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Abstract 
 
In the present work, a detailed study of a nonlinear electrical oscillator with damping and external excitation is 
presented. The system under study consists of a Duffing-type circuit driven by two sinusoidal voltage sources having 
different frequencies. The dynamical behavior of the proposed system is investigated numerically, by solving the system 
of state equations and simulating its behavior as a circuit using MultiSim. The tools of the theoretical approach are the 
bifurcation diagrams, the Poincaré sections, the phase portraits, and the maximum Lyapunov exponent. The numerical 
investigation showed that the system has rich complex dynamics including phenomena such as quasiperiodicity, 3-tori, 
and chaos. 
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1. Introduction 
  
In the last decades, research activities in systems of 
nonlinear oscillators resulted in a lot of publications on 
phenomena that such systems exhibit [1, 2]. Also, the 
interesting dynamical behavior, which these systems have 
shown, has triggered an investigation in possible 
applications of such systems in various scientific fields, such 
as secure communications [3], cryptography [4], broadband 
communication systems [5] random number generators            
[6, 7], radars [8], robots [9] and in variety of complex 
physical, chemical and biological systems [10].  

Especially, in the case of mechanical systems where the 
nonlinear attachments have small masses in comparison to 
the structures to which they are attached, and the systems are 
non conservative, various dynamical phenomena has been 
investigated [11-13]. A special property of these 
configurations is that the nonlinear substructures can act as 
nonlinear energy sinks (NESs) and absorb, through 
irreversible transient transfer, energy from the linear parts 
[14-16]. 

Such systems can be easily implemented by nonlinear 
electrical circuits [17, 18]. The first who did this was 
Professor Leon Chua in 1983. At that time, there was a deep 
desire to implement nonlinear circuits that allow the 
experimental demonstration of various phenomena, 
especially chaos, in order to refuse the claim that these 
phenomena were only a mathematical invention. This led 
Chua to investigate the possibility of designing an 

autonomous circuit behaving in a chaotic way [19]. So, this 
approach helps us to make experiments testing the 
dynamical behavior of nonlinear oscillators.  

In this work we have used an electronic circuit to 
implement a nonlinear and non-autonomous oscillator with 
damping. Such systems have been studied in previous works 
[20, 21] and have rich dynamics depending on the different 
parameters and especially on  the damping parameter λ. In 
more details, the proposed system is a Duffing-type 
nonlinear oscillator, which is driven by two sinusoidal 
voltage sources with different frequencies. We have made 
the simulations of the electrical circuit with the use of the 
MultiSim platform and we have also solved numerically the 
nonlinear system of differential equations using 
programming languages, such as Mathematica and 
TrueBasic. Furthermore, the estimation of maximum 
Lyapunov exponent and the Poincaré sections help us to 
identify the dynamical behavior of the above system. 
Finally, various types of oscillation such as periodic, 
quasiperiodic, and chaotic have been shown. 

In the case of periodic response, the maximum Lyapunov 
exponent is negative, in the case of quasiperiodic response, 
the maximum Lyapunov exponent equals to zero, while in 
the case of chaotic response, the maximum Lyapunov 
exponent is positive. 

This manuscript is organized as follows. In Section 2, the 
proposed nonlinear system and the electronic circuit, which 
realizes the system, are presented. The dynamical behavior 
of the proposed system and the simulation results are 
presented in Section 3. Finally, the conclusion remarks are 
presented in Section 4. 
 
 
 

Jestr 
 
JOURNAL OF 
Engineering Science and 
Technology Review 
 

 www.jestr.org 
 

______________ 
     *  E-mail address: jmaay@physics.auth.gr 

ISSN: 1791-2377 © 2013 Kavala Institute of Technology. All rights reserved.  

	  



J. O. Maaita, I. M. Kyprianidis, Ch. K. Volos, and E. Meletlidou/ 
Journal of Engineering Science and Technology Review 6 (4) (2013) 74-80 

 75 

2. The Nonlinear System and the Proposed Electric 
Circuit 
 
The nonlinear and non-autonomous system with damping, 
[20, 21], is described by the following set of differential 
equations: 
 

3
11 22

dx y
d

dy y cx Asin(2 f ) Bsin(2 f )
d

⎧ =⎪ τ⎪
⎨
⎪ = −λ − + π τ + π τ⎪ τ⎩

   (1) 

 
where λ is the damping parameter, c is the coefficient of the 
nonlinear term, A, B are the amplitudes of the external 
sinusoidal excitations and f11, f22 their frequencies. We must 
notice here, that although there are no limits in the values of 
the frequencies, interesting dynamical phenomena occur, 
when the ratio of the frequencies 

11f  and 
22f  is irrational.   

The circuit topology that was adopted in the MultiSim 
platform in order to realize the system’s equations (1), is 
presented in Fig.1. 
 

	  
Fig. 1. The proposed circuit emulating the nonlinear system. 
 
 

The proposed circuit consists of two identical operational 
amplifiers U1, U2 (LF411), and two multipliers U3, U4 
(AD734AN). Also, it should be mentioned that the signals x 
and y represent the voltages at the outputs of the operational 
amplifiers U1 and U2, while U3 and U4 realize the cubic term 
cx3. Finally, the DC voltages used for all the ICs were           
V± = ± 15 V. 

In the system’s equations (1), parameters λ, c, A, B, f11 
and f22 are defined as follows: 
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Also, the normalized time (τ) is 1 tτ =
α

, where 1R C
2

α =  

is the time constant of the circuit. The circuit’s elements 
values are: R1 = 10 kΩ and C = 10 nF, while the rest of the 
components (R2, R3, R4, R5, V1, V2, f11 and f22) can be varied, 
in order to have a complete view of the dependence of the 
circuit on the values of the system’s parameters. 
 
 
3. Simulation Results 
 
We have studied the above circuit of Fig.1 using the 
Multisim platform and programming languages such as 
Mathematica and TrueBasic. The parameter c was fixed to 
be c = 0.2, while the amplitudes A, B and the frequencies f11, 
f12 of the voltage sources respectively, can be varied. For the 
damping coefficient λ, we have used λ > 0.05, in order to 
focus to more complex dynamics. 

In the case of the system stimulated by only one voltage 
source, U0sin(2πft), the bifurcation diagrams x vs. U0, are 
shown in Fig.2, for λ = 0.10 and f = 0.07, f = 0.13 
respectively. In the case f11 = f22 = f, the system follows the 
dynamics of the single source, where U0 = A + B. 

 
(a) 

 

 
(b) 

Fig. 2. Bifurcation diagrams of x vs. 0U , for λ 0.10=  and (a) f 0.07= , 
(b) f 0.13= . 
 
3.1. Periodic Behavior 
In the case A = 4 and B = 0, only the first voltage source is 
activated, and the phase portrait of the system is shown in 
Fig.3. In Fig.3(a), the simulated phase portrait is shown, 
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while in Fig.3(b), the phase portrait is shown obtained by 
using the Multisim platform. 
 

 
(a) 

 

 
(b) 

Fig. 3. Periodic phase portraits for λ = 0.10 and f11 = 0.07, f22 = 0.13, in 
the case of A = 4 and B = 0. (a) By using programming language 
(TrueBasic), (b) by using the Multisim platform.  
 
 

In the case A = 0 and B = 4, only the second voltage 
source is activated, and the phase portraits of the system are 
shown in Fig.4. In both the phase portraits of Figs.(3) & (4) 
the system shows a periodic behavior and especially a 
period-1 attractor. 
 

 
(a) 

(Continued) 

 
(b) 

Fig. 4. Periodic phase portraits for λ = 0.10 and f11 = 0.07, f22 = 0.13, in 
the case of A = 0 and B = 4. (a) By using programming language 
(Mathematica), (b) by using the Multisim platform. 
 
 
3.2. Chaotic Behavior 
In the case A = 4 and B = 4, both voltage sources are 
activated, and the phase portraits of the system are shown in 
Fig.5.  
 

 
(a) 

 

 
(b) 

Fig. 5. Chaotic phase portraits for λ = 0.10 and f11 = 0.07, f22 = 0.13, in 
the case of A = 4 and B = 4. (a) By using programming language 
(TrueBasic), (b) by using the Multisim platform. 
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The system’s dynamics is chaotic with a positive 
maximum Lyapunov exponent LEmax equal to 0.0281. The 
Poincaré section of the system is shown in Fig.6 exhibiting 
multi-band chaos. 
 
 

 
Fig. 6. Poincaré section for λ = 0.10 and f11 = 0.07, f22 = 0.13, in the 
case of A = 4 and B = 4. Multiband chaos. 
 
 

In the case A = 7, B = 15, the phase portraits of y vs. x 
are shown in Fig.7, and the Poincaré sections in Fig.8. 
 

 
(a) 

 
(b) 

Fig. 7. Phase portraits for f11 = 0.07, f22 = 0.13, A = 7, B = 15, and            
λ = 0.10: (a) By using the Multisim platform, (b) by using programming 
language (TrueBasic). Chaotic behavior. 
 
 

In Fig.8(a), the surface of section is determined by the 
relation Mod[γ1(t),2π] = 0, while in Fig.8(b) by the relation 

Mod[γ2(t),2π] = 0. The maximum Lyapunov exponent LEm 
is equal to 0.0350. 
 

 
(a) 

 

 
(b) 

Fig. 8. Poincaré sections for f11 = 0.07, f22 = 0.13, A = 7, B = 15, and           
λ = 0.10. Strange attractors. (a) The surface of section is determined by 
the relation Mod[γ1(t),2π] = 0, (b) The surface of section is determined 
by the relation Mod[γ2(t),2π] = 0. 
 
 

As the value of the damping factor λ is increased, the 
complexity of the system, when only one voltage source is 
activated, is decreased, as it is shown in Figs.9 and 10. 
 

 
(a) 

(Continued) 
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(b) 

Fig. 9. Bifurcation diagrams, x vs. U0, when only one voltage source is 
activated: (a) λ = 0.10, f = 0.17 and (b) λ = 0.35, f = 0.17. 
 
 

So, in this case the system shows a periodic behavior. A 
similar behavior is observed, when the frequency of the 
source is increased, for low values of λ, as it is shown in 
Fig.10(b). 
 
 

 
(a) 

 
 

 
(b) 

Fig. 10. For higher values of the damping factor λ, or for higher values 
of the frequency, period-1 oscillations are observed, as the value of the 

amplitude of the voltage source is increased. Bifurcation diagrams of x 
vs. U0, for (a) λ = 0.45, f = 0.17 and (b) λ = 0.10, f = 0.41. 
 
 
3.3 Quasiperiodic Behavior 
For λ = 0.10, c = 0.2, f11 = 0.70 and f22 = 1.835 the system is 
in a period-1 state for all values of amplitude, when only one 
voltage source is activated. When both sources are activated, 
the system’s behavior is changed. In Fig.11, the phase 
portraits are shown for A = -20.2 and B = 82.3. In this case 
high periodicity is observed. The negative sign of A means a 
phase difference of 180o. 
 

 
(a) 

 
(b) 

Fig. 11. Phase portraits of y vs. x, for f11 = 0.70, f22 = 1.835, A = -20.2, 
B = 82.3, λ = 0.10, c = 0.2 (high periodicity): (a) by using Multisim,         
(b) by using programming language (TrueBasic). 

 
For A = 20.2, B = 82.3, f11 = 0.70, f22 = 1.835, c = 0.2 

and λ = 0.10, the phase portraits are shown in Fig.12, while 
the Poincaré section is shown in Fig.13. 
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(a) 

 

 
(b) 

Fig. 12. Phase portraits of y vs. x, for A = 20.2, B = 82.3, f11 = 0.70,          
f22 = 1.835, c = 0.2 and λ = 0.10, (a) by using Multisim, (b) by using 
programming language (TrueBasic). 
 
 

 
Fig. 13. Poincaré section for A = 20.2, B = 82.3, f11 = 0.70, f22 = 1.835, 
c = 0.2 and λ = 0.10, by using Mathematica. A case of quasiperiodicity. 
 
 

The close curve indicates quasiperiodic behavior of one-
torus attractor. If we increase the value of the damping 
factor, i.e. for A = 20.2, B = 82.3, f11 = 0.70, f22 = 1.835,          
c = 0.2 and λ = 0.15, the phase portraits of the system are 
shown in Fig.14, while the Poincaré section is shown in 
Fig.15. The three closed curves indicate quasiperiodic 
behavior, but in this case we have a three-torus attractor. To 
the best of our knowledge, a three-tori attractor has been 
observed only by Manimehan et al. [23] in a modified 
canonical Chua’s circuit. 

 

 
(a) 

 

 
(b) 

Fig. 14. Phase portraits of y vs. x, (a) by using Multisim and (b) by 
using programming language (TrueBasic), for A = 20.2, B = 82.3,              
f11 = 0.70, f22 = 1.835, c = 0.2 and λ = 0.15. 
 
 

 
Fig. 15. Poincaré section for A = 20.2, B = 82.3, f11 = 0.70, f22 = 1.835, 
c = 0.2 and λ = 0.15. A paradigm of 3-tori quasiperiodicity. 
 
 
4. Conclusion 

 
In the present paper, we have studied a Duffing-type circuit 
driven by two sinusoidal voltage sources having different 
frequencies. The state equations of the system were 
simulated by an electronic nonlinear circuit, in order to use 
the Multisim platform, and compare the results of this real 
time platform with the results of the numerical simulation by 
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using programming languages (Mathematica and 
TrueBasic). 

The simulations confirmed the rich dynamics of the 
above nonlinear system. Depending on the system 
parameters, periodic, quasiperiodic and chaotic oscillations 
were observed. Important role in the dynamics of the system 
plays the damping parameter λ, and the frequencies f11 and 
f22 of the external sinusoidal voltage sources. The 

simultaneous excitation of the circuit by two different input 
signals gives rise to unpredictable dynamics and the 
response of the system, i.e. the output signal, can be used as 
a random generator.  

The quasiperiodic behavior and the observation of a       
3-tori attractor is quite a new dynamics for a Duffing-type 
system.
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