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Abstract

Anti-synchronization of chaotic systems deals with the problem of asymptotically synchronizing the sum of states of a
pair of chaotic systems called master and slave systems with the help oflemattached to the slave system. When

two chaotic systems are asiinchronized, then their states are asymptotically equal in magnitude, but opposite in phase.
Anti-synchronization of chaotic systems has applications in many engineering areas sumlreag@amunications,

secure data encryption, cryptosystems, etc. This paper announces a idbvehadtic system and describes its
qualitative properties. Next, this paper deals with the design of active and adaptive controllers for synchronizing the
states of identical novel chaotic systems. Active controllers are used when the system parameters are available for
measurement and the synchronization result is established using Lyapunov stability theory. Adaptive controllers are used
when the system parameteare unknown. In this case, estimates are used in lieu of the unknown system parameters and
adaptive controllers are designed using adaptive control theory and Lyapunov stability theory. Numerical simulations
using MATLAB have been shown to demonstrdte proposed active and adaptive synchronization results for novel
chaotic systems.

Keywords: Chaos, chaotic attractors, asjinchronization, active contradaptive control.

1. Introduction L, =5.0894, which is a large value for a polynomial chaotic

. . ) . ._system. Thus, the novel chaosystem discovered in this
Chaotic systems are typically defined as nonlinear dynamm%Ork shows strong chaotic behaviour.

systems which are sensitive to initial conditions and which | the last few decades. chaos control and

have at least one positive Lyapunov exponent. The firsty,op onization have been applied to several branches of
experimentally verified chaotic system was daid.orenz [1] science and engiering such as lasers [21, 22]ectronic

in 1963, while he was modelling weather patterns withla 3 devices [23, 24], chemical retions [25, 26], ecology [27

nonllinek?r mr:)del.l_ o _ + 5 28, secure communications [29, 30], robotics [31, 32]
n the chaos literature, there are many paradigmsf 3 4,0 casting [33, 34], cryptosystems [35, 36], neural networks

chaotic systems such as RSssler system [2], Rabinovic@7 38], finance [39, 40], eténti-s ot
L ; , , , , -synchronization has been
system [3], Arneod&oullet system [4], Shimiziorioka applied to several areas like neural netwofkd, 42],

system [5], ColpittOs oscillator [6], Shaw system [7], Chu@o lin 431 lattices [44] oscillators [45 attern
circuit [8], Ruckildge system [9], Sprott systems [10], Chenregc?glni?ion[ [423’] etc.l [44), ! (431, p
system [11], L¥Chen system [12], Cheree system [13], Anti-synchronization of chaotic systems deals with a pair
Tigan system [14], Cai system [15], Li system [16], Wang¢ chaotic systems connected in series, callethasterand
system [17], Harlsystem [18], Sundarapandian system [19].5|5esystems, and the problem can be descrézefinding a

Glssingk:e_r system [r2]0], etkc. . feedback control law using the states of master and slave
In this research work, we describe a novée®n 3D pagtic systems so that the sum of their respective states

chaotic system having three quadratic nonlinearities. WQa a5 1o zero asymptotically with time. In other words,
describe the properties of the novel chaotic system. We a'?ﬁhen antisynchronization occurs asymptotically, the

derive the Lypunov exponents and Kapidorke dimension  oqpactive stas of the master and slave systems will be

of the novel chaotic system. The maximal Lyapunovequa| in magnitude and opposite in phase.

exponent (MLE) for the novel chaotic system is found as Various design techniques have been proposed for the
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antisynchronization of chaotic systems such as active contre
[47-50], adaptive control [553], sliding mode contto
[54-55], etc.

Active control method is used for astynchronizing
identical novel chaotic systems, when the system paramete
are available for measurement. When the system paramete
are not known, adaptive control method is used for-anti
synchronizing novel chaotic systems and feedback contrc
laws are devised using estimates of the unknown syste
parameters and parameter update laws are derived usi
Lyapunov stability theory [56].

This research work is organized as follows. Section :
descibes the 8&erm novel chaotic system with three
guadratic nonlinearities. The phase portraits of the nove
chaotic system are depicted in this section. Section
describes a detailed qualitative analysis and properties of tt
novel chaotic system. Semti 4 describes the active

controller design for the amsiynchronization design of the Fig: 1.Strangesitractor of thenovel chaoticsystem

identical novel chaotic systems with known system
parameters. Section 5 describes the adaptive controller desinn
for the antisynchronization of the identical novel cliao

60

systems with unknown system parameters. Section
concludes this research work with a summary of the mai

40

results.

20

2. ANovel Chaotic System

In this section, we describe a novete8Bm chaotic system
having three quadratic nonlinearities. 200
The novelystem is defined by thel3 dynamics

H=a(r,! x)+rn,

/

x////

X, = bx x| XX ) D

=1 2
A=V g+ o]

Fig. 2. A 2-D projection of thenovel system in the(x, %) ! plane

where x;, %, ¥ are states and,b, ¢ d are constant, positive,
parameters of the system (1).
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We note that the system (1) has 8 terms orRtheS. and 160
a quadratic nonlinearity in each of the equations describin C&‘( 5 .
the system. o — =
The system (1) exhibits a strange chaotic attractor for th o =
parameter values -
[Samm—
100} - ? 4

a=215, b= 20.6,c= 11,d= 6 2
5 80
For numerical simulations, we have used classical fourth
order RungeKutta method (MATLAB) for solving the
system (1) when the initial conditions are chosen as 40
x(0)=0.5, x, (0 2.1Lx3 (03 1. x

)

0
-60

Fig. 1 depicts the strange attractor of the novel chaoti
system (1) in @D view, while Figs. 2, 3 and 4 depict theéd2

projection of the system (1) ir(Xl, Xz)! (3,,%;) and (%5,%,) Fig. 3.A 2-D projection of thenovel system in the(xy, x3)! plane

plane, respectively.
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. ‘ ‘ Thus, it follows that
60 ///\ q
% " f=# 1< 0 9)
-l /U\N By substituting the value df* f in Eq. (5), we get
M S =1 v axay dz 1 v (10)
U1 o0)
ol Solving the linear differential equati (10), we get the
solution
X, V(t) =V(0)exp(! ut) (11)

Fig. 4. A 2-D projection of thenovel system in the(xz,x1)! plane

From Eqg. (11), it follows that any volum¥(t) must
shrink to zero exponentially as!" . Thus, the novel
chaotic system (1) is a dissipativeactic system, when the
parameters are chosen as in (2). Hence, the asymptotic
motion of the novel system settles onto a strange attractor.

3. Analysis of the Novel Chaotic System withThree
Quadratic Nonlinearities

A. Dissipativity
In vector notation, the novel chaotic system (1) can b

expressed as % Equilibrium Points

We obtain the equilibrium points of the novel chaotic system
by solving the nonlinear systermfiequations

|
IO _
X= 1) =% 1,00 & @ (=0 12)
# 13(%) 5?/‘ We take the parameter values as in the chaotic e@se,
The divergence of the vector fidldn R3is given by a=21.5 b=206,c= 11d= 6 (13)
. X . Then the equilibrium points of the novel chaotic system
| | |
"# f=div(f)= i) W) [f ) (4)  are obtained numerically using MATLAB as

!Xl ! Xy ! X3

Ey:(0,0,0)
We know that!" f measures the rate at which the E,:(12.8048, 5.8427, 25.619

volumes change under the flow; of f.

(14)

Using the first method of Lyapunov, it is easy to seeEha
a saddle point an#; is a saddle focus point. Hence, all the
equilibrium points of the novel chaotic system are unstable.

Let D be any given region iR with a smooth boundgr
Let D(t)=! ;(D). Also, let V(t)denots the volume of

D(t).
By LiouvilleOs theorem, we have C. Lyapunov Exponents
We take the initial tate as
dv(®) _

H(" ) dxdy dz ®)  %(0)=05, %, (0F 2.1,% (OF 1. (15)
D(t)

We take the parameters as given in (13). Then the
Using the equation (1) of the novel system (A), we find that Lyapunov exponents of the novel chaotic system (1) are
obtained numerically using MATLAB as

" My Ny g
e g 1~ Hard$9 <0 ©) L =50894,L,= 0,L,=1 21.94 (16)
if the positive constant, ¢ andd satisfy the condition that This shows mathematically thdtet novel system (A) is
indeed chaotic. Note that the maximal Lyapunov exponent
a+td>c ) (MLE) of the novel system isL; =5.0894which a large

value for a polynomial chaotic system iBhus, the novel
We note that for the system parameters defined in Eq. (2), thgstem depicts strong chaotic behaviour.

condition (7) is met. The dynanics of the Lyapunov exponents of the novel
To amplify the notation, we let system is shown in Fig. 5.
u=a+d!c ®)
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The error dynamics is calculated as

5 ek &=ale! @)t Yyt XX+
& =bg+ce,! yy,! X+, (21)
0
8,=1 dey+ 242 i
S.{ 5
u Next, we introducehte active controller defined by
2 Lo}
=3
g w='a(e! & wpY% ¥x ke
= _5)
u,='bg! c& Y¥ xk ke (22)
2 L, =-21.9465 u=de! W ¥ ke
7250 160 260 300 460 500 680 760 860 960 1000 Where k] k2 Ig are pos|t|ve galns

Time (sec)

By subsituting the control law (22) into (21), we get the

Fig. 5.D i f the L nents of th@ovel system .
19. 5 Dynamics of the Lyapunosxponents ¥ closedloop error dynamics as

D. Kaplan-Yorke Dimension d’l =-ke§
The KaplarYorke dimension of the system (A) is é =-ke, (23)
) e, =—fke
i 3 3%3
Dy, = j+— 2Li=2+L1+L2=2.231S @)
ILialé ILs |

Next, we prove the main result of this section.

Eq. (I7) shows that the novel chaotic system (1) is
dissipative system and the Kapl#inrke dimension of the
system is fractional.

a‘l’heorem 1 The active nonlinear controller defined by (22)
achieves global and exporieh antisynchronization of the
identical novel chaotic systems described by the equations
(18) and (19), wherd;, (i =1,2,3) are positive constants.

4. Active Controller Design for the Anti-Synchronization
of Novel Chaotic Systems Proof. The proof is an application of the Lyapunov stability
theory [56].

In this section, we derive new results foe tactive controller We consider th Lyapunov function/ defined by

for the antisynchronization of the identical novel chaotic

systems introduced in this paper. The main result of this

section is established using Lyapunov stability theory [56]. V' = —(
As the master (or drive) system, we consider the novel

chaotic system given by

e + e% + 6‘32), (24)

which is quadratic and positive definite @&,
X =a(x! x)+xx Differentiating V along the trajectories of the closkebp
1 27 T2 error dynamics (23), we get

X, =bx +ox, ! XX, (18)
=t diyrig V--k¢-ké- k& (25)
where x;,X,,X,are the states and,b,c,d are known system yhich is a quadratic and negative definite function/eh
parameters. Hence, by Lyapunov stability theory [56], the anti

As the slave (or response) system, we consider théynchronization errors globally and exponentially converge
controlled novel chaotic systemven by to zero wih time.
h=aly,! v+ y,y,+uy This completes the prooh

_ For numerical simulations, the classical fourth order
Y=bytay,! vyt (19) i i '8

) RungeKutta method with step sizé=10 ®has been used

VaElasty+u, with MATLAB to solve the novel chaotic systems (18) and

(19) when the active controllerZRis applied.
where vy,,y,,y, are the states andy,u,,u, are active We take the positive gainlgas k; =5, (i =1,2,3)
controllers to be designed. The values of the system parameters for the novel chaotic
The antisynchronization error between the chaoticsystems (18) and (19) are taken as in the chaotic\dase,
systems (18) and (19) is defined as
a=21.5, b= 20.6,c= 11,d= 6.

a=y+x
&=y +% (20) The intial state of the master system (18) is taken as
&=%B+X %(0)=5.4, % (0! 1.8,% (& 7.
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The initial state of the slave system (19) is taken as

y%(0)=1.2,y, (0! 9.7,y5 (& 3.

controlled novel chaotic system given by

ylza(yzl y]_)+ y2y3+u1

Vo=bytay,! yystu (27)
Fig. 6 depictshe antisynchronization of the identical novel 2 ! 22 1732
chaotic systems describewy the equations (18) and (19), Yz='dys+ )y +u;
while Fig. 7 depicts the time history of the anti

synchronization errorg (1), &(1), &( ). where vy, y,, y,are the states andi,u,,u, are adaptive

controllers to be designed.
We define the amsynchronization error between the
systems (26) and (27) as

6=WntXx
&=Y%tX%
&B=YtX

(28)

The error dynamicis calculated as

é=ale,! @)t y, Y3t XX+
é,=be+ce! vyl XX+,

=1 ey e

(29)

Time (sec)

Fig. 6. Anti-synchronization of thédenticalnovel chaoticsystems Next, we introduce thadaptive controller defined by

w®="AN(e! & wk% Hx% ke
s - 1 uLM=!BHe! Ade y¥ xk ke
. —2 us() =D(es! ! & kg

5\ ) where A(t), B(t), C(}, D(t) are estimates of the unknown
system parametera, b, c, d respectively, andk, ks, k;are

positive gains.
By substituting the control law (30) into (29), we get the
closedloop error dynamics as

é=(al Al)e! )! ke
é,=(b! B(t))g+(c! C()e,! ke,
& =!(d! D(t))e! ke,

(31)

(30)

i i i | . i i
0.5 1 15 2 25 3 35 4
Time (sec)

Fig. 7. Time history of theanti-synchronizatiorerrors e (1), (1, &( ) .

We define the errors in estimating parameters of the novel

system as

5. Adaptive Controller Design for the Anti

Synchronization of Novel Chaotic Systems
e(h=al A9

In this section, we derive new results for the adaptiveeo(t):b! B9

controller for the antynchronization of the identical novel . _ | (32)
chaotic systms with unknown parameters. The adaptive &(=ct 9
controller design is carried out using estimates of theg(t)=d! D(1)
unknown parameters and Lyapunov stability theory [56].
As the master (or drive) system, we consider the novabifferentiating (32) with respect towe obtain
chaotic system given by
é (t)=1 A(t

X =a(x! x)+xx a0 ©

1 20 )TN é,()=! B(t) 33)
X, = bxl+cx22! XX, (26) éc(t) =1 d(t)

k=1 dg+ X &, ()= [b(t)

where x,x,, x,are the states andy,b,c,d are unknown

system parameters.
As the slave (or response) system, we consider the

The error dynamics (31) can be simplified by using (32) as
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=e (e! e)!
drale! @) ke For numerical simulations, the classical fourth order
éz =ge+ee,! k262 (34) ) ) '8
_ RungeKutta method with step sizé=10 ®has been used
&=lee! ke with MATLAB to solve the chaotic systems (26) and (27)
when the adaptive controller (30) and the parametertepda
Next, we derive an update law for the parametemedtis  law (37) are applied.
using Lyapunov stability theoryWe take a candidate We take the positive gainigas k =5,(i=1! ,7)
Lyapunov function defined by The values of the system parameters for the systems (26)

1 and (27) are taken as in the chaotic caize,
V== , 35
2(q2+§+§+§+§+§+§ (35) a=21.5 b= 20.6,c= 11,d= 6.

which is a quadratic and positigefinite function onR” . The initial state of the master system (26) is taken as
Next, we calculate the timderivative ofV along the
trajectories of (33) and (34)Ve obtain x%(0)=5.3, % (OF 4.1, (OF! 3.
V=1 klef! k2e22! k3e32+ea;el(ezg e)! A% eb;;elez! ng The initial state of the slave system (27) is taken as
(36)
" $ " $
e85! Cipesd el Dy, W0)=6.1,y, (0! 87,33 (@ 1

To guarantee global exponential stability of the systems (33)he initial values of the parameter estimates are taken as
and (34), we need to choose parameter updates carefully so
that ! is a quadratic, negagvdefinite function onR”. A(0)=3.6,B(0)= 5.9,C (0OF 22D (6 10

Thus, we choose the parameter update law as follows: _ _ ) o ) )
Fig. 8 depicts the arntisynchronization of the identical

- | novel chaotic systems describbg the equations (26) and
A 46! e)tke, (27), while Fig. 9 depicts the time history of the anti
é:elez+k5eb 37) synchronization errorsg (t), &( 19, g( ).Also, Fig.10 depicts
¢ :ezz+keec the time  history of the parameter estimates

A(t), B(t), C(1), D(t) and Fig 11 depicts the time history of

—1 g2
b= & *haca the parameter estimation erraeg(t), g,(9, &(), g( ).

where k,, ks, ks, krare positive constants.

Next, we prove the main result of this section.

Theorem 2. The adaptive controller defined by (33) and the
parameter update law defined by (37) achieve global an
exponential antsynchronization of the identical novel
chaotic systems unknown parameters described by tt
equations (26) and (27), wherk,(i=1! ,7)are positive

constants. The parameter estimation errors 20 ‘ ‘ ‘ ‘ ‘
e,(1),6,(9, &(), g( Jexponentially converge to zero with ool -
time. M N I 1

. i i i .
0 0.5 1 1.5 2 25 3
Time (sec)

Proof. The assertions are established using Lyapuno
stability theory [56].

We have already noted that the Lyapv functionV Fig. 8. Anti-synchronization of th@ovel chaoticsystems

defined by (35) is quadratic and positive definite R, " ‘ ‘ ! ‘ —o,
Next, we substitute the parameter update law defined by 10 —
(87) into the dynamics (36). Thus, the dynamics (36) is . =%
simplified as
V=1 ke?! ked! ke?! kel! ke?! ke’! kes  (38) &
which is a quadratic and negative definite functionrRh °l
Hence, by Lyapunov stability theory [56], the anti 2 ~
synchronization and parameter estimation errors globally and 4
exponentially converge to zero with time. . ‘ ‘ ‘ ‘

This completeshe proof.m

Time (sec)

Fig. 9. Time history of theanti-synchroniationerrors e;(t), & (1, e( 9 -
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30

— A® 6. Conclusion

— B()

—co

® () In this research work, we haderived a novel -8limensional

as 218 8-term polynomial chaotic system with three quadratic

b=206 nonlinearities. First, we provided a detailed qualitative
analysis of the novel chaotic system and described its

g
S
g*s’ ‘ ] properties. Next, we calculated the Lyapunov exponents and
g

c=11 KaplanYorke dimension of the novel chaotic system. We
1 ] found that the maximal Lyapunov exponent (MLE) for the
novel chaotic system ig; =5.0894which is a large value

for a polynomial chaotic systenNext, using the Lyapunov
stability theory, we have derived active and adaptive
0 0s 1 E 2 25 3 controllers for the identical novel chaotic systems having
Time (sec) known and unknown system parameters, respectively.
Fig. 10.Time history of theparameteestimates A(t), B(t), C(t), (1. MATLAB plots were shown to illustrate the active and
adaptive controller designs for the asynchronizéon of
identical novel chaotic systems.

20

— e
— g
— e

Bl -

oo o ®

[ 0.5 1 1.5 2 25 3
Time (sec)

Fig. 11. Time history of the parameter estimation errors
ea(). & (0. &), &
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