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Abstract 
 
In the present paper, we have studied the complex dynamics of a system of two nonlinear neuronal cells, coupled by a 
gap junction, which is modelled as a linear variable resistor. The two coupled cells are oscillators of the FitzHugh-
Nagumo type. The first cell, the “ImK-cell” is a voltage driven cell, while the second, the “RaLa-cell” is a current driven 
cell. We have examined the dynamics of the coupled system in the case of bidirectional coupling. An independent 
voltage source gives the external stimulation. We have examined three different cases (AC, DC, AC plus DC) of the 
external signal. In each case we have different dynamics. Action potentials, chaotic and periodic oscillations are 
observed. 
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1. Introduction 
 
Electric circuits with a nonlinear resistor, which is 
characterized by a smooth cubic υ-i characteristic, have 
emerged as a simple, yet powerful experimental and 
analytical tool in studying chaotic behavior in nonlinear 
dynamics. Among the electrical oscillators that have been 
studied, the FitzHugh – Nagumo type  oscillator [1, 2] is 
very important, because can simulate neuron cells. The 
system of two FitzHugh-Nagumo cells coupled with gap 
junctions, specialized intercellural pathways between 
adjoining cells, [3], is the simplest possible system 
simulating two coupled neuron cells via an electric synapse 
[4]. As introduced by Fitzhugh [1], his model for a spiking 
neuron is a two dimensional reduction of the Hodgkin – 
Huxley equations [5]. A qualitative description of the single 
neuron activity is given, according to FitzHugh, by the 
system of coupled nonlinear differential equations.  
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The variable x describes the potential difference across 

the neural membrane and y can be considered as a 

combination of the different ion channel conductivities, 
present in the Hodgkin-Huxley model. The control 
parameter z of the FitzHugh system describes the intensity 
of the stimulating current. Nagumo et al. [2] proposed an 
electronic simulator of the model of FitzHugh using a tunnel 
diode as the nonlinear element. 

The FitzHugh model of nonlinear differential equations 
(1) can be simulated by a different nonlinear electric circuit, 
[6], using a nonlinear resistor, (Fig.1), with a smooth cubic  
i−v characteristic given by the following equation (2). 
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where ρ and 0V  are normalization parameters. By intro-
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where  
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Fig. 1. The electronic simulator of the model of FitzHugh, proposed by 
Kyprianidis et al [6]. 
 
 

Rajasekar and Lakshmanan proposed a slightly different 
form of FitzHugh model [7,8] given by the following state 
equations, which are of Bonhoeffer – van der Pol type, 
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The study of Eqs.(3) revealed the existence of chaotic 

behavior, following the period doubling route to chaos, and 
devil’s staircases. The nonlinear differential equations (3) 
can be also simulated by a nonlinear electric circuit, using a 
nonlinear resistor with a smooth cubic i−v characteristic. 
The nonlinear electric circuit is shown in Fig.3. The smooth 
cubic i−v characteristic of the nonlinear resistor of the circuit 
of Fig.3 is given by the same equation (2), as before. 
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In the general case, the driving current source has the 
following form S DC 0 Si = I + I cos2πf t  including a DC plus 
a sinusoidal term of frequency fS, so  

DC 0z = B + B cos2πft , 

where the normalized frequency f  will be Sf ρCf= .  

 
Fig. 2. The nonlinear electric circuit simulating Eqs.(3). 
 

The topology of the circuits of Fig.1 and Fig.2 is exactly 
the same, proving the equivalence of equations (1) and (3). 
The circuit of Fig.2 is a current-driven neuron-cell and we 
call it “RaLa-cell”. 
 
 
2. The FitzHugh – Nagumo Type Circuit Driven by a 
Voltage Source 
 
In the circuits of Figs.1 and 2, the driving source is a current 
source. But in most cases, circuits are driven by voltage 
sources. In this section, we will study the circuit of Fig.2 
driven by a voltage source, as it is shown in Fig.3 
 

 
Fig. 3. The circuit of Fig.2 driven by a voltage source. 
 
 

The smooth cubic i−v characteristic of the nonlinear 
resistor of the circuit of Fig.3 remains the same as before. By 

introducing the normalized time 
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In the general case, the driving voltage source has the 

following form 
 

S DC m Sυ V V cos2πf t= +          (5) 

 
including a DC plus a sinusoidal term of frequency fS, so 
 

DC 0u U U cos 2πfτ= +        (6) 
 
where the normalized frequency f  will be Sf ρCf= , while 
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Fig.4. An “ImK-cell” and a “RaLa-cell” coupled via a gap junction (RC).	  
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The circuit of Fig.3 is a voltage driven neuron-cell and 

we call it “ImK-cell”. 
 
 
3. The Coupled System 
 

By coupling the circuits of Figures 2 and 3 via a linear 
resistor RC, we get the system of Fig.4. The two sub-circuits 
have identical circuit elements, L, R, C, E and NR. The linear 
resistor RC simulates the gap junction between the two 
neuron−cells [3, 4]. 

By introducing the normalized time 
t

τ
ρC

=  and the 

normalized variables  

j
j

0

υx
V

= , Lj
j

0

ρi
y

V
= , j = 1,2,  S

S 0

ρυ
u =

R V
  

 
and applying Kirhhoff’s laws, we get the following  
normalized  state equations for  the system of  Fig. 4. 
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and u  is given by Eqs.(6) and (7). 
 

3.1. The system is driven by an AC voltage source 

In this case, the constant values of the parameters of the 

system are a = 0.7, b = 0.8, c = 0.1, ε = 0.150, f = 0.16, and 

UDC = 0.0. The bifurcation diagram of the complex dynamics 

of the “ImK-cell”, as the normalized amplitude of the 

voltage source is varied, is shown in Fig. 5. 

 
Fig. 5. The bifurcation diagram of the “ImK-cell” as the normalized 
amplitude of the voltage source is varied. It is a chaotic bubble. 
 
 

Choosing U0 = 0.9, corresponding to a chaotic state, the 
simulation results of state equations (8) give the following 
bifurcation diagrams versus the coupling factor ξ. 

 

 
Fig. 6. Bifurcation diagram, y1 vs. ξ, of the coupling system, under an 
AC stimulation with U0 = 0.9. 
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Fig. 7. Bifurcation diagram, y2 vs. ξ, of the coupling system, under an 
AC stimulation with U0 = 0.9. 
 
 

Starting from a chaotic state, the system undergoes a 
reverse period doubling cascade, as the coupling factor ξ is 
increased. So, depending on the value of ξ, the system can 
be in a chaotic or in a periodic state. The gap junction 
controls the flow of energy between the two neuron cells and 
suppresses the chaotic state of the system. 
 
 
3.2. The system is driven by a DC voltage source 
When the neuronal cells “ImK” and “RaLa” are uncoupled 
and stimulated by a low value DC signal, they create an 
action potential waveform, which converges to a fixed point, 
as we can see in Figs.8 and 9. As the value of the DC signal 
is increased, a Hopf bifurcation is observed and the neuronal 
cells give a periodic response. For the “ImK−cell” the Hopf 
bifurcation is observed for UDC = 0.29287, while for the 
“RaLa−cell” the Hopf bifurcation is observed for                 
BDC = 0.33233, when the parameters of the system are            
a = 0.7, b = 0.8, c = 0.1 and ε = 0.150. 
 
 

 
Fig. 8. Action potential waveform by an “ImK−cell” for UDC = 0.250. 
 
 

 
Fig. 9. Action potential waveform by a “RaLa−cell” for BDC = 0.250. 
 
 

 
Fig. 10. A periodic response of  an “ImK−cell” for UDC = 0.300. 
 
 

 
Fig. 11. A periodic response of  a “RaLa−cell” for BDC = 0.350.  
 
 
In Figs.12 and 13, the bifurcation diagrams of the 
“ImK−cell” before, (UDC = 0.200), and after, (UDC = 0.300), 
the Hopf bifurcation threshold, are shown. We can clearly 
observe, that the two bifurcation diagrams are quite different 
for low values of U0, but both follow a reverse period 
doubling route for high values of U0.  
 



I. M. Kyprianidis *, and A. T. Makri/Journal of Engineering Science and Technology Review 6 (4) (2013) 104-114 

 108 

 
Fig. 12. The bifurcation diagram of the “ImK−cell” before,                     
(UDC = 0.200), the Hopf bifurcation threshold. 
 
 

 
Fig. 13. The bifurcation diagram of the “ImK−cell” after, (UDC = 0.300), 
the Hopf bifurcation threshold.  
 
 
In the case of the coupled system of Fig.4, for UDC = 0.250 
and ξ = 0.01, the waveforms of the state variables x1, 
(black), and x2, (red), are shown in Fig.14. Both, they 
converge to a fixed point, as well as when UDC = 0.300, 
(Fig.15). 
 

 
Fig. 14. The waveforms of the state variables x1, (black), and x2, (red), 
for UDC = 0.250 and ξ = 0.01. Both, they converge to a fixed point. 
 
 

 
Fig. 15. The waveforms of the state variables x1, (black), and x2, (red), 
for UDC = 0.300 and ξ = 0.01. Both, they converge to a fixed point. 
 
 
In Figs.16 and 17, the responses of the coupled cells are 
shown, for UDC = 0.350 and ξ = 0.01. They are periodic. 
 

 
Fig. 16. Periodic response of the “ImK−cell” for UDC = 0.350 and              
ξ = 0.01. 
 
 

 
(continued) 
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Fig. 17. The response of the coupled “RaLa−cell” for UDC = 0.350 and       
ξ = 0.01. (a) Transients are present. (b) Transients have been removed, 
and a periodic response is shown, the steady state of the cell. 
  
 
The dynamics of the system remains unchanged, as the value 
of the DC component is increased up to UDC = 1.00. So, the 
next step is to increase the value of the coupling factor ξ. For 
ξ 0.074= , the phase portrait y1 vs. x1 is shown in Fig.18. It 
is a limit cycle. For ξ 0.075= , a period doubling is 
observed (Fig.19). 

 
Fig. 18. Phase portrait of the coupled “ImK−cell” for 

DCU 1.00= +  

and ξ 0.074= . 

   
Fig. 19. Phase portrait of the coupled “ImK−cell” for DCU 1.00= +  and 

ξ 0.075= . A period doubling is observed.  

 
As ξ is increased, the system follows a period adding 
scenario, as we can observe in Figs.20-22. For ξ 0.12739= , 
the phase portrait of the coupled “Rala-cell”, for 

DCU 1.00= + , is shown in Fig.23. It is an attractor of high 
periodicity. In the limit, as periodicity tends to “infinity”, a 
transition to period-1 is observed for ξ 0.12740=  (Fig.24). 

 
Fig. 20. Phase portrait of the coupled “ImK−cell” for 

DCU 1.00= +  

and ξ 0.120= . A period−3 limit cycle is observed. 

 
Fig. 21. Phase portrait of the coupled “ImK−cell” for 

DCU 1.00= +  

and ξ 0.125= . A period−4  limit cycle is observed. 

 

   
Fig. 22. Phase portrait of the coupled “ImK−cell” for 

DCU 1.00= +  

and ξ 0.1255= . A period−5  limit cycle is observed.  
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Fig. 23. The phase portrait of the coupled “Rala−cell”, for 

DCU 1.00= + , and ξ 0.12739= . High periodicity. 

 

 
Fig. 24. The phase portrait of the coupled “Rala−cell”, 

for
DCU 1.00= + , and ξ 0.12740= . Period−1. 

 
The bifurcation diagram, 

1y  vs. ξ, for DCU 1.00= + , is 
shown in Fig.25, while the diagram of periodicity vs. ξ is 
shown in Fig.26, for up period−10. A staircase is formating, 
without chaos or quasiperiodicity between two nearby stairs. 
 

 
Fig. 25. Bifurcation diagram, 

1y  vs. ξ, for
DCU 1.00= + . 

 
Fig. 26. Periodicity vs. ξ for

DCU 1.00= + . A staircase is observed. 

 
 
3.3. The system is driven by a DC plus an AC source 
In the case of the combined stimulation of the system by a 
DC plus an AC voltage source, the dynamics show a more 
complex behavior, because each component, DC and AC, 
results to different dynamics, as the coupling factor ξ is 
varied. We will present some results, which show the 
necessity of an extended study.  
 
 
3.3.1. The case 

DCU = +0.300 

For DCU 0.300= + , 0U 0.0=  and ξ = 0.01,	   the system 

converges to a fixed point (Fig.15). If 0U 0.0≠  the 

dynamics are quite different. For 0U 0.35= , and f = 0.16, 
the bifurcation diagrams versus the coupling factor are 
shown in Figs.27 and 28. We can observe the chaotic 
behavior of the system, while ξ < 0.014. For ξ > 0.014, the 
system converges to a period−1 limit cycle. 
  
 

 
Fig. 27. Bifurcation diagram, x1 vs. ξ, for 

DCU 0.300= + , 0U 0.35=  

and f 0.16= . 
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Fig. 28. Bifurcation diagram, x2 vs. ξ, for

DCU 0.300= + , 0U 0.35=  

and f 0.16= . 
 
 

	  
Fig. 29. Phase portrait, y1 vs. x1, of the “ImK−cell”,	  for

DCU 0.300= + , 

0U 0.35= , f 0.16=  and 	  ξ = 0.012. 

 
 

	  
Fig. 30. Phase portrait, y2 vs. x2,	   of the “RaLa−cell”,	   for	  

DCU 0.300= + , 0U 0.35= , f 0.16=  and	  ξ = 0.012. 

 
 

For 0U 0.4= , the system presents the same dynamics, 
as before, while the transition from chaos to period–1 is 
observed for a higher value of the coupling factor,                    
ξ = 0.0161, as it is shown in Figs.31 and 32. 

	  
Fig. 31. Bifurcation diagram, x1 vs. ξ, for 

DCU 0.300= + , 0U 0.4=  

and f 0.16= . 
 
 

	  
Fig. 32. Bifurcation diagram, 

2x  vs. ξ, for 
DCU 0.300= + , 0U 0.4=  

and f 0.16= . 
 
 

For 0U 0.5= , the system remains in a periodic state for 
all values of the coupling factor. Starting from period–4, we 
observe a transition to period–1, for ξ = 0.099 (Figs.33 and 
34). 
 

	  
Fig. 33. Bifurcation diagram, y1 vs. ξ, for 

DCU 0.300= + , 0U 0.5=  

and f 0.16= . 
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Fig. 34. Bifurcation diagram, y2 vs. ξ, for 

DCU 0.300= + , 0U 0.5=  

and f 0.16= . 
 
 

For 0U 0.7= , chaotic behavior is also observed in a 
short regime, and, as the coupling factor is increased, the 
system follows a reverse period doubling up to period–1 
(Figs.35 and 36). It is important to notice, that the two 
coupled cells have the same dynamics for any value of ξ. 
 

 
Fig. 35. Bifurcation diagram, 

1y  vs. ξ, for 
DCU 0.300= + , 0U 0.7=  

and f 0.16= . 
 
 

 
Fig. 36. Bifurcation diagram, y2 vs. ξ, for 

DCU 0.300= + , 0U 0.7=  

and f 0.16= . 

For 0U 0.75=  the system starts from a periodic of 
period–4 state, then a chaotic regime is observed, more 
extended than in the case of 0U 0.70= , and, as ξ is 
increased, a reverse period doubling is observed, up to 
period–1 (Figs.37 and 38). 

For 0U 0.8=  and 0U 0.9= , chaotic regimes are also 
present, and as ξ is increased a reverse period doubling is 
observed, up to period–1 (Figs.39 and 40). 
 

	  
Fig. 37. Bifurcation diagram, y1 vs. ξ, for 

DCU 0.300= + , 0U 0.75=  

and f 0.16= . 

 

	  
Fig. 38. Bifurcation diagram, y2 vs. ξ, for 

DCU 0.300= + , 0U 0.75=  

and f 0.16= . 

 

	  
Fig. 39. Bifurcation diagram, y1 vs. ξ, for 

DCU 0.300= + , 0U 0.8=  

and f 0.16= . 
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Fig.40. Bifurcation diagram, y1 vs. ξ, for 

DCU 0.300= + , 0U 0.9=  

and f 0.16= . 
 
 
3.3.2.  The case 

DCU = +1.00 
As the value of the DC component of the input signal is 
increased, more extended chaotic regimes are observed. In 
the case of UDC = +1.00, for low values of the amplitude of 
the AC component of the input signal, the system remains, 
mainly, in chaotic state, even for high values of ξ, as we can 
observe in the bifurcation diagrams of Figures 41−43.  
 

	  
Fig. 41. Bifurcation diagram, y1 vs. ξ, for 

DCU 1.00= + , 0U 0.1=  

and f 0.16= . 
 

	  
Fig. 42. Bifurcation diagram, y1 vs. ξ, for 

DCU 1.00= + , 0U 0.2=  

and f 0.16= . 

	  
Fig. 43. Bifurcation diagram, y1 vs. ξ, for 

DCU 1.00= + , 0U 0.4=  

and f 0.16= . 
 
 

Τhe first wide periodic windows are observed for 

0U 0.5= , but they are of high periodicity (p−9, p−15), as it 
is shown in Fig.44.  

 

 
Fig. 44. Bifurcation diagram, y1 vs. ξ, for 

DCU 1.00= + , 0U 0.5=  

and f 0.16= . 
 
 
As the amplitude U0 is increased, the number of periodic 

windows are also increased (Figs.45, 46), so the system can 
choose its final state, periodic or chaotic. But its periodic 
state will be of high periodicity, no period−1. 
  

	  
Fig. 45. Bifurcation diagram, y1 vs. ξ, for 

DCU 1.00= + , 0U 0.7=  

and f 0.16= . 
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Fig. 46. Bifurcation diagram, y1 vs. ξ, for 

DCU 1.00= + , 0U 0.75=  

and f 0.16= . 
 
 
4. Conclusions 
 
In the present paper, we have studied the complex dynamics 
of a system of two nonlinear neuronal cells, coupled by a 
gap junction, which is modelled as a linear variable resistor. 
The two coupled cells are oscillators of the 
FitzHugh−Nagumo type. The first cell, the “ImK−cell” is a 

voltage driven cell, while the second, the “RaLa−cell” is a 
current driven cell. We have examined the dynamics of the 
coupled system in the case of bidirectional coupling. An 
independent voltage source gives the external stimulation. 
When the external signal is an AC one, the system starting 
from a chaotic state undergoes a reverse period doubling and 
is driven to a period−1 steady state. In the case of a DC 
external signal, for low values of the signal, each cell, and 
also the whole system converge to a stable fixed point. As 
the DC signal is increased, a Hopf bifurcation occurs, and a 
periodic oscillation is observed. For higher values of the DC 
signal, UDC = +1.00, as the coupling factor is increased the 
system follows a period adding route up to a certain value of 
the coupling factor, ξ = 0.12740, where a transition from 
“infinite” periodicity to a period−1 state is observed. The 
combined stimulation by a DC plus an AC voltage signals 
drives the system to chaotic states mainly. For low values of 
the DC signal, UDC = +0.30, and U0 ≥ 0.70, a reverse period 
doubling sequence is observed, as the coupling factor is 
increased. For UDC = +1.00, chaotic behavior is the main 
dynamics of the system. Some periodic windows in the 
bifurcation diagrams are observed for higher values of the 
amplitude of the AC external signal. 
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