Radiation unit and best radiation unit 
According to formula (1) and formula (10), the 
evaluation ˆ ( )f l of the parent population’s probability density 
function depends on the radiation unit d, the monitoring 
value li and the number n of monitoring value (sample size). 
After the observation, the monitoring value of li and the 
number of n are known, but radiation unit d is unknown. So 
d must be decided firstly. Suppose E is the expectation, and 
D is the variance, according to formula (4) and formula (5), 
the variance of CT(x) can be obtained: 
 

  

1
2 2 2

2
1 1

2

2 2 21 1 1
2 2

2
2

2
2

1 1ˆ( ) ( ) ( )

1 ( ) ( )

1 1( ) ( ( )) ( )

1 ( ) ( )

1 ( / ) ( )

i
T T

i

T T

T T T

TR

TR

l l l lDf l DC DC
n d d nd d

l l l lE C EC
nd d d

l l l l l lEC EC EC
nd d d nd d

l xC f x dx
nd d

C x d f l x dx
nd

− −
= =

− −⎛ ⎞= −⎜ ⎟
⎝ ⎠

− − −⎛ ⎞= − ≤⎜ ⎟
⎝ ⎠

−
=

= −

∑

∫

∫

         (12) 

 
ˆlim ( ) 0

x
Df l

→∞
=                                                                        (13) 

 
 Suppose 2( ) 0, ( )T T

R R

xC x dx k x C x dx= = <∞∫ ∫ , then 

 

2 2

2

1 1ˆ( ( ) ( )) ( )( ( ) ( ))

1 ( ) ( )

TR

TR

Ef l f l C x f l xd f l dx
d d

f l xC x dx
d

− = − −

ʹ′+

∫

∫

                 (14) 

 

 Suppose 1η ≤ , and according to the mean value 

theorem, 2

1 ˆ( ( ) ( ))Ef l f l
d

−  can be expressed as: 

2 2

2

1 ( ) ( ) ( )ˆ( ( ) ( )) ( )

1 ( ) ( )
2

TR

TR

f l xd xdf l f lEf l f l C x
d d

C x x f l xd dxη

ʹ′− + −
− =

ʹ′ʹ′= −

∫

∫
              (15) 

 

 
Fig. 2. The derivative of CT(x) 
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 According to the dominated convergence theory, if 
( ) 0f lʹ′ʹ′ ≠ , O is the infinitesimal of higher order, then  

 

2 21ˆ( ) ( ) ( ) ( )
2

Ef l f l f l kd O dʹ′ʹ′− = +                                         (16) 

 The mean square error is: 

 
2

2 2 2
2

ˆ ˆ ˆ( ( )) ( ) ( ( ) ( ))
1 ( ( ) )( ) ( )

4
( )

TR

MSE f l Df l Ef l f l
f l k df l C x dx O

nd
A d O

= + −

ʹ′ʹ′
= + +

= +

∫                                 (17) 

 
 From formula (17) we can see that the value of radiation 
unit is the key factor, and it is essential to obtain the 
appropriate radiation unit through sample W. 
 The best radiation unit is defined as a unit with the 
minimum mean square error. According to formula (17), the 
main part A(d) of mean square error is a function of d. 
Suppose the derivative of A(d) is 0, then: 
 

2 2 2 3
2

( ) ( ) ( ( )) 0TR

f l C x dx f x k d dx
nd

ʹ′ʹ′− + =∫                         (18) 

 
And there is:  
 

2
5

2 2

( ) ( )

( ( ))
TR

f l C x dx
d

n f x k
= −

ʹ′ʹ′
∫                                                      (19) 

 
 Substitute formula (19) into formula (17), formula (20) is 
expressed by: 
 

( )
2 0.8

2 0.4
0.8 0.8

5 ( ) 1ˆ( ( )) ( ) [ ( )] ( )
4 TR

f lMSE f l C x dx kf l O
n n

ʹ′ʹ′= +∫           (20) 

 Suppose 
2

221( )
2

l

f l e σ

πσ

−

= , then:  

 

2

2

0.2

9

2 2 2 2

( )
2 ( )

l
d l

n l e σ

σ
σ

σ
−

⎛ ⎞
⎜ ⎟

= ≠ ±⎜ ⎟
⎜ ⎟−⎝ ⎠

                                    (21) 

 
 However, f(l) is unknown in the real situation. So the 
best radiation unit cannot be worked out from formula (15).   
  According to the properties of radiation brightness 
function- CT(x),   when n→maximum, there is ˆ( ) ( )i if l f l≈ . 

As
0

( ) ( )( ) lim
h

f l d f lf l
d→

+ −
ʹ′ = , 

20

( ) 2 ( ) ( )( ) lim
h

f l d f l f l df l
d→

+ − + −
ʹ′ʹ′ = , lim 0nn

d
→∞

= , Suppose 

radiation unit is d, and get rid of the sign of limits, there is: 
 

2

ˆ ˆ ˆ( ) 2 ( ) ( )( ) i i i
i

f l d f l f l df l
d

+ − + −
ʹ′ʹ′ =                            (22) 

 
 Substitute ˆ( ) ( )i if l f l≈  and formula (20) into formula 
(19), and the iteration computational equations of radiation 
unit can be worked out.  
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        (23) 

 
 
2.4 The best radiation brightness function 
The best radiation brightness function can be determined by 
the best radiation unit.  
 Suppose 2 2( ( ) )T

R

k C x dx →∫  minimum, there is: 

 

23 (5 ) 5
20 5( )

0 5
T

x x
C x

x

⎧
− <⎪

= ⎨
⎪

≥⎩

                                      (24) 

 

 
2.5 The cloud numerical characteristics based on data 
radiation 
On the basis of a normal cloud generator and a backward 
cloud generator, the mapping relationship between 
qualitative and quantitative can be established through three 
numerical characteristics: Expectation (Ex), Entropy (En) 
and Hyper Entropy (He). In the process of qualitative and 
quantitative transformation through the cloud model, it is 
important to consider the premises of using cloud probability 
density that is in line with the data. Each cloud drop radiates 
the data energy for a concept in the number field space. Thus, 
all the cloud drops distribution obeys a certain probability 
density distribution on the whole. From the perspective of 
radiation data, cloud numerical characteristics must be 
closely related to the probability density of cloud drops, and 
the probability density of it should not be overlooked. 
Otherwise, we cannot get the parent population cloud. The 
algorithm of cloud numerical characteristics is described as 
follows. 
 First, estimate the probability density of cloud drops 
based on data radiation. Second, use the probability density 
of cloud drops to measure the weight of each sample of 
cloud drops to the parent population. Finally, according to 
the weighted average algorithm of spatial distribution, 
calculate the three numerical characteristics (Expectation 
(Ex), Entropy (En) and Hyper Entropy (He): 
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ˆ ( )
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n

i i
i
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i
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Ex l

f l

=

=

=
∑

∑
                                                              (25) 

 



Han Liwei, Yu Hongtao, Zhang Hongyang, Lee Kunghon and Xu Cundong 
/Journal of Engineering Science and Technology Review 7 (3) (2014) 82 – 89 

 86 

1
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 From formula (25) ~ formula (27) we know that the 
algorithm fits the spatial distribution characteristics of cloud 
drops. The algorithm is easy to understand and is superior to 
the arithmetic average method. 
 
2.6 Cloud expectation function based on data radiation 
The cloud expectation function is the probability density 
function of the spatial entities’ parent population. It is also 
the mathematical expectation function of cloud drops that 
are in line with the sample of spatial data. So the cloud 
expectation function can be acquired by the probability 
density of cloud drops. The cloud expectation function is: 
 

2

2

ˆ ˆ[ ( )( )]
2[ ( )]1( ) ˆ ( )

f l l Ex
En l

TC l e
f l

−
−

=                                                        (28) 

 
 If the probability density of cloud drops is equal 
anywhere in the number field space, then ˆ ( ) 1f l = , and the 
cloud expectation function is the same as the function 

2

2

ˆ( )
2( )( )
l Ex
En

TC l e
−

−

=  of the normal cloud model. 
 According to the cloud expectation function, the three 
numerical characteristics of the cloud model are acquired 
from the given data by using the cloud generator. Based on 
this, it is possible to describe the morphological characters 
of the cloud model. So the cloud radiation expectation 
function is in line with the backward cloud generator. 
 
2.7 cloud radiation algorithm 
The cloud radiation algorithm is based on the backward 
cloud generator, which is an uncertainty transformation 
model realizing the transformation between a numeric value 
and its linguistic value. It effectively converts a certain 
number of accurate data to the concept indicated by 
appropriate qualitative linguistic values {Ex, En, He} which 
are the characteristics of the whole drops. Based on the data 
radiation, a new improved algorithm of backward cloud 
generator is described as follows [11]: 
 
Input: Coordinate value li of each cloud drops and its 
degrees of certainty-CT(li); 
Output: Ex, En and He, cloud drops’ number N; 

• Fit the cloud expectation curve 
2
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i
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=
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∑
 which is the estimation value of 

Ex; 
• Eliminate the dots that fit the condition of  

CT(l)>0.999, and there are m cloud drops left; 

• Calculate 
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i i
i

i T i
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f l C l

−
=

−
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• Calculate the estimation value of En:  
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• Calculate the estimation value of He:  

• 
2

1

1
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n

i i i
i
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i
i
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−
=
∑
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3. Analysis of observation data based on cloud 
probability distribution density algorithm 
 
Luhun reservoir is an earth-rockfill dam in Luoyang, China. 
13 piezometric tubes of Luhun reservoir were selected for 
the purposes of calculation. Piezometric tubes S1~S9 were 
embedded in the body of the dam and piezometric tubes 
D2~D5 were embedded in the fault zone of the dam’s 
foundation. Piezometric tubes S1, S4 and S7 were embedded 
in section 1 (0+813); piezometric tubes S2, S5 and S8 were 
embedded in section 2 (0+660); piezometric tubes S3, S6 
and S9 were embedded in section 3 (0+540); piezometric 
tubes D2 and D4 were embedded in section 5 (0+640); 
piezometric tubes D3 and D5 were embedded in section 6 
(0+680).See Figure 3. 

 
 
 
 The probability distribution density of the piezometric 
tubes’ water levels between 1979~1999 were acquired, and 
the results are shown in figure 4~ figure 16, in which the 
vertical axis represents probability density estimation and 
the horizontal axis represents water level value. The 
qualitative linguistic values (three numerical characteristics 
{Ex, En, He}) are used to describe the monitoring results, 
which can be obtained through the improved backward 

 

Fig.3. The location of each piezometric tube 
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cloud generator algorithm. The three numerical 
characteristics {Ex, En, He} are shown in Table I. 
 According to the qualitative explanatory rules, Ex refers 
to the water level of a piezometric tube; En refers to the 
dispersion degree between water level and expected water 
level of a piezometric tube; He refers to the influence of 
monitoring instruments and monitoring environment on 
monitoring level. From figure 4~ figure 16 and Table 1 we 
can see that the saturation line of Section 1 is the highest, the 
saturation line of Section 2 is the second, the saturation line 
of Section 3 is the lowest, the saturation line of each section 
is not high and in a stable state; all the piezometric tubes’ 
dispersion degree of each section are in a low state and the 
maximum value (En) is less than 1. The maximum value (He) 
of piezometric tube in each section is 0.13, which indicates 
that the monitoring level is stable. 
 
Tab.1.  Numerical characteristics of piezometric tubes’ water level 

Location Section Piezometric 
tube Ex En He 

In the body 
of the dam 

Section 1 

S1 276.12 0.49 0.13 

S4 276.11 0.47 0.11 

S7 276.07 0.5 0.13 

Section 2 

S2 276.11 0.42 0.07 

S5 276.03 0.47 0.11 

S8 276.02 0.46 0.07 

Section 3 

S3 276.01 0.44 0.11 

S6 276.01 0.45 0.08 

S9 276.01 0.43 0.08 

In the fault 
zone 

Section 4 
D2 275.77 0.83 8.1 

D4 275.96 0.44 0.09 

Section 5 
D3 276.00 0.44 0.09 

D5 276.05 0.46 0.13 

 

 
 
 
 The water level of the piezometric tubes in section 4 and 
section 5 is lower than that in the body of the dam. The 
water levels are in a stable state except in piezometric tube 
D2. The entropy (En) of piezometric tube D2 is 0.83, and the 
hyper entropy (He) of piezometric tube D2 is 8.1. This 
means that there are some problems about the dispersion 
degree and the monitoring level is affected by monitoring 

instruments and the monitoring environment. So piezometric 
tube D2 needs to be studied further and treated in the fault 
zone. 
 

 
 
 

 
 
 

 

 

Fig. 7. Probability density of S2 

 

Fig.  6. Probability density of S7 

 

Fig.  5. Probability density of S4 

 

Fig. 4. Probability density of S1 
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Fig. 13. Probability density of D2 

 

Fig. 12. Probability density of S9 

 

Fig. 11. Probability density of S6 

 

Fig. 10. Probability density of S3 

 

Fig. 9. Probability density of S8 

 

Fig. 8. Probability density of S5 
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4. Conclusions 
 
This paper proposes an improved algorithm of cloud 
probability density based on a backward cloud generator and 
applies it to the analysis of monitoring data of piezometric 
tube water levels in an earth-rockfill dam. The 
corresponding cloud probability density distribution map 
and cloud numerical characteristics are demonstrated and 
serve to monitor the seepage of the dam. The results show 
that most of the tubes are in a stable state. Only D2 presents 
excessive entropy and hyper entropy, which may be caused 
by a change in seepage or outdated equipment, but which 
needs further inspection.  
 However, the algorithm still has the following loopholes. 
First, due to limited space, this paper fails to consider the 
special distribution of data. So the influence of location 
uncertainty on the monitoring of the parent population has 
been overlooked. Second, this paper assumes that the 
monitoring data are in line with Gaussian distribution, which 
requires further proof and research.  
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