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Abstract 
 

Sliding mode controllers have succeeded in many control problems that the conventional control theories have difficulties 
to deal with; however it is practically impossible to achieve high-speed switching control. Therefore, in this paper an 
adaptive fuzzy backstepping sliding mode control scheme is derived for mismatched uncertain systems. Firstly fuzzy 
sliding mode controller is designed using backstepping method based on the Lyapunov function approach, which is 
capable of handling mismatched problem. Then fuzzy sliding mode controller is designed using T-S fuzzy model method, 
it can improve the performance of the control systems and their robustness. Finally this method of control is applied to 
nonlinear system as a case study; simulation results are also provided the performance of the proposed controller. 
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1. Introduction 
 
The problem of system control with uncertain has become a 
research focus. Sliding mode control has a wide application 
in system with matching uncertain, forever, its robustness is 
difficult to guarantee for mismatched system. An adaptive 
backstepping method is a systematic and recursive design 
methodology for nonlinear feedback control, there are 
unique structural design processes and capable of dealing 
with mismatched uncertainty, and successfully applied in 
aircraft, motor and machinery [1]. H. Bouadi designed 
sliding mode control based on backstepping approach, and 
applied in an UAV type-quadrotor[2].Literature[3] presented 
a backstepping SMC method to compensate the uncertainty 
which occurs in the slave system, and applied to implement 
synchronization of fractional-order Chaotic system.  Farzin 
Piltan proposed a MIMO fuzzy backstepping adaptive fuzzy 
estimator variable structure controller design and application 
to engine in order to design high performance nonlinear 
controller [4]. In literature [5], Mohammad Reza Soltanpour 
presented controlling of a class of nonlinear systems with 
structured and unstructured uncertainties using fuzzy sliding 
mode control. Abdel Badie Sharkawy derived an adaptive 
fuzzy sliding mode control scheme for robotic systems [6]. 
However, the backstepping method requires the uncertainty 
of the systems can be parameterized representation, and with 
the relative degree increasing of controlled object, there is a 
calculated expansion problem, so that the controller is 
difficult to achieve. 

The concept of Fuzzy control is to utilize the language 
rules of system to design a practical controller; it is 

particularly suitable for those systems with uncertain, time-
varying and complex dynamics [7], [8]. T-S fuzzy model is a 
nonlinear model to describe the dynamic characteristics of 
complex systems, and more effective way to describe 
nonlinear systems [9]. For the T-S fuzzy model, Literature 
[10], [11], [12] also proved that there is better approximation 
performance than the Mamdani fuzzy model. 

In this paper, an intelligent backstepping sliding mode 
control scheme is presented for MIMO nonlinear systems. 
The scheme is based on the universal approximation 
property of fuzzy systems and backstepping sliding mode 
control theory, and simulation was performed to validate the 
analysis result. 
 
2. Problem Statement 
 
This paper focuses on a class of MIMO nonlinear uncertain 
systems described as  

!x1 = b1x2 + f1(x1)
!x2 = b2u+ f2 (x1 ,x2 )+w(t)

!
"
#

$#
                          (1) 

Where ( ) n∈f x ° is nonlinear function of the system, 
T T T T
1 2 n[ , , , ]Lx = x x x is the state variable of the 

system, 1 2[ , , , ]i i i inx x x= Lx , ( 1,2, , )i n= L . n∈u °  

is the input vector of the system. ( ) 0≠G x  and 

rank( ) n=x ; ( )tw are the uncertainties and external 
disturbances, and it may not satisfy the so-called matching 
conditions. 
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Assumption 1: There are constants of jmb  and jMb  to 

satisfy the inequality 0 jm j jM< << b b b , ( 1,2)j = , 

and converse matrix of matrix jb  exists. 

The aim of the trajectory tracking control method is to 
design control law ( )tu , system state is eventually 

maintained at zero-from any initial state (0) 0≠x  in 

situations of uncertainty ( )tw . 
 
 
3. T-S Fuzzy Model 
 
T-S fuzzy model is a class of nonlinear model, and it is easy 
to describe the dynamic characteristics of complex systems. 

Considering general nonlinear uncertain system, a 
compact T-S fuzzy model can be obtained by a careful 
selection of rule number and parameters [13], [14], [15]. The 
system is described as the following   fuzzy rules, and then 
the fuzzy model is composed of the following rules 

Plant Rules: 

1 1 2 2if  is  and  is  is , then i i i
n nz F z F z FL  

!x(t) = Aix(t)+ Biu(t)

y(t) = x(t)
                             (2) 

Where 1 2 n( ) [ ( ) ( ) ( )]Tt = z t ,z t , ,z tLz is Fuzzy 

premise variables. l
iF  is Fuzzy sets.  ( ) nt ∈Rx is State 

variables. ( ) mt ∈Ru is the input of fuzzy system. 

1,2, ,i n= L  is the number of system input.  

( ) nt ∈Ry is Fuzzy output of the system. n n
i

×∈RA  and 
n m

i
×∈RB  are system vector and output vector. 

Product inference engine, singleton fuzzifier and center 
average defuzzifier are used to calculate outputs. The fuzzy 
inferred output is written as 

!x(t) = �i (z(t))
i=1

n

∑ [Aix(t)+ Biu(t)]

y(t) = �i (z(t))
i=1

n

∑ x(t)
                       (3) 

Where
11 1

( ( )) ( ( )) ( ( ))l l
i i

n nM

i
F F

li i

t t tα µ µ
== =

= ∑∏ ∏z z z , 

l
iF

m is the membership function of ( )tz  in fuzzy set l
iF . 

 Assuming the fuzzy system is controllable, then the 
fuzzy control rules is described as  

1 1 2 2: if  is  and  is  is ,
      then   ( ) ( )

i i i i
n n

i

R z F z F z F
t t−

L
u = K x

                 (4) 

The globally control law of state feedback is obtained as 
follows 

1
( ) ( ( )) ( )

n

i i
i

t t tα
=

=∑u z K x                                     (5)                                   

Essentially, T-S fuzzy modelling method is approxi-
mation model, it is described by fuzzy IF-THEN rules in 
which the consequent parts represent local linear models.In 
order to get Fuzzy T-S model of nonlinear system, and it 
must obtain the linear model of each subsystem. 

 
4. Adaptive Backstepping Sliding Mode Control 
 
4.1 Design of Tracking Controller 
 
The paper focuses on the formula (1) of the mismatched and 
uncertain system, this is a second-order system; it takes two 
steps to design adaptive backstepping sliding mode 
controller, the first step is to determine in the middle item 
with the stability 1τ  by selecting a suitable Lyapunov 

functionV ; the second step is to determine sliding mode 
control and parameter estimation algorithm according 2V . 

The first step:  

For the position tracking objective, define new state error 
vector 1z , 2

nR∈z  as 

1 1 1d

2 2 1τ

= −⎧
⎨

= −⎩

z x x
z x

                                                                (6) 

Where 1dx  and 1τ  are the desired state trajectory of the 

system, 1dx  is given by the control signal commands, and 

1τ  is a virtual control variable. 
From (1) and (6), we can obtain as 

!z1 = b1x2 + f1(x1)− !x1d
!z2 = b2u+ f2 (x1 ,x2 )+w(t)− !τ1

"
#
$

%$
                     (7) 

 Define virtual control variable 1τ  as follows 

τ1 = −b1
-1(K1z1 + f1(x1)− !x1d )                                (8) 

Where 1 11 12 1diag( , , , )nk k k= LK , 

1 0 ( 1,2, , )ik i n> = L . 
From (7) and (8), we can obtain  

!z1 = b1x2 + f1(x1)− !x1d
= −K1z1 + b1z2

                                      (9) 

Proposition 1: Using control law (8), the closed-loop 
system is global exponential stable based on assumption 1.  

Proof: 
Define the Lyapunov function as 

 T T
1 1 2 2

1 1
2 2

= +V z z z z , then we can obtain as follows 

!V = z1
T !z1 + z2

T !z2
= z1

T (−K1z1 + b1z2 )+ z2
T (b2u

+f2 (x1 ,x2 )+w2 (t)− !τ1)
                        (10) 
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From assumption 1, converse matrix of matrix jb  exists, 

assuming upper bound of uncertainty and interference 
General items ( )tw  isw , and then the control law is 

u = −b2
−1[K2 (−K1z1 + b1z2 )+ f2 (x1 ,x2 )

+w− !τ1 + b1
Tz1]

           (11) 

From control law (11) and (10), we obtain 

!V = −z1
TK1z1 − z2

TK2z2                                      (12) 

Through the Lyapunov stability theorem, thus the system 
is global exponential stable. 

The second step: 

Let 2 21 22 2diag( , , , )nk k k= LK , 2 0ik > . 
Define the sliding surface function as follows 

2 1 2= +s K z z                                                     (13) 

Define Lyapunov function as T T
1 1 1
1 1
2 2

= +V z z s s , 

and then we can obtain its derivative as follows 

!V1 = z1
T !z1 + s

T !s

= z1
T (−K1z1 + b1z2 )+ s

T (K2 !z1 + !z2 )

= −z1
TK1z1 + z1

Tb1z2 + s
T[K2 (−K1z1

+b1z2 )+ b2u+ f2 (x1 ,x2 )+w2 (t)− !τ1]

         (14) 

From assumption 1, converse matrix of matrix jb  exists, 

assuming upper bound of uncertainty and interference 
General items ( )tw  isw , and then the control law is 

u = −b2
−1[K2 (−K1z1 + b1z2 )+ f2 (x1 ,x2 )

+w− !τ1 + K3s + K4sgn(s)]
            (15) 

Assuming upper bound of uncertainty and interference 
General items is ( )tw , it is unknown and easy to cause 
chattering problem. In order to avoid using its upper bound, 
and we should use adaptive algorithm to estimate ( )tw , 

then we can design an estimates !̂w as follows 

!̂w = K5s
T                                                          (16) 

We obtain adaptive control law as follows 

u = −b2
−1[K2 (−K1z1 + b1z2 )+ f2 (x1 ,x2 )

+ŵ− !τ1 + K3s + K4sgn(s)]
         (17) 

Where 3 31 32 3diag( , , , )nk k k= LK ,

4 41 42 4diag( , , , )nk k k= LK ,

5 51 52 5diag( , , , )nk k k= LK ,
0( 1,2, , 3,4,5)jik i n j> = =L ； . 

4.2 Stability Analysis 
Define Lyapunov function as follows 

V =
1
2
z1
Tz1 +

1
2
sTs + 1

2K5
!w2                           (18) 

Assuming uncertainties ( )tw , its estimated value is ŵ , 

and its estimated error is ˆ−% *w = w w , 5K  is a positive 
definite diagonal matrix. The derivative of Lyapunov 
function is written as 

!V1 = z1
T !z1 + s

T !s + !w2 2K5
= z1

T (−K1z1 + b1z2 )+ s
T (K2 !z1 + !z2 )− !w

!̂w K5
= −z1

TK1z1 + z1
Tb1z2 + s

T[K2 (−K1z1 + b1z2 )

+b2u+ f2 (x1 ,x2 )+w2 (t)− !τ1]− !w
!̂w K5

= −z1
TK1z1 + z1

Tb1z2 + s
T[K2 (−K1z1 + b1z2 )

+b2u+ f2 (x1 ,x2 )+ ŵ− !τ1]− !w(
!̂w - K5s

T ) K5

   (19) 

From control law formula (17), adaptive law formula (16) 
and (19), we obtain 

!V1 = −z1
TK1z1 + z1

Tb1z2 − s
TK3s− K4 s                (20) 

Selecting 1 2 3 2 2 3 1

3 2 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

K + K K K K K + b
Q =

K K K
, and 

let T T T
1 2  ⎡ ⎤⎣ ⎦z = z z , 1

2

⎡ ⎤
⎢ ⎥
⎣ ⎦

z
z =

z
, then 

11 2 3 2 2 3 1T T T
1 2

3 2 3 2

T T T T
1 1 1 1 1 2 1 2 3 2 1 1 2 3 2

T T
2 3 2 1 2 3 2

  

= − + +

+ +

⎡ ⎤⎛ ⎞
⎡ ⎤ ⎜ ⎟ ⎢ ⎥⎣ ⎦

⎝ ⎠ ⎣ ⎦

zK + K K K K K + b
z Qz = z z

K K K z

z K z z b z z K K K z z K K z

z K K z z K z

 

(21) 
From (20), we obtain 

!V1 = −z1
TK1z1 + z1

Tb1z2 − s
TK3s− K4 s

= −zTQz − K4 s
            (22) 

By choosing the appropriate parameter value, we can 
obtain  0>Q  , namely Q  is a positive definite matrix, 

which can make 1 0≤&V .Thus, we can guarantee that control 
system is stable. 

 
 

5. Backstepping Sliding Mode Control Based on T-S 
fuzzy model 
 
5.1 Fuzzy Backstepping Sliding Mode controller design 
Based on the approximation property of T-S fuzzy systems, 
a nonlinear uncertain system can be expressed as the form of 
linear parametric model and a modeling error term; the 
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system makes full use of the advantages of fuzzy control and 
linear control. 

The paper focuses on the formula (1) of uncertain system, 
which is described based on T-S fuzzy dynamical model. 
We obtain r fuzzy rules, and then the fuzzy model is 
composed of the following rules 

Plant Rules i : 

if z1  is F1
i  and z2  is F2

i!zn  is Fn
i , then 

    
!x1 = b1ix2 + f1i (x1)
!x2 = b2iu+ f2i (x1 ,x2 )+wi (t)

!
"
#

$#

         (23) 

Where 1 2 n( ) [ ( ) ( ) ( )]Tt = z t ,z t , ,z tLz is Fuzzy 

premise variable. l
iF  is Fuzzy sets. ( ) nt ∈Rx  is State 

variable. ( ) mt ∈Ru  is the input of fuzzy system. jif   

and jib  are nonlinear function matrix. ( )tw  are the 
uncertainties and external disturbances. 

Assuming that ( )i itα  is membership function of iz  in 

fuzzy set iF , then the global T-S fuzzy model of nonlinear 
uncertain system is written as 

!x1 = α i (zi )(
i=1

r

∑ b1x2 + f1(x1))

!x2 = α i (zi )(
i=1

r

∑ b2u+ f2 (x1 ,x2 )+w(t))

"

#
$$

%
$
$

          (24) 

Where
1

( ( ))( ( )) ( ( ))
r

i
i

i i tt t αα α
=

= ∑ zz z .  

Design step of controller Based on Backstepping Sliding 
Mode method is written as 

The first step: 

Define new error state vector as 1z , 2
nR∈z , then there 

are the following formula 

1 1 1d

2 2 1τ

= −⎧
⎨

= −⎩

z x x
z x

                                                   (25) 

Where 1dx  and 1τ  are the desired state trajectory of the 

system, and 1dx  is the input signal of the system. 

Assuming that 1τ  is virtual control variable, From 
Equation (24) and Equation (25), we can obtain 

 

!z1 = b1ix2 + f1i (x1)− !x1d
!z2 = b2iu+ f2i (x1 ,x2 )+wi (t)− !τ1

"
#
$

%$
                 (26) 

Selecting virtual control variable 1τ as follows 

τ1 = −b1i
-1(K1z1 + f1i (x1)− !x1d )                          (27) 

Where 1 11 12 1diag( , , , )nk k k= LK ,

1 0 ( 1,2, , )ik i n> = L . 
From (26) and (27), we obtain 

!z1 = b1ix2 + f1i (x1)− !x1d
= −K1z1 + b1iz2

                                   (28) 

Let 2 21 22 2diag( , , , )nk k k= LK , 1 0( 1,2, , )ik i n> = L , 
and define the sliding surface function as follows 

2 1 2= +s K z z                                                     (29) 

Define Lyapunov function  as T T
1 1 1
1 1
2 2

= +V z z s s , 

then we can obtain as follows 

!V1 = z1
T !z1 + s

T !s

= z1
T (−K1z1 + b1iz2 )+ s

T (K2 !z1 + !z2 )

= −z1
TK1z1 + z1

Tb1iz2 + s
T[K2 (−K1z1

+b1iz2 )+ b2iu+ f2i (x1 ,x2 )+wi (t)− !τ1]

       (30) 

From (30), we obtain the backstepping sliding mode 
control Law based on T-S fuzzy model as follows 

if z1  is F1
i  and z2  is F2

i!zn  is Fn
i , then 

ui = −b2i
−1[K2 (−K1z1 + b1iz2 )+ f2i (x1 ,x2 )

      + ŵ− !τ1i + K3s + K4sgn(s)]
        (31) 

Then the adaptive law &̂w is 

T
5

&̂w = K s                                                         (32) 

Thus, the global control law is weighted sum of control 
law of local subsystem; we obtain the global control law as  

1

r

i i
i
α

=
∑u = u                                                    (33) 

5.2 Stability Analysis 
 
Define the Lyapunov function as 

T T 2
1 1

5

1 1 1
2 2 2

= + %V z z s s + w
K

 , and the derivative of 

Lyapunov function is written as 

!V1 = z1
T !z1 + s

T !s + 1
2K5

!w2

= −z1
TK1z1 + z1

Tb1iz2 + s
T[K2 (−K1z1 + b1iz2 )

+b2iu+ f2i (x1 ,x2 )+ ŵ− !τ1] -
1
K5
!w( !̂w - K5s

T )

    

(34) 

From control law formula (31) and adaptive law formula 
(32) and (34), we obtain 
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!V1 = −z1
TK1z1 + z1

Tb1iz2 − s
TK3s− K4 s            (35) 

Then (35) can be rewritten as 
!V1 = −z1

TK1z1 + z1
Tb1iz2 − s

TK3s− K4 s

= −zTQz − K4 s
           (36) 

By choosing the appropriate parameter value, we can 
obtain !V1 ≤ 0 , and then we can guarantee that control 
subsystem is asymptotical stable. 

Define Lyapunov function as follows 

!V = z1
T !z1 + s

T !s + !w2 2K5

= αi
i=1

r

∑ [−z1
TK1z1 + z1

Tb1iz2 + s
T[K2 (−K1z1

+b1iz2 )+ b2iu+ f2i (x1 ,x2 )+ ŵ− !τ1]

− !w( !̂w - K5s
T ) K5]

= −zTQz − K4 s < 0

  (37) 

Thus, the global control system is asymptotically stable; 
then the asymptotical stability of system was proved based 
on Lyapunov theory. 
 
6. Simulation 
 
In this section, illustrative numerical simulation example is 
provided to demonstrate the effectiveness and robustness of 
the proposed approach. The system is represented as 

!!q = f (x)+ b(x)u                                            (38) 

Where

1 2 2

2 2

1 2 2

2 2

2 cos(  + )(sin 1)
cos(2 )+4cos +19

( )
2 cos(  + )(2cos 10)

cos(2 )+4cos +19

g q q q
q q

g q q q
q q

−

=
+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

f x ,     

      
2

2 2 2 2

2 2

2 2 2 2

200sin200

cos(2 )+4cos +19 cos(2 )+4cos +19

200sin 400cos 2000

cos(2 )+4cos +19 cos(2 )+4cos +19

( )

q

q q q q

q q

q q q q

−

− +
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

b x . 

In this paper, to verify the accuracy and usefulness of the 
method, it transforms the formula (38) to state space model, 
which it can be designed based on fuzzy backstepping 
sliding mode control method. 

Let T
1 1 2[ , ]q q=x , x2 = [ !q1, !q2 ]

T , the state variable 

is x = [x1
T , x2

T ]T = [q1,q2 , !q1, !q2 ]
T . 

From (38) can be written as follows 

!x1 = x2
!x2 = f (x)+ b(x)u+ w(t)

!
"
#

$#
                             (39) 

Where ( )tw are the uncertainties and external 
disturbances. 

The following T-S fuzzy model is used to model of the 
nonlinear system. 

Rules: 

If 1q  is 2π− , 2π± , 2π , 0 , 0 , 2π , 2π ;and 

2q is 2π− ,0 , 2π− , 2π± , 0 , 2π− , 2π− . (Here 

only give equation and parameter values at 1q  is 2π− and 

2q  is 2π−  ), then 

!x1 = x2
!x2 = fi (x)+ bi (x)u

!
"
#

$#
                                                (40) 

Where 2
1

1.0778 0.6861
10.9637

q−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

f ,

2
1

2

11.0241 7.0182
7.0182 111.0109

q
q

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

b ; Other value of if  

and ib  are omitted, 1, 7i = L . 

Assuming Command signal 1dq and 2dq  of system are 

1 sin(0.4 )dq tπ=  and 2 sin(0.6 )dq tπ= ; the initial 

state of the system is [0.5,0.5,0,0]=x . 

The proposed control law is applied to controller design 
of system (38), control law using the article achieve the 
control of system, and defining parameters of control system 
are as follows 

1

10 0
0 10

K ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2

10 0
0 10

K ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

3

1 0
0 1

K ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 4

0.1 0
0 0.1

K ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. 

In this paper, the membership function of fuzzy logic 
control is Triangular membership function, which completes 
the fuzziness of input signal. 
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Fig. 1. Fuzzy membership function 
 

At ( ) 0t =w , the results of simulation are shown in 
Figure 2 and Figure 3. 
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Fig. 2. Position tracking curve of 1q  
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Fig. 3. Position tracking curve of 2q  

At w(t) =
2sin !q1 +0.2 !q1
2sin !q2 +0.2 !q2

!

"
#
#

$

%
&
&

, and we don’t change 

the value of the control parameters. The results of simulation 
are shown in Figures 4 and 5, In the Figure, the dotted line is 
the expectation curve and the solid line is the actual curve. 
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Fig. 4. Position tracking curve of   1q  at external disturbance condition 
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 Fig. 5. Position tracking curve of 2q  at external disturbance condition 

Numerical simulations demonstrate the effectiveness of 
the proposed fuzzy backstepping sliding control method, and 
there are the advantages of strong robustness and anti-
disturbance capacity. At external disturbance condition, the 
system still has good control capacity and strong robustness. 
 
7. Conclusions 
 
In this paper, by combining the Backstepping method and 
the T-S fuzzy model method, the fuzzy backstepping sliding 
mode control was presented for a class of mismatched 
uncertain system. In this new method, nonlinear system is 
described based on T-S fuzzy dynamical model, and the 
nonlinear system is translated into local linear model by 
fuzzy method, not only make the system is stable, and avoid 
the chattering phenomenon of sliding mode control, Then 
the global stability of the control law was also achieved by a 
Lyapunov function. Simulation results indicate that the 
proposed controller is valid and effective, and it has strong 
robustness to external disturbance and the performance of 
system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

______________________________ 
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