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Abstract 
 
In this paper we suggest a method to control the chaotic behavior of the stepper motor into a periodic one. In fact, using 
the supply frequency as a bifurcation parameter, we show that as the frequency is increased beyond a critical value the 
motor steps become irregular and even chaotic hence it becomes unpractical to be controlled in open loop mode. To 
circumvent the problem we propose a slight perturbation to the frequency in order to regularize the steps for high 
frequencies. The approach consists in using several heuristic methods such as Practical Swarm Optimization (PSO), 
Genetic Algorithms (GA) and Ant Colony Optimization (ACO) to obtain the optimal switching instances which define 
the change in the supply state (polarization). The numerical simulations performed on a stepper model show that 
regularization of the motor steps can be achieved for a large range of power supply frequencies ranging from quasi-
periodic behavior to chaotic behavior. 

 
 Keywords:  Practical Swarm Optimization, Ant Colony Optimization, Genetic Algorithms, Switched time systems, Chaos control. 
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1. Introduction 
 
Switching systems are a special class of hybrid systems. A 
switching system is composed of several sub-systems, each 
subsystem is active according to a switching law. Generally, 
these systems are described by: 
 
!x = fα (t ) (x (t ),u (t ))  

 
with x  and u  are respectively the state and input vectors 
and ( )tα  is the switching function that specifies the active 
subsystem. There are switched systems where the passage 
from a subsystem to another is done in a regular manner i.e. 
the switching cycle is repeated for each operating period, 
this type of switching is found in the periodic systems such 
as static converter. For the case where the transition from a 
subsystem to another is done in an arbitrary manner, the 
switching law evolves according to a predetermined 
function; we can cite for example chemical systems [1]. 

Control of switched systems with conventional 
optimization control and Lyapunov theory is the subject of 
several works [2, 3, 4, 5]. The synthesis of a control law in 
this case, requires a tedious calculation and delicate proofs. 
Usually, when it comes to determine simultaneously a 
sequence of optimal switching and optimal continuous 

control, using a performance criterion, conventional 
optimization techniques cannot guarantee a global optimal 
solution. 

Recently, several studies are oriented to optimization 
techniques based on artificial intelligence [6, 7] and heuristic 
search [8, 9], when it comes to the control of switching 
systems. In addition to their simplicity from the viewpoint of 
programming and implementation, these methods ensure 
convergence towards global solutions. Among these 
heuristic methods we can cite genetic algorithms, particle 
swarms optimization and ant colony optimization methods. 

Genetic algorithms are optimization adaptive methods 
based on techniques derived from genetics and natural 
evolution. They are initially developed by John Holland in 
1975 [10]. Having an initial population of individuals, these 
individuals undergo crossing and mutation operation, only 
the strongest persist in a population, thus after several 
generations (iterations) the population will converge to be 
composed of strong (best following a criterion) individuals 
only. Among the active domains of genetic algorithms, there 
is the system identification including non-linear systems, the 
design of fuzzy controllers and optimization of PID 
parameters [11, 12, 13]. 

PSO is an optimization algorithm invented by James 
Kennedy and Russell Eberhart in 1995  [14]. The origin of 
this method comes from observations done by simulations 
on schools of fish and grouped flights bird by Reynold [15, 
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16], Heppner and Grenander [17]. It represents a method of 
iterative calculation. Having a population of candidate 
solutions, PSO algorithm searches for the optimal solution 
by moving the particles through their position and their 
velocity. The motion of each particle is conditioned by its 
local position and the best positions in the search space and 
is updated proportionally to the error with respect to global 
and local best positions. PSO algorithms are used in many 
optimization problems such as identification of nonlinear 
systems and training of neuronal networks [18, 19]. 

Optimization by ant colony is a biomimetic optimization 
technique originally proposed by Marco Dorigo and 
coworkers [20]. The principle of optimization is based on 
the behavior of ants looking for a food source near their 
colony. Initially, ants looking for food, once discovered, ants 
return to the nest by leaving on their way pheromone that 
attracts other ants. For the same source, the shortest path will 
be associated with more pheromone and will be covered by 
most of ants and the long way will disappear gradually. 
ACO algorithm is used in several optimization problems 
such as the traveling salesman problem solving [21]. 

In our work, we are interested in the control of the 
chaotic behavior of nonlinear systems. Indeed, power 
converters and a class of motors such as the stepper motor 
may exhibit irregular motion such as quasi-periodicity and 
chaos if the controlling signals are not well tuned [22, 23, 
24]. In this paper we focus on the control of the stepper 
motor which has been shown to exhibit chaotic behavior if 
the driving signal frequency exceeds a certain threshold [25]. 
Therefore, the open loop driving becomes worthless and a 
feedback control scheme needs to be implemented. The main 
idea is to find the optimal switching instances to increment 
the motor angular position one step ahead. The optimization 
process will be implemented using GA, PSO and ACO and a 
comparison will be drawn. 

This paper is organized as follows. In the second section, 
we present the dynamic model of the stepper motor, its 
chaotic behavior and we formulate the problem of control. In 
the third section, we will present the control algorithms (GA, 
PSO and ACO) that should be applied to the stepper motor. 
In the fourth section, we will show the effectiveness of each 
optimization algorithm through simulation results. The 
conclusion is presented in the fifth section. 
 
 
2. Control Problem Formulation 
 
The hybrid two-phased stepper motor is a common   
electromechanical converter widely used in robotic field and 
small devices positioning systems such as disk drives and X-
ray scanning equipments. Originally, stepper motors were 
designed to provide precise discrete positioning in an open-
loop control mode. However, it has been shown in [26] that 
using the stepper motor in an open-loop configuration gives 
poor performance if it is driven using higher stepping rates 
than advised by the constructor. Indeed, it was shown that 
quasi-periodic as well as chaotic behaviors appear as the 
power supply frequency is increased and this is due to 
incompatibility between the motor inertia and the driving 
speed. Therefore, controlling the chaotic behavior of the 
stepper motor becomes a worthwhile endeavor.  

The stepping motor we are considering in this work is a 
commercial motor, the “Crouzet 82940 002”. Dynamically, 
it is described by the following nonlinear system: 
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where i1, i2 are the currents of the two phases 1 and 2, Ω  is 
the angular velocity, θ is the angular position, F0 is the 
supply frequency of the two power signals u1 and u2 given 
by: 
 

1 0( ) s (cos(2 ))=u t E ign F tπ        (2) 
 

2 0( ) s (sin(2 ))=u t E ign F tπ        (3) 
 

In the sequel, simulations are carried out using the 
following parameters: R = 45 Ω, L = 275 mH, p = 12,            
J = 18 × 10−6 kg.m2, fν= 10−4 N.m.s, Κφ = 0.463,                      
Κd = 16 mN.m and E = 24V . Clearly, the motor performs  
48 steps to realize a single complete turn. That is, each step 

corresponds to 2
48
π  rd or 7.5 degrees, and on each period 

0
0

1
=T
F

 the motor performs four steps or equivalently            

2
48
π  = 0.5236 rd. 

For an operation period 0T , u1 and u2 form, over time, 
four driving combinations: ( , )E E ; ( , )−E E ; ( , )− −E E ;  and 
( , )−E E  (see Fig. 1). 
 

 
Fig. 1. Stepper motor driving signals 1u (solid) and 2u (dashed). 

 
 

Therefore, during one driving signal period, we may 
consider the stepper is switching between four different non 
autonomous models with equal drift functions and different 
constant input signals. The system of equations (1) can be 
written as follows: 
 
!x = fα (x (t ))  

 
with {1,2,3,4}∈α . By varying the frequency 0F , we vary 
the toggling rate among different models. 

Figure 2 depicts the bifurcation diagram of the steps of 
the stepper motor for a variable range of frequencies from 
45Hz to 100Hz. The increase in supply frequency 0F , 
beyond the critical frequency cF  leads to the appearance of 
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chaos in motor behavior. From Fig. 2, we notice that up to 
the critical frequency cF  = 53Hz the motor steps are regular 
and four steps size is 0.5236 rd. We should mention here that 
according to the constructor data sheet, the maximum 
allowed driving frequency is 50 Hz, thus leaving a safety 
margin of 3 Hz. 
 

Fig. 2. Bifurcation of the step size when the frequency is varied beyond 
the critical value. 
 
 

When we increase the frequency to 55 Hz, we obtain an 
irregular step size where the four steps size varies from 
0.45rd to 0.61 rd. At this frequency the motor is behaving 
quasi-periodically which is confirmed by the closed curve 
attractor in the Poincaré map depicted in Fig. 3. Should we 
increase the frequency furthermore, to 67 Hz for instance, 
the motor behavior becomes chaotic with the attractor shown 
in Fig. 4. 
 

Fig. 3. Quasi-periodic Poincaré attractor of the stepper motor at 55Hz. 
 
 

The aim of the control consists in slightly modifying the 
switching instants in order to have fixed and regular steps 
even for frequency range beyond the critical frequency. 

Most of works which treat optimal control of switched 
systems, optimize all switching instants over a full period, 
based on a global performance criterion. In this work, we 
showed that it’s more effective to optimize each switching 
time separately by considering a local performance criterion. 

 
Fig. 4. Chaotic Poincaré attractor of the stepper motor at 67 Hz. 
 
 

Let 1nτ , 2nτ  and 3nτ be the switching instants at the thn  

period , 1[ ]+n nT T of the open loop system, and let !τ1n , !τ 2n  

and !τ3n  be their optimal values, then we may define the 
switching instants variations as: 

 
 
!Δτ1n = !τ1n −τ1n  (4) 
!Δτ 2n = !τ 2n −τ 2n  (5) 
!Δτ3n = !τ3n −τ3n  (6) 

 
 
Let J1, J2 and J3 be the three local performance criterion 
given by: 
 
 
1 1 1 1( ) ( ) ( )n n n n refJ Tτ θ τ τ θ θΔ = +Δ − −  (7) 

J 2(Δτ 2n ) =θ (τ 2n +Δτ 2n )−θ (τ1n + !Δτ1n )−θref  (8) 

J 3(Δτ3n ) =θ (τ3n +Δτ3n )−θ (τ 2n + !Δτ 2n )−θref  (9) 
 
 

where 2
48

=ref
π

θ rd. The main issue of the control is to 

determined for each quarter of the period and based on an 
optimization algorithm, the variations 
!Δτ in ,n ∈{1,...,N },i ∈{1,2,3} , that lead to the optimum 

switching instant !τ in  by minimizing for each operating area 

the performance criterion Ji. Once !Δτ in  is obtained, it will 
define the switching instance for the next running subsystem 
and so on. 

As a matter of fact, this control method requires 
knowledge of future values of the system state if 0Δ >inτ , 
then a prediction step is necessary to apply unconventional 
optimization algorithms. Figure 5 shows the evolution curve 
of the stepper motor position during a period. 
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Fig. 5. Slowly varying aspect of the angular position evolution during 
one switching period. 
 
 

Making profit of the slowly varying aspect of the angular 
position evolution shown on Fig. 5, we may use a linear 
prediction, that is the future values of positions at each 
instant = +Δin int τ τ are calculated from equation (10) 
( Tδ is an integration step size). 

 
( ) ( )ˆ( ) ( ) in in

in in in in
T

T
θ τ θ τ δ

θ τ τ θ τ τ
δ

− −
+Δ = +Δ  (10) 

 
 
3. Switching Instances Optimization 
 
The role of each optimization algorithm is then to find !Δτ in . 
Every one has its specific org chart, but the control steps are 
the same. 
 
3.1. Determining !Δτ in  Using Genetic Algorithm 
Genetic algorithms are optimization methods based on the 
genetic evolution process of biological organisms through 
the generations. According to Darwin’s evolution theory, 
only strongest persist in a population and can reproduce and 
their descendants retain some of their characteristics, while 
the less adapted organisms disappear gradually. 

Let , {1,2,3}, {1,..., }∈ ∈
inGAPOP i n N  be the three 

populations associated to the three switching times at the 
th

n period, each population consists of K individuals, each 
individual inkI , {1,..., }∈k K  can be a solution of the 
optimization problem and let , {1,2,3}∈iGAJ i , be the three 
local performance criteria and ( )iGA inkJ I  is the performance 

of the individual inkI . 

Each individual inkI  represents the variation Δ inkτ  of 
the switching instants inτ . The application of genetic 
algorithm in each area of operation will drive the initial 
population to converge to an optimal population that consists 
of K uniform individuals of value  !Δτ in . 

Throughout generations, individuals are evaluated 
according to a fitness function. Less fit individuals will be 
eliminated and replaced by better fit ones according to their 
probability of occurrence. Next, to diversify the search 
within the population, offsprings are created using crossover 
and mutation operations. 

The genetic optimization algorithm can proceed as 
follows: 
1. Generate a random initial population of K individuals; 
2. Evaluate the adaptation rate of each individual; 
3. Select the set of parents considered to be best fit; 

4. Cross parents with a probability cP  to generate children; 
5. Mutate children with a probability

mP ; 
6. Repeat steps 3, 4 and 5 until the new population contains 
K  individuals; 
7. Iterate from step 2 until the algorithm converges. 
 

To control the stepper motor, we have applied the 
genetic algorithm as follows. We start by randomly creating 
an initial population of 30=K  individuals uniformly 
distributed over an interval of ±20% around the switching 
instant inτ . Next, we evaluate the performance of each 
individual using: 
 

( (7) (9)); {1,2,3}= − ∈iGA iJ J given in i  
 
and we evaluate their fitness as: 
 

1( ) =ink
iGA

Fitness I
J

 (11) 

 
so that best fit individuals are selected for the next 
generation. The chosen selection is that of the lottery wheel, 
it consists in choosing individuals who are apostrophized by 
the best fitness. The probability of individuals’ selection is 
proportional to their fitness and is given by: 
 

1

( )( )

( )
=

=

∑
ink

r ink K

ins
s

Fitness IP I
Fitness I

 
(12) 

 
To improve the search process among the population, we 

make some convex crossover between several parents with a 
probability of 0.8=cP . In addition, we also apply a mutation 
to a selection of children with a probability of 0.01=mP . 
These operations are carried out over a number of 
generations equal to M after which we consider that the 
population has reached its steady status. 
 
3.2. Determining !Δτ in  Using Practical Swarm 
Optimization 
PSO is an evolutionary optimization technique that found its 
origins from the social behavior such as the group of bees 
and birds in search of food. Having a population of particles 
dispersed in a random manner in the search space, the 
principle of the optimization algorithm is based on the 
analysis of the behavior of each particle relative thereto and 
to the other in order to find the optimal solution. Each 
particle must be able to capture the best solution visited and 
communicate with neighboring particles. From the 
information acquired, it must have the attitude to return to its 
best position or tend to the optimum position of other 
particles. 

Let , {1,2,3}, {1,..., }∈ ∈
inPSOPOP i n N  be the three 

populations associated to the three switching times at the 
thn  period, each population consists of K particles, each 

particle , {1,..., }∈inkP k K  is characterized by a position 

inkp  and a velocity inkv , let , {1,2,3}∈
PSOiJ i  be the three 

criteria of local performance as given by (7)-(9) and 
( )

PSOi inkJ P  is the performance of particle inkP . The position 
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of each particle inkp  represents a variation Δ inkτ  of the 
switching instant inτ . 

During the flight of the particles, the velocity and the 
position of each particle is updated, by taking advantage of 
its local optima and other particles local optima according to 
the two motion equations (13) and (14). 
 

1
1 2( ) ( )j j j j j j j

ink ink ink ink ink inkv w v b pbest p b pgbest p+ = + − + −   (13) 
 

1 1j j j
ink ink inkp p v+ += +  (14) 

 
where j

inkv  and j
inkp  are respectively the velocity of the 

particle k and its position at the thj  iteration, 1 2,  b b  and jw  

are weighting parameters, j
inkpbest  is the best position 

reached by the thk  particle up to the iteration , j
inkj pgbest  is 

the best position reached by the neighboring particles until 
the iteration j. 

Then, the particle swarm will converge normally to the 
global optimal solution of K uniform particles value !Δτ in . 
The algorithm of particle swarm optimization can be 
implemented as follows: 
1. Generate a random initial population of particles K with 
dispersed positions in the field of research; 
2. Evaluate each particle according to the performance 
criterion PSOJ ; 
3. Determine pbest  and pgbest ; 
4. Update pbest  and pgbest ; 
5. Update the position and the velocity of each particle using 
motion equations (14) and (13); 
6. Iterate from step 2 until the stop condition is satisfied. 

To control the stepper motor, the characteristics of the 
PSO algorithm are described as follows. We start by 
randomly creating an initial population of 30=K  
individuals uniformly distributed over an interval of ±20% 
around the switching instant inτ . Next, we evaluate the 
performance of each individual using: 
 

( (7) (9)); {1,2,3}= − ∈
PSOi iJ J given in i  

 
We update jw  using the following identity: 
 

max min
max

max

−
= −j w ww w j

j
 (15) 

 
with maxw is the maximum value of jw , minw  is the 

minimum value of jw  and maxj  is the total number of 

iterations. The two weights 1b  and  2b  are random values in 

the intervals 1(0, )c  and 2(0, )c  respectively where 1c  and 
c2 are predetermined as constants. We considered a 
maximum number of iteration of the PSO algorithm as stop 
condition. 
 
3.3. Determining !Δτ in  Using Ant Colony Optimization 
The ant colony optimization algorithms are based on the 
behavior of ants when they are looking for food. Ants leave 
pheromone on paths of access to food, the optimization 
algorithm converges slowly by following the path that has 

more pheromone. Indeed, an ant explores randomly the 
environment around its colony, once it finds a food source, it 
returns to the nest, leaving on its way a track of attractive 
pheromone, ants from nearby will tend to follow directly this 
way. Returning to the nest, these ants will strengthen the 
path; if two paths are possible to achieve the same food 
source, the shortest path will be traveled by more ants and so 
will be increasingly attractive while long path will disappear 
gradually. The pheromone trails evaporate at each iteration. 

Let , {1,2,3}, {1,..., }∈ ∈
inACOPOP i n N  be three 

populations of the thn  period, each population consists of K 
ants, each ant { }, 1, ,∈ KinkA k K  is characterized by a 
trajectory consisting of multiple nodes, each trajectory 
between two nodes pn and qn is characterized by a quantity 

of pheromone ,pqinkph let { }, 1,2,3∈
ACOiJ i  be the three criteria 

of local performance. 
The ant colony optimization method is usually used to 

solve the traveling salesman problem, thus our first concern 
is to model the problem of controlling the stepper motor to 
fit such resolution method. The stepper motor problem is 
constituted by three switching instants to be optimized for 
every period. Around each switching instant we define K 
nodes thus we may define K3 paths to cross one operating 
period. Our aim is to find the optimum path that minimizes 
the given criteria. During the exploration of the environment 
by ants, each ant inkA  selects a path and leaves a pheromone 
proportional to the quality of the route. The K paths of the K 
ants will converge to the optimal path with more pheromone. 
The optimization algorithm by ant colony can proceed as 
follows: 
1. Generate for each ant A a way constituted by three 
random nodes; 
2. Evaluate the traversed path by each ant according to the 
performance criterion ACOJ ; 
3. Determine the pheromone quantity for every path; 
4. Update and evaporate the pheromone rate of each path; 
5. Update the nodes of each path; 
6. Iterate from step 2 until the algorithm converges. 
For controlling the stepping motor, the characteristics of the 
ACO algorithm are as follows. The initial nodes are chosen 
in a random manner uniformly distributed over a range of 
±20% around inτ . The three performance criteria are given 
by: 
 

{ }; 1,2,3= ∈
ACOi iJ J i  

 
The quantity of pheromone laid by the ant inkA  on an 

arc connecting two nodes is calculated by: 
 

=
ACO

pq
ink

i

Qph
J

 (16) 

 
where Q is an adjustment parameter. The evaporation of 
pheromone between two nodes p

innd  and q
innd  is determined 

by: 
 

1
( 1) (1 ) ( )

K
pq pq pq
in in ink

k
ph j ph j phρ

=

+ = − ∑  (17) 
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where ρ is an adjustment parameter. We considered a 
maximum number of iteration of the ACO algorithm as stop 
condition. 
 
 
4. Simulation Results 
 
The three optimization algorithms were applied to the 
stepper motor in order to show the effectiveness of each 
method and its attitude to regulate the motor steps. We 
simulate the controlled motor along 50 periods. 

The chosen control parameters are as follows: 
•  for Genetic Algorithm: 0.8=cP , 0.01=mP , 30=K  and 

iteration number 50=M , 
•  for Practical Swarm Optimization: 

max min 10.5, 0.1, 0.5,= = =w w c 2 0.5, 30= =c K  and 
maximum iteration number equals to 50=M , 

•  for Ant Colony Optimization: 10=Q , 0.5=ρ ,                    
Κ = 30  and maximum iteration number equals to Μ = 50. 

Figures 6, 7 and 8 show the population evolutions of 
each optimization algorithm that specify the first, the second 
and the third switching instants during a given period. We 
note that the population of every algorithm converges to a 
uniform population constituted for the GA by Κ individuals 
having the same characteristics, for the PSO by Κ particles 
having the same position and for the ACO by Κ trajectories 
having the same nodes. It is worth to notice that the GA 
population is the slowest to converge, while the ACO is the 
fastest to converge. Nevertheless, ACO does not seem to 
converge to the optimal solution, indeed the instants 
variations shown on Fig. 9, 10 and 11 do not really settle at 
zero like for the GA and PSO methods. Finally, we should 
mention that after convergence, the switching instances 
converge to their regular positions that is: 

0 0
1 2,4 2
= =
T T

τ τ and 0
3
3
4

=
T

τ , the shown values are 

normalized by the period length 0T . 
Figures 9, 10 and 11 show the optimal values evolutions 

of the switching instants variation for each optimization 
algorithm specific to the first, the second and the third 
switching instants along the simulated 50 periods. 

Let ,  GA PSOJ J  and ACOJ  be the three global criteria of 
the three optimization algorithms given by the three 
following equations: 
 

1 2 3= + +
GA GA GAGAJ J J J  (18) 

1 2 3= + +
PSO PSO PSOPSOJ J J J  (19) 

1 2 3= + +
ACO ACO ACOACOJ J J J  (20) 

 
Figure 12 shows the criteria evolution of the three 

optimization algorithms when the frequency of the stepper 
motor is at 0 60 =F Hz  for one operating period. The 
evolution of the three performance criteria shows the 
effectiveness of every optimization algorithm. 
Eventually, to illustrate the effectiveness of the algorithms, 
we present the controlled motor steps and angular speed for 
three different frequencies. We recall that the uncontrolled 
motor behaves quasi-periodically at 0 55 =F Hz ; on Fig. 13 
and 14, we delineate respectively, the motor steps (4 steps of 
one driving input signal 0.5236 rd) and angular velocity 

(controlled at 28.8 rd/s for 55 Hz) controlled using GA, PSO 
and ACO methods. 
 

 
Fig. 6. Evolution of each optimization algorithm population specifying 
the first switching instant at the thn  period. 
 
 

 
Fig. 7. Evolution of each optimization algorithm population specifying 
the second switching instant at the thn  period. 
 
 

 
Fig. 8. Evolution of each optimization algorithm population specifying 
the third switching instant at the thn  period. 
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Fig. 9. The optimal values of the first switching instant along the 
simulated periods with F0 = 55Hz. 
 
 

Similarly, on Figs. 15 and 16, we delineate respectively, 
the motor steps (4 steps of one driving input signal               
0.5236 rd) and angular velocity 31.4 rd/s with and without 
control and we recall that the uncontrolled motor behaves 
periodically with period 3T0 at 60 Hz. On Figs. 17 and 18, 
we delineate respectively, the motor steps (4 steps of one 
driving input signal 0.5236 rd) and angular velocity 35.1 rd/s 
with and without control and we recall that the uncontrolled 
motor behaves chaotically at 67 Hz. 
Comparing all three methods reveals that the GA and PSO 
methods achieve a quite exact result in step size and in 
velocity. However, for the ACO method, although its 
convergence was the fastest, the achieved step size and 
velocity slightly wave around the expected value. 
 

 
Fig. 10. The optimal values of the second switching instant along the 
simulated periods with F0 = 55 Hz. 
 
 

 
Fig. 11. The optimal values of the third switching instant along the 
simulated periods with F0 = 55 Hz. 
 
 

 
Fig. 12. Criteria evolution of the three optimization algorithms at          
F0 = 60 Hz for one operating period. 
 
 

 
Fig. 13. Evolution of motor steps for a frequency F0 = 55 Hz with and 
without control. 
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Fig. 14. Evolution of motor angular speed for a frequency  F0 = 55 Hz 
with and without control. 
 
 

 
Fig. 15. Evolution of motor steps for a frequency F0 = 60 Hz with and 
without control. 
 
 

 
Fig. 16. Evolution of motor angular speed for a frequency F0 = 60 Hz 
with and without control. 
 
 

 
Fig. 17. Evolution of motor steps for a frequency F0 = 67 Hz with and 
without control. 
 
 

 
Fig. 18. Evolution of motor angular speed for a frequency F0 = 67 Hz 
with and without control. 
 
 
5. Conclusion 
 
In this paper, three heuristic optimization algorithms GA, 
PSO and ACO were used to control the chaotic behavior of 
the stepper motor. The idea is based on slightly modifying 
the switching instants to maintain a constant step size and 
angular velocity despite the rapid rhythm imposed to the 
motor by the driving signal. The switching instants within an 
operating period, are modified each separately using an 
optimization method to minimize the variation of the step 
size. The presented simulation results showed that all three 
methods achieved the required results but with different 
performances. Indeed, the PSO method has shown the best 
result in terms of convergence speed and exactness. The 
genetic algorithm was relatively slow to converge but 
attained an exact result also. Finally, the ACO method which 
is less adapted to such problems, has reached a less 
exactness but in less iterations. The results were obtained on 
a large frequency range for which the uncontrolled stepper 
behaves quasi-periodically, periodically but with variable 
speed or even chaotically. 
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