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Abstract 
 
This work deals with the study of a variety of synchronization phenomena in the case of resistively coupled non-
autonomous, nonlinear circuits. In this paper, a very simple but very representative second order, non-autonomous, 
nonlinear circuit, is used, the Lacy circuit. Also, two different approaches of coupling between such circuits are applied. 
The first one is the well-known mutual coupling via a linear resistor, in which the phenomena of complete and anti-phase 
synchronization are observed and explained based on the nature of this kind of nonlinear systems. The second one is a 
ring connection in a neural-type system, where the Lacy acts as the master circuit. In this case a very interesting type of 
partial synchronization, between the other two circuits of this topology, is presented for the first time. 

 
 Keywords:  Nonlinear system, Lacy circuit, chaos, mutual coupling, ring connection, anti-phase synchronization, complete chaotic   
                         synchronization, partial synchronization. 
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1. Introduction 
 
In the last thirty years the interaction between coupled 
chaotic systems became a topic of great interest due to the 
applications not only in a variety of complex physical, 
chemical and biological systems [1-2] but also in many 
interesting commercial activities such as secure 
communications and cryptography [3-4]. Nevertheless, the 
cornerstone of this research topic was the introduction of the 
synchronization’s theory in 1980’s and early 1990’s [5-7]. 

Since then, various types of synchronization, depending 
of the coupling scheme and the nature of the interacting 
systems have been reported. Phase synchronization, Lag 
synchronization, Generalized synchronization, Projective 
synchronization, Anticipating synchronization, Inverse lag 
synchronization and Inverse π-lag synchronization [8-15] are 
some of the most interesting types of synchronization, which 
have been investigated thoroughly until now.   

However, the most interesting and the most studied case 
of synchronization is the Complete or Full synchronization 
[5, 6, 16, 17]. In this case the interaction between two 
coupled identical nonlinear circuits leads to a perfect 
coincidence of their chaotic trajectories, i.e.  
 
x1(t) = x2(t),   as   t → ∞.      (1) 

 
Also, in 1998, Cao and Lai observed an interesting type 

of synchronization between mutually coupled identical 
autonomous nonlinear systems [18]. In this new type of 
synchronization, which is called Anti-phase synchronization, 
each one of the uncoupled systems produces chaotic 
attractors. Also, the equations governing the coupled 
systems must be symmetrical with respect to the origin, i.e. 
they are invariant under the transformation: 
 
S: (x, y, z) → (–x, –y, –z)      (2) 
 

Furthermore, this synchronization phenomenon is 
observed when the coupled system is in a phase locked 
(periodic) state, depending on the coupling factor and it can 
be characterized by a π-phase delay. So, the periodic signals 
(x1 and x2) of each coupled circuits have a time lag τ, which 
is equal to T/2, where T is the period of the signals x1 and x2. 
 
x1(t) =  x2(t + τ),        τ = Τ/2      (3) 
 

The anti-phase synchronization was also observed by 
Volos et al. in the case of two mutually coupled identical 
non-autonomous Duffing-type systems [14],  which as it is 
known, have symmetry, because the transformation: 
 
S: (x, y, t) → (–x, –y, t + T/2)     (4) 
 
leaves Duffing’s system equations invariant.  
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In the present paper, the study of various synchronization 
phenomena between resistively coupled non-autonomous, 
nonlinear circuits is presented. For this reason, the well-
known Lacy circuit, which belongs to the family of non-
autonomous circuits that obey the symmetry (4), is used. So, 
in the case of two mutually coupled Lacy circuits, except of 
the complete chaotic synchronization, the existence of anti-
phase synchronization is also confirmed from the simulation 
results.  

However, the most interesting phenomenon and a totally 
new case of synchronization in a ring connection between 
the resistively coupled Lacy circuit with two other 
autonomous nonlinear circuits of this family, is observed. 
This new case of synchronization, which is a specific type of 
partial synchronization, is due to the topology of the neural-
type system, which is adopted. 

This paper is organized as follows. In Section 2, the 
nonlinear circuit, the Lacy circuit, which is used in this 
work, is presented in details. Section 3 describes the mutual 
coupling scheme of two identical Lacy circuits, while the 
simulation results confirm the observation of the anti-phase 
synchronization phenomenon. In Section 4, a neural-type 
system in ring connection, based on the Lacy circuit, is 
described. Also, the study of this new type of partial 
synchronization between the circuits of this system is 
presented in the same Section. Finally, Section 5 includes 
the conclusions of this work. 
 
 
2. The Lacy Circuit 
 
In this work the Lacy circuit (Fig.1), which is a second order 
nonlinear, non-autonomous circuit, is used [19]. The state 
equations of the Lacy circuit in normalized form are given 
by: 
 

( ) N

d = ( )
d

d = γ + V sin   
d

⎧ −⎪
⎪
⎨
⎪ − ⋅ + ⋅ Ω⎪⎩

x y f x
τ

y x y
τ

τ

     (5) 

 

 
Fig. 1. The schematic realization of the Lacy circuit. 
 
 
where, f(x) is the nonlinear element (NR) of this circuit, 
which is a piecewise linear resistor that has a v−i 
characteristic of N-type (Fig. 2). In this figure P−, O and P+ 
are the equilibrium points of the circuit. P− and P+ are stable, 
while O is unstable. The slope of the load line is equal to –
1/R.  This nonlinear element is described by the following 
equation. 
 

( ) { }b a b( )  m 0.5 m m 1 | 1 |= ⋅ + ⋅ − ⋅ + − −f x x x x    (6) 

 

The device implementing such a characteristic is shown in 
Fig.3. 

In this paper, in contrary to other similar works, an 
inductorless implementation of the Lacy circuit is used. The 
principle to which such implementation is based, is to 
substitute the inductor with an equivalent circuit based on 
operational amplifiers [20]. The realization of this circuit is 
shown in Fig.4, where it implements an equivalent inductor 
with the following value: 
 

L1 L3 L4 L

L2

R R R C
L

R
=       (7) 

 

 
Fig. 2. The v−i characteristic of the nonlinear resistor of the circuit of 
Fig.1. 

 

 
Fig. 3. Electronic device for the implementation of the v−i characteristic 
of Eq.(6). 
 
 

In system’s equations (5) and (6), x1 = vC1/Bp,                        
x2 = vC2/Bp, y1 = RiL1/Bp, y2 = RiL2/Bp, τ = t/RC, Ω = ωRC,          
γ = R2C/L, VN = γV0/Bp, Ga = –1/R3, Gb = 1/R1, ma = RGa, 
and mb = RGb, are the normalized variables and the system’s 
parameters. Also, the parameter’s values of the circuit, 
which are used in this work, are: R = 0.7 kΩ, C = 62.9 nF, 
Ga = −2.2 mS, Gb = 1.0 mS, Bp = 1.878 V, R1 = R3 = 1 kΩ, 
R2 = 2.2 kΩ and L = 32.9 mH, (where, RL1 = RL2 = RL3 =         
1 kΩ, RL4 = 32.9 kΩ, CL = 1 nF). The two back-to-back 
zener diodes in Fig.3 have Ez = 6 V, while the op-amp is of 
type LF411 with Esat = ±9 V. Furthermore, V0 is the 
amplitude of the sinusoidal voltage source, and f = ω/2π, its 
frequency. 
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3. The Mutual Coupling Scheme 
 
Since nonlinear systems and especially chaotic systems 
exhibit high sensitivity on initial conditions and thus, if they 
are identical and, possibly, starting from almost the same 
initial points, following trajectories which rapidly become 
uncorrelated, appropriate techniques should be set up to 
obtain synchronization. Such techniques to couple two or 
more chaotic systems can be mainly divided into two 
classes: drive−response or unidirectional coupling and 
bidirectional or mutual coupling [21]. In the first case, one 
system drives another one called the  response  or  slave 
system,  while  on the contrary, in mutual coupling both the 
circuits are connected and each circuit influences the 
dynamics of the other. So, the mutually coupled systems 
show always more complex dynamic behavior. The case of 
bidirectional coupling between two coupled chaotic 
oscillators is described by the following set of differential 
equations: 
 

!x1 = F (x1) +C ⋅ x2 − x1( )
!x2 =G (x2 ) +C ⋅ x1 − x2( )

#
$
%

&%

     (9)    (8) 

 
while in the case of unidirectional coupling the system of 
differential equation is written as: 
 

!x1 = F (x1)

!x2 = F (x2 ) +C ⋅ x1 − x2( )
#
$
%

&%

                 (10) 

 
where F(x) are vector fields in the phase space of dimension 

n, i.e. x ∈ !n , and C is a symmetric matrix of constants 
which describes the nature and strength of the coupling 
between the oscillators. 
 

 
Fig. 4. Equivalent circuit of an inductor based on operational amplifiers. 
 
 
3.1. System’s Description 
In this work the mutual or bidirectional coupling, between 
two identical Lacy circuits, is achieved via a linear resistor 
RC connected between the nodes A of each circuit (Fig.5). 
The dimensionless system of differential equations that 
describes the coupled system’s dynamics is: 
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τ
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τ

x
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τ

y
x y

τ

τ

τ

  (11) 

The first two equations of system (10) describe the first 
of the two coupled identical Lacy circuits while the other 
two describe the second one. Also, the parameter ξ = R/RC is 
the coupling coefficient and it is present in the equations of 
both circuits, since the coupling between them is mutual. 
 

 
Fig. 5. Two bidirectionally or mutually coupled Lacy circuits via a 
linear resistor. 
 
3.2. Simulation Results 
In this Section, the dynamic behavior of two mutually 
coupled Lacy circuits is investigated numerically by 
employing a fourth order Runge-Kutta algorithm. So, by 
solving the coupled system’s equations (11) the bifurcation 
diagram of the signal’s difference (x2 – x1) versus the 
coupling factor ξ is produced. In details, this diagram is 
produced by increasing the coupling factor ξ, from ξ = 0 
(uncoupled system) to ξ = 0.2 with step Δξ = 0.0004, while 
initial conditions in each iteration have different values. This 
occurs because the last values of the state variables in the 
previous iteration become the initial values for the next 
iteration. This type of bifurcation diagram is more close to 
the experimental observation of the system’s dynamic 
behavior as the coupling factor ξ is increased by using a 
variable resistor for RC.  

So, the bifurcation diagram of Fig.6 is produced by using 
the previous mentioned circuit’s parameters, for f = 7 kHz 
and V0 = 5.5 V, while the system’s initial conditions are: 
(x10, y10, x20, y20) = (0.5, 0.1, –0.4, –0.2). 
 

 
Fig. 6. Bifurcation diagrams of (x2 – x1) versus ξ, for f = 7 kHz and           
V0 = 5.5 V.  
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This bifurcation diagram shows that the coupled system 
undergoes from full desynchronization, for               ξ < 
0.046, where each  circuit  is  in a chaotic state and lays on 
its own manifold (Fig.7), to complete chaotic 
synchronization (Fig.8), for ξ ≥ 0.125, where their manifolds 
coincide, through an intermediate region where the system 
shows a more complex dynamic behavior. This is a typical 
transition from full desynchronization to complete 
synchronization.  

The intermediate region of the bifurcation diagram of 
Fig.6 is more complicated and it can be divided in four 
discrete regions: 
• Region I: 0.046 < ξ ≤ 0.053 (Period-3 steady state). 
• Region II: 0.053 < ξ ≤ 0.067 (Chaotic 

desynchronization). 
• Region III: 0.067 < ξ ≤ 0.100 (Period-2 steady state).   
• Region IV: 0.100 < ξ ≤ 0.125 (Chaotic 

desynchronization). 
 

 
Fig. 7. Simulation phase portrait of y1 vs. x1 for ξ = 0.02 (chaotic 
double-scroll attractor). 
 

 
Fig. 8. Simulation phase portrait of x2 vs. x1 for ξ = 0.15 (chaotic 
synchronization state). 
 
 

However, in this work we have focused on Region III of 
the intermediate region, where the coupled system shows the 
phenomenon of anti−phase synchronization. 

In this region the system has periodic behavior and 
specifically shows a period-2 steady state. This occurs 
because each one of the coupled circuits remains in the same 
periodic state. Figures 9(a) and 9(b) show the simulation 

phase portraits of x2 versus x1 and y1,2 versus x1,2, for                 
ξ = 0.08, respectively. In the first of these figures the 
periodic behavior (period−2) of the coupled system is 
observed, while in the second one the coincidence of 
circuits’ attractors in the phase plain is presented. 

Furthermore, in Fig.10, the time−series of the state 
variables x1 and x2 of the coupled circuits are shown. It is 
obvious that the two signals x1 and x2 are identical with a 
time lag. 

 

 
Fig. 9. Simulation phase portrait of (a) x2 vs. x1 and (b) y1,2 vs. x1,2, for      
ξ = 0.08 (anti-phase synchronization). 
 
 

To quantify this time lag we have used the well-known 
Similarity function S [9], defined with respect to the state 
variables x1 and x2. 
 

[ ]

( ) ( )

2
2 1

1 22 2
1 2

( ) ( )
( )

( ) ( )

+ −
=

⋅⎡ ⎤
⎣ ⎦

x t x t
S

x t x t

τ
τ   (12) 

 

 
Fig. 10. Time-series of x1 and x2, for ξ = 0.08. 
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Let Smin be the minimum value of the Similarity function 
S(τ) and let τmin be the amount of time lag, when Smin is 
achieved. The time lag τmin between the variables x1 and x2 is 
found, when the conditions Smin = 0 and τmin ≠ 0 are fulfilled. 
The calculation of the similarity function for ξ = 0.08 
(Fig.11) shows that the expected time lag τmin = 0.1429 ms, 
is equal to T/2, where T is the period of x1 and x2. 
 

 
Fig. 11. The similarity function (S) versus time (t), for ξ = 0.08. Smin = 0 
means lag with time shift of τmin = 0.1429 ms = T/2. So, the 
phenomenon of anti−phase synchronization is confirmed. 
 
 

Furthermore, the same time lag is found for every value 
of coupling factor (ξ) in the Region III. So, the value of time 
lag remains always the same in this region and equals to the 
half of the period of the external voltage source.  

Moreover the fact that the difference of                         
[x1(t) – x2(t + T/2)] is equal to zero (Fig.12), confirms that 
the coupled system demonstrates π phase delay, which is 
defined as anti−phase synchronization or π−lag 
synchronization. 
 

 
Fig. 12. Time-series of x1(t) – x2(t + T/2), for ξ = 0.08. 
 
 
4. Dynamics of a Neural-type System in Ring Topology 
 
In this Section, the nonlinear and non-autonomous Lacy 
circuit is connected as a master circuit through the node 
"A1" to the nonlinear autonomous circuits "2" and "3" via 
buffers in a ring topology (Fig.13). This topology has many 
similarities with neural−type systems, in which the master 
circuit acts as a pre−synaptic neuron that receives the 
external stimulation and then transmits a signal 
(information) to the other post−synaptic neurons 
(autonomous circuits "2" and "3") of the system. So, in this 

case the dynamic state of the master circuit remains 
unaffected, while the states of the two other circuits are 
influenced by the dynamics of its master. For this reason, the 
dynamic state of the master circuit is chosen to be chaotic 
and the responses of the two other circuits are studied via the 
simulation results. 
 

 
Fig. 13. The three resistively coupled chaotic oscillators form a ring in 
neural−type connection. 
 

 
4.1. System’s Description 
The normalized state equations of the proposed system are 
the following: 
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  (13) 

 
where 
 

( ) ( ){ }1,2,3 b 1,2,3 a b 1,2,3 1,2,3x m x 0.5 m m x 1 x 1= + − + − −f  (14) 

 
is the normalized characteristic function of the nonlinear 
resistors, according to Eq.(6). The first two equations of 
system (13) describe the master circuit, while the other four 
equations, in couples, describe the other two nonlinear 
autonomous circuits of the proposed system. 
 
 
4.1. Simulation Results 
Next, the dynamic behavior of the system of Fig.13 was 
studied. For low values of the coupling factor ξ (ξ < 0.9), 
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two different dynamic behaviors have been observed. These 
different dynamics are related to the initial conditions of the 
state variables of the system as it will be shown in details. 

 
Fig. 14. Phase portrait of circuit “1”, for f = 7 kHz and V0 = 5.35 V. 
 
4.1.1. Different Basins of Attraction 
As it is mentioned, the dynamics of the non-autonomous 
circuit “1” is not affected by the dynamics of the 
autonomous circuits “2” and “3”, because of the 
unidirectional coupling. The initial conditions of the state 
variables of the system are: (x10, y10, x20, y20, x30, y30) =          
(1.00, 1.25, –1.20, 1.50, 0.80, –1.00). The initial conditions 
of the state variables of circuit “2” belong to the basin of 
attraction of the equilibrium point P−, while the initial 
conditions of the state variables of circuit “3” belong to the 
basin of attraction of the equilibrium point P+. For f = 7 kHz 
and V0 = 5.35 V circuit “1” is in a chaotic state (Fig.14). 
Choosing the coupling factor ξ = 0.010, the autonomous 
circuits are also in chaotic states, as it can be shown in 
Figs.15(a) & (b). 

 

 
Fig. 15. (a) & (b) Phase portraits of the state variables of circuits “2” 
and “3”, for f = 7 kHz, V0 = 5.35 and ξ = 0.010, for initial conditions 
belonging to different basins of attraction. 

In order to study the correlation among the state 
variables of the system, the phase portraits of Fig.16 have 
been plotted. Phase portraits of Figs.16(e) & (f) do not 
correspond to synchronization or antisynchronization 
between the state variables of the autonomous circuits “2” 
and “3”. The fact, that the slope of straight lines are equal to 
unity, means that Δx2 = Δx3 and Δy2 = Δy3, while taking the 
limit we have dx2 = dx3 and dy2 = dy3 or 
 

32 dxdx
=

dτ dτ
     (15) 

 
and 
 

32 dd

d d
=
yy

τ τ
     (16) 

 
because they are dynamic state variables. 

 

 

 
(continued) 
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Fig. 16. Phase portraits of (a) x2 vs. x1, (b) x3 vs. x1, (c) y2 vs. y1,             
(d) y3 vs. y1, (e) x3 vs. x2 and (f) y3 vs. y2, for f = 7 kHz, V0 = 5.35 and        
ξ = 0.010. 
 
 

As it is mentioned before, x2 = vC2/Bp, x3 = vC3/Bp, and 
replacing in Eq.(15) the normalized variables, we obtain 

C2 C3dv d dv d=t t , or 
 

C2 C3dv dv
C = C
d dt t

    (17) 

 
The result of Eq.(17) means that iC2 = iC3, so the currents 

through the capacitors of the circuits “2” and “3” are 
complete synchronized. 

 
 
 

Also, P2 L2Ri B=y and 3 L3 PRi /B=y , and replacing in 

Eq.(16) we obtain L2 L3di d = di dt t , or 
 

L3L2 didi
L = L
d dt t

     (18) 

 
The result of Eq.(18) means that vL2 = vL3, so the 

voltages across  the inductors of the circuits “2” and “3” are 
complete synchronized. 

Combining the fourth and the sixth equation of system 
(13), as well as Eq.(16), the following equation is obtained. 
 

2 2 3 3+ = +x y x y                    (19) 

This result is verified by the simulation of the system, as 
it is shown in Fig.17, where the phase portrait of (x3 + y3) 
versus (x2 + y2) has been plotted. In this case, only part of the 
corresponded electric variables of circuits “2” and “3” are 
synchronized to each other, while the state variables (x2, x3) 
and (y2, y3) corresponding to (vC2, vC3) and (iL2, iL3) 
respectively, remain unsynchronized. We have named this 
dynamics as partial synchronization of circuits “2” and “3”. 
 
 
4.1.2. Same Basins of Attraction 
In this section we have chosen the following initial 
conditions of system’s state variables: (x10, y10, x20, y20, x30, 
y30) = (1.00, 1.25, –1.20, 1.50, –0.80, 1.00). In this case, the 
initial conditions of the state variables of circuit “3” belong 
to the basin of attraction of the equilibrium point P−, as the 
initial conditions of the state variables of circuit “2”. Circuits 
“2” and “3” are in a chaotic state (Fig.18) as the circuit “1” 
is (Fig.14). The phase portraits of x3 versus x2 and y3 versus 
y2, (Fig.19), reveal the complete synchronization between 
the waveforms of the voltages across the capacitors of 
circuits “2” and “3”, as well as between the waveforms of 
the currents through the inductors of the same circuits. In 
this case, because 
 
x2 = x3 and y2 = y3      (20) 
 
 

 
Fig. 17. The phase portrait of (x3 + y3) vs. (x2 + y2), for f = 7 kHz,              
V0 = 5.35 and ξ = 0.010. 
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Fig. 18. (a) & (b) Phase portraits of the state variables of circuits “2” & 
“3”, for f = 7 kHz, V0 = 5.35 and ξ = 0.010, for initial conditions 
belonging to the same basin of attraction. 
 
 

Eq.(19) is also valid, so combining Eq.(20) with the 
fourth and sixth equation of system (13) we conclude that 
the voltages across  the inductors of the circuits “2” and “3” 
are complete synchronized, while from Eq.(20) with the 
third and fifth equation of system (13), we also conclude that 
the currents through the capacitors of the circuits “2” and 
“3” are complete synchronized. So, all the corresponded 
electric variables of circuits “2” and “3” are synchronized to 
each other. We have named this dynamics complete 
synchronization of circuits “2” and “3”. 

 

 
(continued) 

 
Fig. 19. Phase portraits of (a) x3 vs. x2 and (b) y3 vs. y2, for f = 7 kHz,  
V0 = 5.35 and ξ = 0.010, for initial conditions belonging to the same 
basin of attraction. The variables are in synchronization in both cases. 
 
 
5. Conclusion 
 
In the present paper, a gallery of various synchronization 
phenomena between resistively coupled nonlinear circuits, 
the Lacy circuits was presented. For this reason, two 
coupling schemes were adopted. The first one is the well-
known mutual coupling while the second one is a ring 
connection, like a neural−type system. 

In the first case, two identical Lacy circuits have been 
coupled via a linear resistor and anti−phase synchronization 
was observed. In this type of synchronization the coupled 
circuits are in a periodic state and a π−phase delay was 
demonstrated. As it was mentioned, the state equations (5) of 
Lacy circuit’s are invariant under the transformation (4). 
This fact, according to the conclusions of Ref.[14], leads to 
the observation that the coupled Lacy circuits have even 
mode (period−2) in the Region III and two conjugated 
periodic trajectories have arisen with a phase difference of π. 
Furthermore, the time lag remains always equal to the half of 
the period of the external voltage source for every value of 
the coupling factor in the region of anti−phase 
synchronization. 

In the second case, a neural−type system in ring 
topology, in which the Lacy plays the role of a stimulated 
neuron−cell, while two other autonomous nonlinear circuits 
of this family were coupled via a linear resistor with it, was 
studied. As a result a very interesting case of 
synchronization between the coupled autonomous circuits of 
this network was revealed. According, to the chosen sets of 
circuits' initial conditions the system could be in two 
different dynamic states. When the autonomous circuits 
started from the same basin of attraction, the system of the 
coupled autonomous circuits under the influence of the 
stimulation of the Lacy circuit resulted in a complete chaotic 
synchronization state. However, when the autonomous 
circuits started from different basins of attraction, the system 
showed a totally new type of synchronization. In this case, 
which was called partial synchronization of autonomous 
circuits, only part of the corresponded electric variables of 
these circuits are synchronized to each other, while the state 
variables remain unsynchronized.  

As a future work, the experimental observation of the 
synchronization phenomena that were the subject of this 
work and especially of the new observed case of partial 
synchronization will be studied. Also, the confirmation of 
existence of this new type of synchronization in the case of 
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using other neuronal circuits, instead of Lacy circuits, is also 
important for the understanding of phenomena related to the 

nature of neuronal systems. 

______________________________ 
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