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Abstract 
 

The excavator working device is a typical mechanical system of electromechanical liquid that is complex. Traditional 
optimization design methods are difficult to get global optimized results of excavator backhoe device through the serial 
mode of “mechanism-load-structure”. Thus, the theory of parallel collaborative optimization (CO) is applied. To establish 
a sophisticated CO model of the backhoe device, a certain excavator is investigated as a sample multidisciplinary CO 
(MDCO) design. To generate the CO model, an improved optimization algorithm called the particle swarm-genetic 
algorithm （PS-GA）is proposed. To verify the MDCO design of the excavator backhoe device, a parameterized virtual 
prototype (VP) of the backhoe device is established in ADAMS. This VP is optimized by applying the MDCO design 
results to the parameterized VP. The VP of the backhoe device is also optimized by a single discipline when the 
optimization results from a single discipline are inputted into the parameterized VP. Both optimized VPs are simulated 
under similar conditions, and results show that in the MDCO design, the arm crowd force of the backhoe device is 8.1% 
stronger than that in the design optimized by a single discipline under constant power and oil pressure conditions. 
Similarly, breakout force increased by approximately 8.3%. The quality (volume) of the entire backhoe device decreased 
by 9.5%; however, the maximum stress of each characteristic partition changed only slightly. Therefore, the MDCO 
design effectively and practically addresses problems regarding the optimization of the design of complex mechanical 
systems. 
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1. Introduction 
 
Collaborative optimization (CO) is a strategy of 
multidisciplinary design optimization (MDO). It was 
proposed by Kroo [1] and generally consists of a bi-level 
optimization structure. This structure not only benefits the 
organization of a complex system for optimization, but also 
promotes disciplinary autonomy while maintaining 
interdisciplinary compatibility. With this architecture, CO 
effectively optimizes the design of a complex system in 
practical engineering and is currently considered a practical 
and effective method to address problems in the 
optimization of complex systems [2]. 

The excavator working device is a typical mechanical 
system of electromechanical liquid that is complex [3]. It 
contains various design parameters such as mechanism and 
structure parameters. In the optimization of the working 
device, these parameters are difficult to determine because 
they influence, restrict, and integrate with one another. The 
current design process of excavator working equipment 
mainly follows this order: “the mechanism parameters of the 
working device are designed first. Dynamic analysis is then 
conducted. The load of the main components is determined, 

and finally, the structural parameters of the main 
components are designed”. In the calculation order of 
“mechanism-load-structure”, the mechanism establishes the 
load, and the load determines the structure without a follow-
up calculation. Thus, optimization design is limited to a 
single discipline (SDO), and the interactions among various 
disciplines are not considered. Hence, the SDO design is not 
global. 

With respect to the working device, the design 
optimization order “mechanism-load-structure” not only 
requires optimizations from disciplines at each stage, but it 
must also be optimized as a whole simultaneously. Global 
optimization is multilevel, and its goal differs from that of 
disciplinary optimization. Thus, we must ensure that the 
disciplinary optimization goal is met given the requirement 
for global optimization. MDO is a research topic that has 
been examined as a design problem and from the perspective 
of design structure and information organization. In MDO, 
the design calculation framework, which is helpful to 
integrate optimization algorithms, is proposed [4]. This 
framework organically integrates disciplinary knowledge 
into optimization methods to formulate an effective 
optimization algorithm, which can be used to optimize 
complicated objects globally, in terms of disciplines, and 
component design for complex systems [5], [6]. ______________ 
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This paper is organized as follows: In Section 2, an 
improved PSO algorithm is proposed, and the 
multidisciplinary CO (MDCO) model of an excavator 
backhoe device model is established and discussed. In 
Section 3, the MDCO model of the backhoe device is 
determined using the enhanced PSO algorithm. The 
computed results are then discussed in Section 4. Finally, 
conclusions are drawn in Section 5. 
 
 
2. CO Model of the Design Process of the Backhoe Device 
 
2.1 Problem of Serial Process Design 
In a sequential design process, feedback is limited. Thus, the 
flow of information between disciplines is one-way, and the 
design can only be optimized within the current discipline. 
Hence, the disciplinary optimal does not correspond to the 
global optimal. In the global optimization of the excavator 
working device, therefore, we must consider the mechanism, 
load, and structure of the working equipment. The design 
process must shift from a unidirectional sequential pattern 
into a multidirectional circular pattern, as shown in Fig. 1. 
As a result, the calculated amount increases sharply, and 
convergence is uncertain. Coordination between global 
optimization and disciplinary optimization is induced by the 
CO design process, which disturbs the couplings among 
disciplines by introducing equality constraints in system 
layer. Thus, each disciplinary optimization autonomously 
focuses on only its own constraints. These design 
optimizations are parallel, as shown in Fig. 2. With this 
method, global optimization of large and complex systems 
can be easily achieved. 

mechanism

load

feedback

Feedforward structure

Input           

Output            

 
Fig. 1 Feedback of Serial Design 
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Fig. 2 CO Hierarchical Structure. 

 

2.2 Parallel MDCO Model 
 
2.2.1 CO Principle 
The distributed CO method with bi-level optimization 
structure was proposed by Kroo [1] and is used in multi-
objective MDO. In this method, the optimization problem of 
complex system design is decomposed into different 
disciplinary design optimizations and system-level 
optimization problems. The design variables shared by 
various disciplines are coordinated by the equality 
constraints at system level, as are the variables of coupling 
state. The basic CO framework is depicted in Fig. 3. This 
framework is divided into two main parts: system level 
optimization (global optimization) and subsystem 
optimizations (disciplinary optimization). The design 
variables in subsystem optimization include shared design 
variables, coupling variables at disciplinary state, and local 
variables of disciplinary design. In the disciplinary 
optimization process, each discipline is required to meet 
only its own constraints. Subsystem optimization aims to 
differentiate its goal from that of the system level at 
minimum. Thus, system level optimization targets the entire 
system. Given the equality constraint condition, the variables 
of interdisciplinary design and coupling state remain 
constant. 

Each subsystem can parallel analysis and optimiza-tion. 
Therefore, complex system analysis can be eliminated in this 
method. The goal of subsystem optimization is not directly 
related to the target value of the entire system. However, the 
state variables serve as design variables, and the dimensions 
of these design variables expand. Thus, the number of 
subsystems analyzed increases during CO, and the iterative 
convergence is gradual. Furthermore, equality constraints 
are difficult to meet at system level. To simplify this 
process, the equation constraints are transformed into 
inequality constraints using the slack variable method. These 
problems have been investigated in numerous previous 
studies [7],[8],[9]. 

To compute the MDCO model, intelligent group 
algorithms [i.e., genetic algorithm(GA), particle swarm 
optimization (PSO), and ant colony optimization (ACO) 
algorithms] are often used. However, a single intelligent 
group algorithm is inadequate to address the MDCO model 
for a complex system. Some of these algorithms can 
generate a feasible solution, but not the global optimal one 
[10]. Thus, this study proposes an effective particle swarm-
genetic algorithm (PS-GA). 
 
2.2.2 PS-GA 
The MDCO model of a complex system contains both 
continuous and discrete design variables. It has many 
optimization goals and complex constraint functions. This 
design optimization problem is nonlinear and integrates 
continuous and discrete variables. This issue is difficult to 
address using traditional methods, including GA, PSO, and 
ACO algorithms. Therefore, this study develops an 
improved PSO algorithm that essentially incorporates the 
hybrid concept of GA into the PSO algorithm to obtain a 
composite intelligent group algorithm. The principle of the 
algorithm is as follows: Using the hybrid concept in GA, we 
select a specific number of particles from the hybrid pool 
based on the hybrid probability in each iteration. In the pool, 
two particles form a random hybrid and produce similar 
amounts of offspring particles (son). The offspring then 
replace their parent particles (father) to accelerate the 
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evolution of the particle swarm and improve solving 
efficiency. GA complements the algorithm based on PSO; 
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Fig. 3 Framework of the MDCO algorithm 

 

 
Fig. 4 Mechanism model of the excavator backhoe device 
 
 

Hence the label PS-GA. To obtain the location of the 
offspring given the parent location, an arithmetic crossover 
is applied as follows (1): 

( ) ( ) ( ) ( )xfatherxfatherxson 21 1 ⋅−+⋅= λλ                    (1) 

Where [ ]10，∈λ , random number. 
The speed of the offspring is calculated using Formula 

(2):  

( )
( )

( ) ( )
( ) ( )( )vfathervfather

vfathervfather
vfather

vson 21
21

1 +
+

=  

or 

( )
( )

( ) ( )
( ) ( )( )vfathervfather

vfathervfather
vfather

vson 21
21

2 +
+

=
      (2) 

The basic steps in the PS-GA are as follows: 
1) In the population, the position and velocity of each 

particle are initialized at random. 
2) The fitness value of each particle is evaluated. It is 

stored in the pbest variable of each particle along with 
current position. If a particle displays an optimal fitness 
value, it is included in the gbest variable along with its 
current position. 

3) The speed and position of each particle are updated. 
4) The fitness value of each particle is compared with 

that of the ideal position based on experience. The pbest 
variable is then updated if the fitness value of the study 
particle is higher. 

5) All of the current pbest values are compared with 
those of gbest. gbest is then updated if the pbest values are 
superior. 

6) According to the hybridization probability, a 
specified number of parent particles are selected from the 
hybrid pool. In the pool, two particles form a random hybrid 
and generate the same number of offspring particles. The 
positions and velocities of the offspring particles are 
calculated using Formulas (1) and (2). The values of gbest 
and pbest remain unchanged. 

7) If the stop condition (i.e., the preset number of 
calculation precision or iterations) is reached, the search 
ceases and the output is printed. Otherwise, the algorithm 
returns to step 3 and continues the search. 
 
 
2.3 MDCO Model for the Backhoe Device 
 
2.3.1 Model to Optimize Mechanism 
The mechanism model for the excavator backhoe device is 
presented in Fig. 4. In the backhoe device, the design 
mechanism determines the operating range (maximum reach, 
digging depth, and dumping height), digging force, and the 
matching degree of digging resistance. These factors 
influence the working efficiency of the backhoe device.  
Mechanism optimization aims to match the degrees of 
digging force and resistance. In the design optimization of 
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the backhoe device, the distances between hinge points are 
used as variables. With respect to mechanism, the 
optimization constraints are the operating range, motion 
performance, and geometry conditions. During excavation, 
bucket and arm digging are typically utilized. Thus, the 
digging force and resistance are matched as follows: 

(1) During arm excavation, optimization aims to match 
arm crowd force and digging resistance. Within the domain, 
the optimization model of the backhoe device is determined 
as follows: 

( ) ( ) ( )( )

( ) 0..

min

1

24

1

20

1
1111

1

≤

−=∑∑
= =

Xgts

XWXFX

XFind

i

i j
ijijδ

          
  (3)

 

where
[
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lllllllllX

σ,,,,,
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21min3max3min2

max2min1max12522211615

14131110986311 =  

denotes the length between the hinges and characteristic 
parameters; ( )1XFij  is arm crowd force during arm 

excavation, ( )1XWij
 is arm digging resistance during arm 

excavation, and ( )1Xgi  represents the constraints of working 
space and mechanism motion performance in the backhoe 
device, as well as the composite conditions of the 
mechanism. 

(2) During bucket excavation, optimization aims to 
match breakout force and the resistance to bucket digging. 
Within the domain, the optimization model of the backhoe 
device is expressed as follows: 
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denotes the length between the hinges and characteristic 
parameters, ( )2XFij  is the breakout force during bucket 

excavation; ( )2XWij  is the bucket digging resistance during 

bucket excavation; ( )2Xgi  denotes the constraints of working 
space and mechanism motion performance, as well as the 
composite conditions of the mechanism. 
 
2.3.2 Model to Optimize Structure 
The backhoe device is mainly composed of the boom, arm, 
and bucket. The structures of these components are exhibited 
in Fig. 5. 
In structural design, shape and size are determined. 
Moreover, the weight, structure shape, and connection mode 
of the backhoe device are key in structure optimization 
because they influence digging force and external load 
distribution in different parts of the backhoe device. In the 
structural optimization of the backhoe device, the structure 
parameter X3 is the design variable. To meet the constraint 
conditions of static and fatigue strength and stiffness, 
optimization aims to minimize the volume of the backhoe 
device. Thus, the mathematical model of the structural 
optimization of the backhoe device is expressed as: 

( ) ( )

( ) 0..

min

3

3

3

1
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3

≤
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i
i
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a) 

 

 
b) 

Fig. 5 Structure diagrams of (a) the boom and (b) the arm 
 
 
Where 

[

]TRODTHICKTOPRFSIDEROC

ROBXOXTTHICKWEB
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__,_,_,__
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!

!

=  

indicates the detailed structure parameters of each main 
component, ( )3XVi  represents the volumes of the boom, arm, 
and bucket; ( )3Xgi  denotes the constraints of strength, 
stiffness, and fatigue strength. 
 
2.3.3 MDCO Model 
In the various models of disciplinary optimization mentioned 
above, the shared variables are the coupling variables in 
each disciplinary optimization. Hence, the values of these 
variables may vary. This occurrence can be attributed to the 
CO process, wherein the values of the shared and coupling 
variables change to benefit the disciplinary optimization of 
each model. This variation is guided by the disciplinary 
optimization goals and is restricted by the constraint 
conditions of each discipline. To reconcile the values of the 
shared and coupling variables, each disciplinary 
optimization model must compromise and concede. With the 
CO strategy, the target value of individual disciplinary 
optimizations is lower than that of each independent goal in 
disciplinary optimization. Therefore, CO aims to generate 
the optimal value for each independent discipline and to 
obtain results that are close to those of independent 
optimization. If the independent target value of individual 
disciplinary optimization is defined as the ideal point, the 
optimal results obtained by CO must match the independent 



Yin Guang-qiu, Lin Shu-wen and Perlurst, D.B./Journal of Engineering Science and Technology Review 7 (2) (2014) 99 – 105 

 103 

value of each disciplinary optimization given that the values 
of the shared and coupling variables are consistent. Hence, 
the sophisticated CO model can be abstracted as follows: 

( )( )( ) ( )( )( ) ( )( )( )
maxminmaxmin

2
3

2
2222

2
1111

..

///min

YYYXXXts

VVXVXX

YXFind

≤≤≤≤

−+−+− ∗∗∗∗∗∗ δδδδδδ

   
(6) 

where X  represents the shared variables; 
321 XXXX ∩∩= , 

Y  denotes the variable of coupling state; and ∗
1δ , ∗

2δ , ∗V  
correspond to the independent target values of disciplinary 
optimization. 

Given the observations above, the CO model of the 
backhoe device can be detailed as shown in Fig. 6.  

 

Fig. 6 Three disciplines of the CO model of the excavator backhoe 
 
3. Sample CO Design of the Backhoe Device 
 
To test the MDCO design, the excavator in [11] is taken as 
an example. The initial data regarding the excavator backhoe 
device are listed in Table 1. 

The main parameters of the excavator [11] are as 
follows: weight is 7.8 tons; bucket capacity is 0.3 m3; the 
diameter of the boom hydraulic cylinder is 110 mm and the 
diameter of its piston rod is 55 mm; and stroke is 835 mm. 
The diameter of the bucket hydraulic cylinder is 125 mm 
and the diameter of its piston rod is 63 mm; stroke is 725 
mm; the working pressure of the hydraulic system is 17.5 
MPa; and the hydraulic pump flow is 63 l/min.  

Using PS-GA, we calculated the MDCO model of the 
backhoe device. The design results of MDCO, SDO, and the 
original design are given in Table 2. Simultaneously, the 
parameterized virtual prototype (VP) of the excavator 
backhoe device is established in ADAMS, as depicted in 
Fig. 7. In MDCO, the values of the design variables serve as 
input parameters to generate the optimized VP. This 
prototype is called a multidisciplinary virtual prototype 
(MVP). The process through which MVP was obtained is 
similar to that undergone by the single discipline virtual 
prototype (SVP). When the digging of MVP is simulated, 
the simulation curves of breakout force (M-BFSC) and arm 
crowd force (M-ACFSC) are generated. When SVP is the 
digging simulation, the simulation curves of breakout force 
(S-BFSC) and the arm crowd force (S-ACFSC) are obtained. 
M-BFSC, S-BFSC, and the resistance to bucket digging are 
presented in Fig. 8, whereas Fig. 9 displays M-ACFSC, S-
ACFSC, and the curve of arm digging resistance. 

 
 

 
Fig. 7 Parameterized VP of the backhoe device. 
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Fig. 8 Curves of arm crowd force and arm digging resistance as 
obtained with different optimization methods 

 
Fig. 9 Curves of breakout force and bucket digging resistance as 
generated with different optimization methods 
 

Table 1. Initial data on the backhoe device [11] (unit: mm) 
Parameter 
symbol Parameter connotation Parameter 

value 
Parameter 
symbol 

Parameter 
connotation 

Parameter 
value 

L1 Boom length 2504 L7 |CB| 1600 
L2 Arm length 1350 L8 |DF| 1550 

L1min 
Minimum length of the 
boom cylinder 1100 L9 |EF| 415.5 

L2min 
Minimum length of the 
arm cylinder 930 L10 |FG| 346 

L3min 
Minimum length of the 
bucket cylinder 1000 L11 |EG| 570 

R1max Maximum reach 5450 L14 |NH| 385 
H1max Maximum digging depth 4300 L15 |GN| 1392 

H3max 
Maximum dumping 
height 3445 L21 |NQ| 199.5 

L5 |CA| 451 L29 |HK| 357 
L6 |CD| 1110 —— —— —— 
 
Table 2. Comparison of the design results of MDCO, SDO, and the original design. 

 
 
4. Discussion 
 
(1)Table 2 shows that the design results of MDCO are 
optimal, followed by those of SDO and the original design. 
In the MDCO design, the maximum arm crowd force 
displayed by the backhoe device was 8.1% and 14.2% higher 
that in the SDO design and in the original design, 
respectively. A similar trend was observed with respect to 
maximum breakout force. In the MDCO design, the quality 
(volume) of the backhoe device was 9.5% lower than that in 
the original design, thus indicating the reduced consumption 
of raw material and economical material manufacturing. 
Thus, the MDCO design can not only improve the 
mechanical performance of the backhoe device, but it also 
reduces raw material cost and enhances the competitiveness 
of the product. 

(2) As shown in Fig. 8, the arm crowd force is much 
stronger than the force of arm digging resistance during arm 
excavation when the MDCO design is applied to the 
backhoe device. Similar results are observed with breakout 

force, as indicated in Fig. 9. Therefore, MDCO increases 
digging efficiency and productivity because digging force is 
enhanced.  

The MDCO design technology is suitable for complex 
systems. It not only organizes complicated systems for 
optimization, but it also optimizes such systems easily. 
 
 
5. Conclusions 
 

(1) The global optimization design of an excavator 
working device is realized by using the MDCO method 
based on the order of “mechanism-load-structure”. This 
method integrates disciplinary optimization with global 
optimization by considering the interactions among 
disciplines. 

(2) In this study, an improved PSO algorithm called 
PS-GA is proposed. This algorithm essentially applies the 
hybrid concept of GA to the PSO algorithm to generate a 
composite intelligent group algorithm. PS-GA can accelerate 

 
Maximum arm 

crowd force 
(Unit: kN) 

Maximum 
breakout force 

(Unit: kN) 

Volume of 
backhoe device 
(Unit: mm**3) 

Maximum stress 
(Unit: MPa) 

Original 
design results [11] 26.8 45.8 1.38 × 10**9 227.2 

SDO design 
 results [11] 28.3 45.2 — 224.5 

MDCO design results 30.6 49.6 1.25 × 10**9 223.1 
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the evolution speed of a particle swarm and enhance solving 
efficiency. 

(3) The mechanisms and structures of the MDCO 
model of the excavator backhoe device are established 
according to MDCO theory. The model is then calculated by 
using PS-GA. 

(4) The values of the MDCO and SDO design variables 
are used as parameters. The MVP and SVP of the excavator 
backhoe device simulate digging under similar conditions in 
ADAMS. The results of excavation simulation suggest that 
in MVP, arm crowd force is 8.1% higher than that in SVP 

under conditions of design power and oil pressure. Similarly, 
the breakout force in MVP was approximately 8.3% higher 
than that in SVP. The quality (volume) of the entire device 
decreased by 9.5%, and the maximum stress in the main 
structure changed little. 
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