

Journal of Engineering Science and Technology Review 7 (1) (2014) 52 – 59

Research Article

A Parallelized Implementation of Turbo Decoding Based on Network on Chip
Multi-core Processor

Chaolong ZHANG1,*, Zhekun HU2 and Jie Chen1

1 Institute of Microelectronics , Chinese Academy of Sciences, Beijing 10029, China
2 The 709th Research Institute of China Shipbuilding Industry Corporation, Wuhan 430009, China

Received 1 May 2013; Accepted 13 March 2014

Abstract

With the evolution of wireless communication systems, it is increasingly difficult for Application Specific Integrated
Circuit (ASIC) solutions to meet the daily changing requirements. A network on chip (NOC) multi-core processor based
on message-passing programming model is designed to implement the LTE-A turbo decoder in a parallel mode using
pure Software Defined Radio (SDR) approach. The NOC is well balanced between the hardware and software design
with a high degree of programmability and re-configurability. According to the features of the NOC multi-core processor,
the implementation of turbo decoder is optimized to reduce the computational complexity and to increase the
parallelization. Several aspects of turbo decoder are investigated in software radio approach rather than hardware.
Compared with the results of the software simulation and the Field Programmable Gate Array (FPGA) demonstration, the
NOC multicore processor is flexible to realize the proposed turbo decoding algorithm. In addition, our solution has
comparable performance with other published ones.

 Keywords: Network on Chip, Turbo Decoding, Low Complexity, Parallel Computation

1. Introduction

Since Berrou published the seminal paper about turbo
coder[1], the properties of turbo code has been studied
thoroughly in academy and industry for over twenty years.
Recently, the research has been focusing on how to reduce
the complexity and latency resulted from MAP decoding
(also known as the BCJR algorithm). In order to relax the
high demanding on memory during decoding, sliding
window algorithm is invented to separate the long data block
into short sub-blocks[2]. By adopting appropriate early
stopping criteria[3], the number of iteration is reduced, so is
the computational complexity.
 However, with the development of communications
systems, the baseband solutions are changed rapidly. Besides
the computational complexity, being programmable and
configurable is also very important for wireless baseband
processing. Because of lack of flexibility, long development
period and high cost of ASIC solutions, Software Defined
Radio (SDR) arises to be a much better choice. Network on
Chip, a new architecture for multi-core processor, is well
balanced between hardware and software degign. Due to
SDR approach, it is easy to map various signal processing
algorithms onto NOC.

In this paper, a NOC multi-core processor is designed.
Being different with[4], by using a message-passing
programming model, the proposed NOC processor has low
complexity in hardware and high flexibility of software

which gives the programmer more freedom to realize the
parallelized turbo decoding algorithm. The software radio
approach makes the system easy to transplant and update. In
addition, a parallel turbo decoder solution based on SDR is
proposed and mapped onto the NOC. Several aspects of the
turbo decoder such as the max* operators used in the log-
MAP algorithm and early stopping criteria are re-
investigated to reduced the computational complexity.
 The other sections of this paper are organized as below:
section 2 describes the turbo decoding algorithm and several
modifications compared with[5]; the hardware architecture
and software communication protocol of the proposed NOC
processor are explained in section 3 and how the proposed
turbo algorithm is mapped on to NOC is also given in this
section; section 4 provides the simulation results coming
from both the software simulation and the NOC on FPGA
board; at last, section 5 contains the conclusion.

2. Turbo Coder and Decoder

2.1 Turbo decoder
In this paper, as a concrete example, the turbo coder used in
3GPP LTE-A is adopted. As illustrated in Fig 1, the LTE-A
turbo encoder is composed of two parallel recursive
systematic convolutional (RSC) encoders with constraint
length 4.

 * E-mail address: zhangchaolong@ime.ac.cn
ISSN: 1791-2377 © 2014 Kavala Institute of Technology. All rights reserved.

Jestr

JOURNAL OF
Engineering Science
and Technology Review

 www.jestr.org

Chaolong ZHANG, Zhekun HU and Jie Chen/Journal of Engineering Science and Technology Review 7 (1) (2014) 52 – 59

 53

Fig. 1. Turbo encoder adopted by 3GPP LTE-A

 In Fig. 1, ku is the information bits, '

ku the interleaved

version of ku , 1kx the system information bit and 1 2,kp kpu u

the parity check coded bits coming from the two RSC coders.
The length of interleaver isK , where 40 6144K≤ ≤ . A
contention-free quadratic polynomial permutation (QPP)
interleavers with block size K is defined as

2
1 2() () modi f x f x KΠ = + (1)

The index can be calculated iteratively.

2.2 Turbo Decoder
The decoding algorithm is based on log-MAP algorithm and
the algorithm is implemented using single-precision
floating-point arithmetic on the NOC. The sliding-window
algorithm described in[2] is improved in order to reduce the
overhead communication between the micro-processors on
the NOC. The architecture of the log-MAP decoder is shown
as Fig 2:

Fig. 2. Architecture of the Proposed turbo decoder

 In Fig 2, D1 and D2 stand for the two soft-input soft-
output decoders. The input to the decoder is supposed to be
in log-likelihood ratio (LLR) format which takes the soft
information about the channel gain and the noise variance
into consideration. The LLR is defined as equation (2):

(1|)(|) ln
(1|)
k

k
k

P uL u
P u

= +
=

= −

yy
y

 (2)

 With the assistance of trellis graph, equation (2) can be
written as:

1 1

0 0

' ' '
1

' '
1

(, ,) () (,) ()
(|) ln ln

(', ,) () (,) ()

k k k
R R

k
k k k

R R

P s s s s s s
L u

P s s s s s s

α γ β

α γ β

−

−

= =
∑ ∑

∑ ∑

y
y

y
 (3)

Where 1 0,R R stand for the paths corresponding input 1 and

0 in the trellis graph from time 1k − to k , respectively.
'(, ,)P s s y represents the joint probability of receiving the

sequence y and being in state 's at time 1k − and in

state s at time k . ,α β are called the forward and
backward variables. Actually, for the memory-less channel
, ,α β γ can be calculated iteratively.

 The main difference between the variant of MAP
algorithm is the so-called “max* ” operator[5] which use

the Jacobi algorithm to calculate ln()x ye e+ , namely:

max*(,) ln()x yx y e e= + (4)

Currently，There are four “max* ” operators used:

1) Log-MAP operator

| |max*(,) max(,) ln(1)x yx y x y e− −= + + (5)

2) Max-MAP operator

max*(,) max(,)x y x y= (6)

3) Constant-log-MAP operator

0 if | | T
max*(,) max(,)

 if | | T
x y

x y x y
C x y

−⎧
= + ⎨

− ≤⎩
 (7)

4) Linear-log-MAP operator

0 if | | t
max*(,) max(,)

(| |) if | | T
x y

x y x y
k x y T x y

−⎧
= + ⎨

− − − ≤⎩
 (8)

 In the fourth max* operator, the linear-log-MAP
operator, it’s shown in Ref. [8] that the optimal values for k
and T are 0.24904k = − and 2.5068T = , respectively.
Different from the linear-log-MAP, first introduced in[8], in
this paper, through quadratic curve fitting, we get a quadratic
polynomial approximation to the max* operator. The
quadratic max* is shown as:

2
2 1 0max*(,) max(,) (| |) (| |)x y x y k x y k x y k= + − + − + (9)

With 95% confidence bounds,

2 [0.05635,0.05714]k ∈ ,

1 [0.3783, 0.3751]k ∈ − − ,

0 [0.6503,0.6531]k ∈ .

 The max* operators are shown in Fig 3.

Chaolong ZHANG, Zhekun HU and Jie Chen/Journal of Engineering Science and Technology Review 7 (1) (2014) 52 – 59

 54

Fig. 3. different max* operators used in log-MAP, linear-log-MAP,
constant-log-MAP and the quadratic-log-MAP.

 As shown in Fig 3, the quadratic-log-MAP fits the log-
MAP most effectively. In section 4, the BER-SNR curves
resulted from different max* operators are also shown that
algorithm using the quadratic-log-MAP operator has the best
performance.
 Another technique used in this paper to reduce the
computational complexity is the early stopping criteria. In
general, as the number of iteration increases, the
performance of the decoder will not be improved linearly
which means too many iterations only bring high complexity
and high latency. To combat this problem, early stopping
criteria is adopted during the decoding process[3]. Basically,
there are two kinds of early stopping criteria: 1) the hard-
decision principle, which compares two output of successive
iteration of SISO decoder. If the outputs are equal, the
iteration is stopped. 2) the soft-decision principle, which
compares the LLR of the SISO with a given threshold. In
this paper, the later principle is adopted, and the impact of
different threshold on the BER performance is simulated and
analyzed in section 4. Of course, a maximum number of
iteration is set in case that the iteration will not stop.

3. Mapping Turbo decoder to NOC processor

In this section, the architecture of the NOC multi-core
processor is described briefly and the parallel turbo decoding
is explained and mapped onto the NOC.

3.1 The Hardware of the NOC Multi-core Processor
Based on the message-passing programming model, within a
4 4× 2D mesh network on chip, the multi-core processor
is designed with 16 small RISC micro-processors[6]. The
architecture of the NOC and each micro-processor is shown
as Fig 4.

Fig. 4. The architecture of NOC and each micro-processor

 In Fig 4, controller1 is the SRAM controller while
controller2 is the router controller, namely the network
interface. The processing unit (PU) on the NOC is a small-
scale 32-bit RISC processor which has 3-level pipeline
architecture. The data and command are accessed through
AHB bus from the private 32 KB SRAM. Inter-processor
communication is conducted via the worm-hole switch
routers and network interfaces using two virtual channels.
In the wormhole switching network, the data packet is
passed from one PU to another in the format of "flit"
containing the routing information and data whose format
will be shown later. The circuit of the worm-hole router with
two virtual channels is shown as Fig 5.

Fig. 5. circuit block graph of the wormhole switch router

The capacity of the virtual channel list is set to 8 during the
routing processing. The adjacent routers utilize the measure
of credit to control the data flow as show in Fig 5. In order to
avoid deadlock during routing process, XY-algorithm is
adopted[6]. The XY-algorithm is not only easy to implement
but also effective to guarantee the order and consistence of
the data packets.

3.2 The Software Protocol of the NOC Multi-core
Processor
The hardware provides the foundation in switching the data
packet while the software tells the hardware what and where
to send. To achieve this goal, inter-processor software
communication protocol is to be made. As mentioned before,
the data is transmitted between the PUs in the format of
"flit" which contains the routing information and data. One
data packet is composed of 16-32 flits. The format of a data
packet is shown as Fig 6(a).

(a)

Chaolong ZHANG, Zhekun HU and Jie Chen/Journal of Engineering Science and Technology Review 7 (1) (2014) 52 – 59

 55

(b)

Fig. 6. the format of it and command field in the data packet

 The first flit of the data packet is composed of five fields:
the first and second fields are the coordinate of the
destination PU to which the packet are sent while the third
and the fourth are the coordinate of the source PU from
which the packet are sent; the last fields is a 16-bit command
whose format is shown as Fig 6(b). The second flit of the
data packet is the starting address (in C programming
language, the pointer of the data) of SRAM to store the data.
The third flit may be either the data part or the address for
the acknowledgement according to the parameter set in the
programming API. The following flits contain the data.
 Basically, the software protocol provides three important
APIs for the programmer to conduct the data transmitting
from one PU to another.

1) void get_curr_pos(int *x, int *y); used to get the

coordinate of the current PU, and stored the result in x
and y.

2) int send_message(long msg[], int length, int dest_x, int
dest_y, unsigned long dest_address,unsigned long
cmd, int vcid, int blocking); used to send messages
between the PU on the chip. msg and length is the
starting address and length of the data to be sent,
respectively. (dest_x,dest_y) is the coordinate of the
destination PU. cmd is the command which will be
executed on the data and can be defined by the
programmer. vcid is used to indict which virtual
channel is to be used to send the data and blocking tell
the destination PU to send back an acknowledgement
message if set to be 1.

3) void barrier(volatile struct sync s* sync_p, unsigned int
proc_mask, int proc_num, int major_x, int major_y);
used to synchronize the data stored in different PUs.
sync_p is the synchronizing struct. proc_mask: a two
bytes value, masks the processors engaged in
synchronisation. proc_num: the number of processors
engaged in synchronization, equal to the number of 1s
in proc_mask. (major_x, major_y): the coordinate of
the processor responsible for the synchronization.

3.2 The Mapping Procedure
The key step of mapping the turbo decoder to the NOC is to
separate the data block y into sub-blocks without
interaction with each other so as to reduce the
intercommunication between the PUs. The received symbols
in y is separated without overlapping by improving

algorithm used in[2][7]. A received y of length L is

divided into K sub-blocks of length /M L K= trellis

stages. However, instead of using overlapping, the forward
and backward variables which were computed in the
previous iteration of the adjacent sub-blocks are utilized to
provide appropriate boundary distributions for each sub-
block MAP decoder. All sub-block MAP decoders perform
the computation simultaneously and hence, the proposed
algorithm (as shown in Fig. 7) reduces the decoding
computation time exactly by a factor of K .

Fig. 7. Parallel turbo decoding

 In Fig. 7, each SISO decoder is implemented on one PU,
and all the SISO can be executed in a parallelized and
pipelined way.
 At first, the received data for each RSC codes are
separated into several continuous non-overlapping sub-
blocks (also known as windows). Each sub-block is decoded
separately using the quadratic-log-MAP method. The initial
values for α and β variables come from previous iteration
of adjacent windows. All the sub-blocks are decoded in the
parallel mode at the same time, during the next iteration the
initial values for all the sub-blocks are ready to be read. As
can be seen, no extra procedure needed for the initialization
of state probabilities at each iteration. The length of the sub-
blocks is an important factor that will be analyzed in section
4.
 The decoding timing diagram of the parallel sub-block
processors (also known as the SISOs) on the NOC is shown
as figure 8(a), and its vector version is shown as 8(b). The
symbols that processed at the same time are written as a
vector. The length of the vector is shown is M . The
elements of each vector coming from different sub-block
processors.

(a)

Chaolong ZHANG, Zhekun HU and Jie Chen/Journal of Engineering Science and Technology Review 7 (1) (2014) 52 – 59

 56

(b)

Fig. 8. The timing diagram of the decoder running on the
NOC multicore processor.(b) is the vector version of (a).

 The proposed structure is inspired by the message-
passing algorithm which can be illustrated by graphs. In this
paper, the graphs are divided into several sub-graphs and
scheduled for parallel decoding. This partition scheme is
useful to parallelize the decoding of on constituent code. The
graph of the turbo decoder and its partitioned version are
shown in Fig. 9.

Fig. 9. The graph of turbo decoder and its partitioned version

 The optimum algorithm is the log-MAP method. Here
we use the quadratic-log-MAP version which is analyzed in
section 2 and will be simulated in section 4. The processing
of the sub-blocks in two constituent codes can be executed
in parallel mode. However, thanks to the QPP interleaver[7]
adopted in LTE-A standard, in parallel turbo code, when the
two RSCs are the same encoder(which is satisfied in this
paper), the SISO blocks for all constituent codes can be
shared. Eventually, the number of processors used to
implement turbo decoding can be only half of the method
shown in Fig. 7. The new architecture of the parallel turbo
decoder is shown as Fig. 10.

Fig. 10. New parallel turbo decoder architecture.

 All the SISOs illustrated in Fig. 7 and Fig. 10 are
mapped onto the NOC as depicted in Fig. 11.

Fig. 11. Map the SISO onto the NOC multi-core processor. Each PU is
executed as a SISO decoder.

4 Simulation Results

4.2 Frequency and area of the NOC
To evaluate the frequency and area of the NOC, The PUs
and the router of the multi-core processor are synthesized
using the low leakage low threshold voltage 65nm library of
Semiconductor Manufacturing International Corporation
(SMIC). The frequency and area of the single PU and the
router are shown as table 1.

Table 1: The Synthesis Results of PU and Router

 PU Router
clock 200MHz 400MHz
combinational
circuit

49204.44µm2 21042.00µm2

sequential circuit 115839.36µm2 50555.88µm2
SRAM 196479.34µm2 ×
total area 361523.14µm2 71597.88µm2
gate equivalent 188293 37291

From table 1, we can see that the area of the router

accounts for about 1/ 5 of the single PU and about 75% of
the router is sequential logic circuit. The router can work at
frequency double times as that of the PU which means when
the bandwidth and latency can not satisfy the applications,
we could separate the clock of the PU and the router to
improve the performance.

4.3 Simulation of Turbo Decoder on the NOC
The NOC processor is verified on an Altera EPS180
evaluation FPGA board and the BER-SNR(Bit Error Rate-
Signal to Noise Ratio) curve(under AWGN channel, the
length of interleaver is 1024) is drawn as Fig. 12. which is
the same as the simulation results coming from Matlab
simulation on PC and shows that the parallel turbo decoding
algorithm can work correctly on the NOC multi-core
processor.

Chaolong ZHANG, Zhekun HU and Jie Chen/Journal of Engineering Science and Technology Review 7 (1) (2014) 52 – 59

 57

Fig. 12. BER-SNR curve(under AWGN channel, with interleaver length
1024)

4.4 Performance of Different Max* Operators
The BER-SNR curves resulted from different max*
operators mentioned in section 2 is drawn in Fig 13 and Fig
14. The data block length is 512 in Fig 10 while in Fig. 14
the data block length is 4096. In Fig. 13 and Fig. 14, the blue
lines are the BER-SNR curves under AWGN channel while
the red lines are the BER-SNR curves under Rayleigh fading
channel.

Fig. 13. the BER-SNR curves with different max* operators under
AWGN channel(the blue curves) and Rayleigh fading channel(the red
ones), with data block length equal to 512.

Fig. 14. the BER-SNR curves with different max* operators under
AWGN channel(the blue curves) and Rayleigh fading channel(the red
ones), with data block length equal to 4096.

For each case, when BER= 510− , the 0/bE N is shown in
Table 2.

Table 2:
0/bE N Required when BER is 510−

 AWGN Rayleigh Fading
 K=512 K=4096 K=512 K=4096

max-log-
MAP

1.51dB 0.82dB 2.85dB 2.09dB

constant-
log-MAP

1.28dB 0.45dB 2.52dB 1.59dB

linear-
log-MAP

1.22dB 0.44dB 2.49dB 1.57dB

quadratic-
log-MAP

1.16dB 0.41dB 2.45dB 1.55dB

log-MAP 1.12dB 0.38dB 2.41dB 1.53dB

From Fig. 13 and Fig. 14, the max-log-MAP has the
worst performance requiring at least 0.39dB higher (K=512,
AWGN) than the log-MAP. Except the max-log-MAP, all
other three algorithms (constant-log-MAP, linear-log-MAP
and the quadratic-log-MAP) are close to the log-MAP. In
particular, The quadratic-log-MAP boasts the narrowest gap
with the log-MAP(only 0.02dB when K=4096, Rayleigh
fading).

If the total number of data block used in the simulation
is increased, the error floor would be reached[15] which is
obvious in Fig. 13 when K=512 under AWGN channel. In
the error floor, the five curves will converge together. Hence,
the algorithm may have a significant impact at low SNR
regime and becomes insignificant at high SNR regime. The
error-floor phenomenon means that in a software radio
implementation, we can choose the algorithm adaptively
according to the SNR to reduce the computational
complexity.

4.5 Early Stopping Criteria
The results from the previous section were generated under
the condition that the decoder stopped the iteration when it
converged, namely all the errors in the data blocks were
corrected. During the simulation, the transmitted data blocks
are known at the receiver. However, the decoder does not
know the data, and thus a criteria is needed to stop the
iteration. In practice, the BER performance will not be
improved endlessly by increasing the number of iteration, so
utilize an early stopping criterion will generate a much
higher throughput in a software radio implementation[8].
 There are many early stopping criteria published[8].
They are proposed based on the cross entropy between
iterations or on the sign-difference ratio. In this paper, a
stopping criteria based on the log-likelihood ratio is
employed. The decoder will stop once the LLRs are greater
than a threshold hΔ ,namely the decoder stops when
Equation (10) is satisfied.

21
min{| |} hk K

k
≤ ≤

Δ > Δ (10)

 Obviously, the stopping threshold hΔ has a significant

influence on the performance. If hΔ is set to be a small
number, the decoder will not operate enough iterations. If,

Chaolong ZHANG, Zhekun HU and Jie Chen/Journal of Engineering Science and Technology Review 7 (1) (2014) 52 – 59

 58

on the contrast, hΔ is large, then the decoder will run in
vain and the throughput will decrease.
 BER-SNR curves with different hΔ are drawn in Fig.

15. As shown in Fig. 15, 1hΔ = and 6hΔ = are too small
and the BER performance suffers under these two
conditions. When 10hΔ = ，the BER-SNR curve is almost
overlapped with that of perfect decoding. Interestingly, the
BER with 10hΔ = is sometimes lower than that of ideal
stopping. Actually, the output bit sequence of a turbo
decoder fluctuates from one iteration to next at times. When
the received symbol sequenced is corrupted by the channel
seriously, it is impossible for the turbo decoder to correct
some bits. However, if the LLR are high, the early-stopping
rule will halt the decoder even the BER is not zero. Hence,
the stopping criteria can sometimes lower the BER.

Fig. 15. BER-SNR curve with quadratic-log-MAP decoding in AWGN

with different threshold hΔ (K=512)

4.6 Throughput and Circuit Complexity
Several turbo decoder implementations based on NOC have
been published. However, because different degree of
flexibility in the computation to be supported always comes
at a relevant cost, both in terms of occupied area and
achievable throughput, comparison between them tends to
be difficult. In Table 3, some multi-core processor based
architectures are reported. To conduct a fair comparison,
area and throughput of different parts in the NOC are given
in table 3. All data have been converted to a 65 nm CMOS
technology.
 To sum up, the main purpose of table 3 are:1) compare
NOC based solutions proposed in this paper with other
architectures used in parallel turbo decoders. From this
point, comparisons are conducted on the area and
throughput. 2) to evaluate the flexibility cost of the NOC
architecture. From this point, direct area comparison makes
no sense. However, we can get the overhead rate associated
with various NOC architectures.

Table 3(part 1): Implementations of Turbo Coder Based on Various
NOC Architecture.(All data has been converted to the 65nm CMOS
technology), Part 1: results about the NOC Processor.
NOC
Architecture

Clock
(MHz)

Area
(mm2)

Throug
hput
(Mbps)

Throughput
to area
ratio

Butterfly[10] 345 1.5 138 92
Benes[6][10] 381 0.96 152 158
Toroidal[10] 200 1.2 162 135
Kautz[10] 200 1.1 164 149
This paper 200 1.13 157 138

Table 3(part 2): Implementations of Turbo Coder Based on Various
NOC Architecture.(All data has been converted to the 65nm CMOS
technology), Part 2: results about the Routers
Router
Architecture

Clock
(MHz)

Area
(mm2)

Throughput
(Mbps)

Throughput
to area ratio

[11] 184 1.5 19.6 13
[12] - 9.8 91 9.2
This paper 400 15 357 13.8

Table 3(part 3): Implementations of Turbo Coder Based on Various
NOC Architecture.(All data has been converted to the 65nm CMOS
technology), Part 3: results about the decoders
Decoder

Architecture
Clock
(MHz)

Area
(mm2)

Throughput
(Mbps)

NOC
overhead

[13] 150 8.4 75 13%
[14] 250 10.7 187 10%
[15] 352 10 352 11%
this paper 200 7 157 8%

 As can be seen from part 1 of table 3, even we use a
SDR approach to implement the turbo encoder, the area and
throughput is also comparable with the ones listed in Table
3. The message-passing programming model exploits the
NOC effectively. Compared with other architecture[10] such
as Butterfly, Benes, Toroidal and Kautz, the hardware and
software proposed in this paper outperforms them in the
aspect of degree of programmability. From part 2 of table 3,
the router architecture designed in this paper has the highest
throughput and throughput to area ratio[11][12]. Part 3 of
table 3 tells us that even the SISO proposed in this paper has
smaller throughput compared with[13][14][15], we also have
smaller overhead.

5 Conclusions

In this paper, a parallel turbo decoding algorithm is
implemented in the pure software radio approach on a NOC
multi-core processor. The NOC multi-core processor is
evaluated correctly using FPGA. As an example, the Turbo
encoder defined in LTE-A is adopted.
 During the parallel implementation, the way how to
separate the data block in to sub-blocks with proper length is
given. The BER-SNR performance of decoder with different
interleaver length is simulated in both serial and parallel
style. It is shown that there is little performance degradation
resulted from the parallel decoding algorithm implemented
on NOC multi-core processor.
 Compared with other implementations, our solution can
finish the turbo decoder with high parallel degree and low
overhead complexity. The BER performance is also
comparable with the published NOC architectures.

Chaolong ZHANG, Zhekun HU and Jie Chen/Journal of Engineering Science and Technology Review 7 (1) (2014) 52 – 59

 59

6 Acknowledgements

This work was financially supported by the National Natural
Science Foundation of China (No. 61201265, No. 61221004
and No. 61376027).

References

1. C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit

error-correcting coding and decoding: Turbo-codes. 1,” presented at
the Technical Program, Conference Record, IEEE International
Conference on Communications, 1993. ICC ’93 Geneva, 1993(2),
pp. 1064–1070

2. H. Lim, Y. Kim, and K. Cheun, “An efficient sliding window
algorithm using adaptive-length guard window for turbo decoders,”
Journal of Communications and Networks, 14(2), 2012, pp. 195–
198

3. P. Reddy, F. Clermidy, A. Baghdadi, and M. Jezequel, “A low
complexity stopping criterion for reducing power consumption in
turbo decoders,” presented at the Design, Automation Test in in
Europe Conference & Exhibition (DATE), 2011 , pp. 1-6

4. C. Condo, M. Martina, and G. Masera, “A Network-on-Chip-based
turbo/LDPC decoder architecture,” presented at the Design,
Automation Test in Europe Conference Exhibition (DATE), 2012,
pp. 1525–1530.

5. M. C. Valenti and J. Sun, “The UMTS turbo code and an efficient
decoder implementation suitable for software defined radios,”
International Journal of Wireless Information Networks, 2001(8),
pp. 203–216

6. HU Zhekun and CHEN Jie, “Design of a Message-passing Multi-
core System,” Journal of Hunan University(Natural Sciences), 40(8)
Aug. 2013, pp. 103-109

7. S. Yoon and Y. Bar-Ness, “A parallel MAP algorithm for low
latency turbo decoding,” IEEE Communications Letters, 6(7),2002,
pp. 288–290

8. A. Taffin, “Generalised stopping criterion for iterative decoders,”
Electronics Letters, 39(13),2003, pp. 993–994

9. M. J. Thul, F. Gilbert, and N. Wehn, “Concurrent interleaving
architectures for high-throughput channel coding,” presented at the
2003 IEEE International Conference on Acoustics, Speech, and
Signal Processing, 2003. Proceedings. (ICASSP ’03), 2003(2), pp.
613–616

10. M. Martina, G. Masera, H. Moussa, and A. Baghdadi, “On chip
interconnects for multiprocessor turbo decoding architectures,”
Microprocessors and Microsystems, 35(2), 2011 pp. 167–181.

11. F. Gilbert, M. J. Thul, and N. Wehn, “Communication centric
architectures for turbo-decoding on embedded multiprocessors,”
presented at the Design, Automation and Test in Europe
Conference and Exhibition, 2003, pp. 356–361.

12. I. Ahmed and C. Vithanage, “Dynamic reconfiguration approach
for high speed turbo decoding using circular rings,” Proceedings of
the 19th ACM Great Lakes symposium on VLSI. ACM, 2009, pp.
475–480.

13. M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150Mbit/s 3GPP
LTE Turbo code decoder,” presented at the Design, Automation
Test in Europe Conference Exhibition (DATE), 2010, pp. 1420–
1425.

14. J.-H. Kim and I.-C. Park, “A unified parallel radix-4 turbo decoder
for mobile WiMAX and 3GPP-LTE,” presented at the IEEE
Custom Integrated Circuits Conference, 2009. CICC ’09, 2009, pp.
487–490.

15. P. Urard, L. Paumier, M. Viollet, E. Lantreibecq, H. Michel, S.
Muroor, B. Coates, and B. Gupta, “A generic 350 Mb/s turbo-codec
based on a 16-states SISO decoder,” presented at the Solid-State
Circuits Conference, 2004. Digest of Technical Papers. ISSCC.
2004 IEEE International, 2004(1), pp. 424–536

