

Journal of Engineering Science and Technology Review 6 (3) (2013) 111- 118

Research Article

A Study of Optimal Release Policy for SRGM with Imperfect Debugging

Ce ZHANG1,2,*, Gang CUI1, Fan-chao MENG2, Hong-wei LIU1 and Shi-xiong WU2

1School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang province150001 - China

2School of Computer Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong province, 264209 - China

Received 5 September 2013; Accepted 25 November 2013

Abstract

In allusion to the flaws in software cost model and optimal release policy, inadequate consideration for real debugging, a
cost model and optimal release policy for SRGM (Software Reliability Growth Model) incorporating imperfect
debugging is proposed. A SRGM is presented, based on incomplete debugging, introduction of new faults and TE
(Testing Effort). It is verified to describe real testing process well by actual failure data set and has better performance as
compared to other models. Based on the proposed SRGM, a formulation of cost function is also established especially
considering the impact of imperfect debugging on cost. Furthermore, the optimal release policies given limited reliability
objective and the uncertainty in actual total cost exceeding expected one are developed and elaborated. Finally, a
numerical example and related data analyses are illustrated and parameter sensitivity analysis is performed.

 Keywords: Software Reliability, Software Cost, Optimal Release Policy, Imperfect Debugging, Testing Effort
 __

1. Introduction

To improve reliability, testing resources are expended to
detect and remove faults during the testing phase of a
software product[1], [2]. Generally speaking, achieving
higher reliability needs more cost and software release time
could be postpone; less testing time could not incur cost
overrun, but the reliability of software can't be guaranteed
completely[3]. Currently, many SRGMs (Software
Reliability Growth Models) have been proposed[4] to
measure, predict and ensure reliability. Moreover, the
growth of reliability, and the tradeoff between cost
expenditure and optimal release both depend on the accuracy
of SRGM established. So, in SRE (Software Reliability
Engineering), building accurate SRGM, implementing
effectively balance control between software cost—
reliability and optimal release time are important guarantees
for realizing projected objectives.
 So far, many research about CM&ORPs (Cost Model &
Optimal Release Policies) have been presented and
studied[5], [6], [7], [8], [9], [10], [11], [12], [13]. They
mainly focus on several areas including SRGM with perfect
or imperfect debugging[8], [9], [10], [11], [12], TE (Testing
Effort) [14], [15] and cost structure in testing and operational
phase[5], [6], [7], [16]. Compared with perfect debugging,
ID (Imperfect Debugging), a further description of software
testing process, can depict more details in testing. In
CM&ORPs based on imperfect debugging, some progress
has been achieved[8], [9], [10], [11], [12]. Hoang Pham[8] is
the first person who introduced ID from the perspective of
introducing new faults into CM&ORPs, where he combined
ID, penalty cost and random life cycle to serve as the
foundation for optimal software release. Considering

incomplete debugging, literature[9] took into account
warranty cost[5], [7], [16](including the cost in operational
phase) to determine optimal release policy. Moreover, based
on classical J-M model, Philip J. Boland[11] also studied
SRGM and CM&ORPs only with incomplete debugging.
Later, P. K. Kapur[10]explicitly pointed out minimum cost
(C(T)) can be solved by mathematical resolution, but fault
removal probability (p) should be estimated by real failure
data not by numerical solutions in [12], because p obtained
by numerical solutions is not very likely consistent with the
real testing process. Thus, Kapur presented SRGM with ID
covering fault removal probability and introduction of new
faults and studied CM&ORP-related problem, obtaining the
good effects. The main shortcomings of the above research
works are lack of deepness and of consideration of TE. On
the basis of related works in TE, Huang[14], [15]
incorporated generalized Logistic TEF into SRGM,
established CM&ORP models considering the improvement
of testing efficiency, and finally developed a more
comprehensive optimal software release policy. The
disadvantage lies in the lack of study of CM&ORP in ID.
 In response to the problems and deficiencies of current
research, the paper studies CM&ORP with ID considering
TE. SGIDM (Semi-Generalized Imperfect Debugging
Model) is proposed, software cost model across the life cycle
is built, and ORP-BEVRA (Optimum Release Policy Based
on Expected Value and Risk Analysis) is illustrated in this
paper. Finally, a numerical example is verified and analyzed
based on real testing data set.

2. SRGM with ID

To accurately describe real software test, the proposed
SRGM is based on the following assumptions[1], [10], [12],
[14], [15].

 * E-mail address: zhangce@hitwh.edu.cn
ISSN: 1791-2377 © 2013 Kavala Institute of Technology. All rights reserved.

Jestr
JOURNAL OF
Engineering Science
and Technology Review

 www.jestr.org

Ce ZHANG, Gang CUI, Fan-chao MENG, Hong-wei LIU and Shi-xiong WU
/Journal of Engineering Science and Technology Review 6 (3) (2013) 105-110

 112

(1) Fault removal process follows a NHPP (Non-
Homogeneous Poisson Process), where N(t) is the
cumulative number of failures with mean value function
m(t)=E(N(t)) and N(0)=0;

(2) In (t,t+Δt], a failure occurs at most and FDR (Fault
Detection Rate) is proportional to the remaining faults
in software by the current TE expenditures;

(3) In (t,t+Δt], fault is removed with probability p(t) and
new faults can be introduced with introduction rate r(t);

(4) TE is modeled by improved Logistic TEF formulation.
 The following differential equations can be derived from
above assumptions (1)~(4):

()() () () () ()

() ()()

() ()()

dm t dW t b t a t c t
dt dt
da t dc tr t
dt dt
dc t dm tp t
dt dt

⎧ = × × −⎪
⎪⎪

= ×⎨
⎪
⎪ = ×
⎪⎩

where a(t) represents the total number of faults in software,
c(t) is the cumulative number of faults removed in [0,t], b(t)
is FDR with current TE expenditures and w(t) denotes
testing resource consumption rate at t, that is dW(t)/dt=w(t).
The second formula in (1) means that the number of new
faults introduced is proportional to that of the removed at t
with proportion function r(t). Generally speaking, fault
introduction occurs in correcting not in detecting, so da(t)/dt
should be proportional to dc(t)/dt not dm(t)/dt. Solving the
above differential equations with the boundary condition of
m(0)=0, c(0)=0, a(0)=a yields:

()
()

0

0

() () 1 () ()

0

() () ()

1 () () 1 () ()
u

t

b p r w dv

m t a b v w v

b u p u r u w u e du dv
τ τ τ τ τ⎡ ⎤− −⎢ ⎥⎣ ⎦

= ×

⎡ ⎤∫
− −⎢ ⎥

⎢ ⎥⎣ ⎦

∫

∫

()

0
() () 1 () ()

0
() 1 () () () ()

u
b p r w dt

a t a b u p u r u w u e du
τ τ τ τ τ⎡ ⎤− −⎢ ⎥⎣ ⎦

⎡ ⎤∫
= +⎢ ⎥

⎢ ⎥⎣ ⎦
∫

()
()

0
() () 1 () ()

0

()() () ()

1 () () 1 () ()
u
b p r w dt

dm tt ab t w t
dt

b u p u r u w u e du
τ τ τ τ τ

λ

⎡ ⎤− −⎢ ⎥⎣ ⎦

= = ×

⎡ ⎤∫
− −⎢ ⎥

⎢ ⎥⎣ ⎦
∫

 During a testing process, with the expenditures of TE,
the faults in software are continually detected and removed
and the remaining faults are decreasing, which makes the
growing reliability. And in lots of situations, TE
consumption rate first shows an increase, and then a
decrease trend. So, we present:

()
()2

()
1

t

t

u v e
w t N

ue

α

α

α −

−

⎛ ⎞+⎜ ⎟=
⎜ ⎟+⎝ ⎠

where N is the totally available testing resources, α is
consumption rate and u and v represent the adjustment
coefficient. It's easy to prove that w(t) obtains maximum
when max

lnut α= . So, w(t) shows S-shaped trend.

Considering dW(t)/dt=w(t) and the existence of W(t)
initialization, the following equation can be derived as:

1()
1

t

t
veW t N
ue

α

α

−

−

⎛ ⎞−
= ⎜ ⎟

+⎝ ⎠

 This is a kind of improved Logistic TEF. At the
beginning of testing (t=0), W(0)=N(1–v)/(1+u), so W(0)≠0
which is different from that of Weibull TEF[17] and Logistic
TEF[14], [15]. This indicates that testing preparation works
will consume a part of testing resources at the beginning.
 Hereon, The main focus centers on the effect of W(t) on
SRGM. Without loss of generality, let b(t)=b, r(t)=r, p(t)=p,
thus m(t) can be rewritten as:

[]0
(1) () (1) *()() 1 1

(1) (1)

t
p r b w x dx bp r W ta am t e e

p r p r

⎡ ⎤− −⎢ ⎥ − −⎣ ⎦
⎡ ⎤∫ ⎡ ⎤= − = −⎢ ⎥ ⎣ ⎦− −⎢ ⎥⎣ ⎦

where

0
*() () () (0)

t
W t w x dx W t W= = −∫ . It is easy to know, m(t)

is increasing function with testing time t. At this point,
[](1) *()() () bp r W tt abw t eλ − −= is discussed as follows:

(1) 2
()(0) (0) 0
(1)
ab u vabw N

u
α

λ
+

= = >
+

；(2) () 0λ ∞ = . Thus it can

be seen that, as a whole, ()tλ remains a decreasing trend. (3)
Differentiate ()tλ with respect to t:

() 2(1) *()2 2
2

4
() ()

() 2 4

t p r bW t
t

t
d t ab u v Ne h he u
dt u e

α
α

α

λ α − − ⎡ ⎤⎡ ⎤ ⎛ ⎞+ ⎛ ⎞= − + + +⎢ ⎥⎢ ⎥ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦

where h=bp(1–r)(u+v)N. Obviously, ()d t
dt
λ is decreasing

function, and when ()()2 20,ln 4 2t h h u α⎡ ⎤∈ − + +⎢ ⎥⎣ ⎦
, () 0d t
dt
λ

≥ ;

when ()()()2 2ln 4 2 ,t h h u α∈ − + + ∞ , () 0d t
dt
λ

< . Thus, the

fact that ()tλ shows a decreasing then increasing S-shaped
variation trend versus time t, as indicated in most testing
process[1], [18], [19], means that the established SRGM can
be used to describe the testing process. Similarly, a(t) can be
solved as follows:

[](1) *()() 1
(1)

bp r W taa t re
r

− −⎡ ⎤= −⎣ ⎦−

 Obviously, a(t) is also increasing function with t. This
can be explained that, due to the new faults introduction rate
r, there is a rising process in the total number of faults in
software. When t→∞ , we can get:

(1)
1() () 1

(1)

u vbp r N
uam t m e

p r

+⎡ ⎤⎛ ⎞− − ⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦
⎡ ⎤
⎢ ⎥→∞ ≈ ∞ = −

− ⎢ ⎥⎣ ⎦

(1)

1() () 1
(1)

u vbp r N
uaa t a re

r

+⎡ ⎤⎛ ⎞− − ⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦
⎡ ⎤
⎢ ⎥→∞ ≈ ∞ = −

− ⎢ ⎥⎣ ⎦

 During testing, in time interval (t,t+x), software
reliability can be represented as(assume the latest failure
time is t, t≥0, x>0):

() ()() ()

(1) () (1) ()

(1) (0)1(|)

bp r W t x bp r W t

bp r W
a e e

p rm t x m t eR x t e e

− − + − −

− −

⎡ ⎤⎛ ⎞−
⎜ ⎟−⎢ ⎥⎜ ⎟−− + − ⎢ ⎥⎝ ⎠⎣ ⎦= =

 Considering incomplete debugging and introducing new
faults[20], the proposed SRGM in this study incorporates the

Ce ZHANG, Gang CUI, Fan-chao MENG, Hong-wei LIU and Shi-xiong WU
/Journal of Engineering Science and Technology Review 6 (3) (2013) 105-110

 113

measurement of TE into modeling, so it is defined as
SGIDM (Semi-Generalized Imperfect Debugging Model).

3. Software cost model and optimal release time policy
considering ID

3.1 Cost mode considering ID

Obviously, software cost is different under perfect or
imperfect debugging circumstance. Through analysis in
section 2, with imperfect debugging, m(t) can be influenced
by p, r and W*(t) and software cost can also be influenced
accordingly. Let T and TOPT be software release time and
optimal release time respectively, so software cost function
E[C(T, p, r)] can be denoted as:

() ()
()

()

0 1 0

2 4

0 1 2

40

[(, ,)]

() (,) ()

() () 1 (|)
() () ()

(,) () 1 (|)

t T t T
Test Operation

T

LC

LC
T

E C T p r C C

C C m T C p r w d

C m T m T C R x T
C C m T C m T m T
C p r w d C R x T

τ τ

τ τ

< ≥= +
⎡ ⎤= + + +⎢ ⎥⎣ ⎦

− + −⎡ ⎤⎣ ⎦
= + + − +

+ −

∫

∫

 Software cost structure is described in Figure 1 from
testing preparation (t=0) to the end of software life cycle
(t=TLC).

Fig. 1. Software life cycle and cost structure

As can be seen from Fig.1, cost function E[C(T, p, r)]
consists of testing phase cost t T

TestC < and operation phase
cost t T

OperationC ≥ . With W(0)≠0, there exists testing cost
initialization: C0=W(0)=N(1–v)/(1+u), where the related
parameters can be estimated by real failure data set. C1 and
C2 represent the expected cost of a fault removing during the
testing phase and the operation phase respectively and
C2>C1[3], [8], [12], TLC is the length of software life cycle,
and C4 is risk cost (that is the cost incurred by software
failure in operation phase). R(x|T) as the reliability after
releasing software, in particular, instead should be:

[](1) *()()()(|)
bp r W Tabw T e xT xR x T e eλ

− −⎡ ⎤−− ⎢ ⎥⎣ ⎦= =

C(p, r) is testing cost by current TE expenditure during
testing process including the cost caused by imperfect
debugging. Hereon, C(p, r) is defined as:

()
3(,)

1 1k

CC p r
p r

=
− −⎡ ⎤⎣ ⎦

where k is imperfect debugging adjustment factor for
describing the impact of imperfect debugging on cost. Min
Xie[12] has introduced the concept of testing level (TL)
denoted by p describing the extent of perfect debugging.
And on this basis we redefine TL including fault
introduction rate r as follows: TL=p(1–r). Obviously, larger
values of TL indicate higher perfect debugging content

(namely, TL is more close to 1). In the meantime, when p→1
and r→0, TL→1 and (,)C p r →∞ , which matches what one
expects from perfect debugging process.

3.2 Cost mode and optimal release policy
Considering minimum of reliability R0 that should be
reached when releasing software, the optimal release
problem can be formulated as the follows:

()
0 0

2 1

Min , , ,
S. t. (|) , 0 1 0,

0,0 1 0.

E C T p r
R x T R where R and x
for C C r p and T

⎧ ⎡ ⎤⎣ ⎦⎪
≥ < < >⎨

⎪ > > < << < ≥
⎩

 In equation above, objective function and constraints are
both nonlinear with respect to argument T, so the solving
process can be viewed as NPP (Nonlinear Programming
Problem). Differentiating E[C(T, p, r)] with respect to T, we
can get:

()
()

()
()

()
()

3
1 2 4

()3
1 2 4

(1) *() ()3
2 1 4

[(, ,)] () (|)()
1 1

()() ()
1 1

()()
1 1

(, ,)

k

T x

k

bp r W T T x

k

CdE C T p r dm T dR x TC C w T C
dT dT dTp r

C d TC C T w T C xe
dTp r

C d TC C abe w T C xe
dTp r

F T p r

λ

λ

λ
λ

λ

−

− − −

= − + −
− −⎡ ⎤⎣ ⎦

= − + +
− −⎡ ⎤⎣ ⎦

⎡ ⎤
⎢ ⎥= − − +
⎢ ⎥− −⎡ ⎤⎣ ⎦⎣ ⎦

=

Substituting ()Tλ and ()d T dTλ into the above equation can

get: ()
()

*()

*()3
2 1

*() ()2
4

(, ,) ()
1 1

() ()
lW T

lW T

k

lW T abxw T e

CF T p r C C abe w T
p r

dw TC abx lw T e
dT

−

−

⎡ ⎤− +⎣ ⎦

⎡ ⎤
⎢ ⎥= − − +
⎢ ⎥− −⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤−⎢ ⎥⎣ ⎦

,

where l=bp(1–r). F(T, p, r) is the function that depends on
w(T) and many other parameters. It is clear that,
when T →∞ , () 0w ∞ = and (, ,) 0F p r∞ = ; when T=0,

()

()

3
2 1

2 2
4 (0)

4

(0, ,) () (0)
1 1

() 1
(1)

k

abw x

CF p r C C ab w
p r

ab u v N u h C x
e

u
α

−

⎡ ⎤
⎢ ⎥= − − +
⎢ ⎥− −⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤+ − −
⎢ ⎥

+⎢ ⎥⎣ ⎦

.

 Obviously, due to the complexity of parameters, there
exists possibility of F(0, p, r)>0 or F(0, p, r)<0. In summary,

[(, ,)]dE C T p r
dT

 remains downward trend, and is gradually

tending to 0. Due to the uncertainty in relation of
[(, ,)]dE C T p r
dT

 and 0, variation tendency (increasing function

or decreasing function) of E[C(T, p, r)] is not directly
determined by F(T, p, r). So, nonlinear and complex F(T, p,
r) means the above optimization problem has to be solved by
numerical calculation.
 Furthermore, through the equation of R(x|T), R(x|T) is a
increasing function, thus we can get: if R(x|0)<R0, then exists
T≥TR(x|T)≥R0= T1 that makes R(x|T)≥R0 met, that is R(x|T1)=R0;

if R(x|0) ≥R0, then for 0T∀ ≥ , R(x|T) ≥R0，that is TR(x|T)≥R0=
T1=0.

C(p, r)W*(T)

T+x C0

0 T TStart TLC
C2[m(TLC)– m(T)] C1m(T)

C4[1– R(x|T)]

t T
TestC <

t T
OperationC ≥

Ce ZHANG, Gang CUI, Fan-chao MENG, Hong-wei LIU and Shi-xiong WU
/Journal of Engineering Science and Technology Review 6 (3) (2013) 105-110

 114

3.3 Risk analysis of cost mode

Obviously, based on the above analysis, the obtained
minimum cost is ETC (Expected Testing Cost). Bo Yang has
noted that[21] ATC (Actual Testing Cost): C(T, p, r) is a
random variable and it may have a serious deviation from
ETC: E[C(T, p, r)]. There is a risk that ATC may also be
larger than ETC (a certain extent uncertainty), resulting in
the serious problem of budget overruns during software
testing. So, it is necessary to conduct a risk evaluation. Thus,
the optimal release problem can be extended as:

()

() []{ }
0 0

2 1 3 4

Min , , ,
S. t. (|) , 0 1 0,

() , () Pr (, ,) 1 (, ,)
,0 , 1,

0, 0, 0,0 1 0.

E C T p r
R x T R where R and x
P T where P T C T p r E C T p r

for C C C C r p and T

σ σδ σ
σ δ

⎧ ⎡ ⎤⎣ ⎦⎪ ≥ < < >⎪⎪
< = > +⎨

⎪ < <
⎪ > > > > < << < ≥⎪⎩

 The second condition indicates ()P Tσ is a risk function,
the probability of ATC exceeding () []1 (, ,)E C T p rσ+ . By
setting coefficient ()1 σ+ , ATC exceeding ETC is limited to a
specified range: thresholdδ . Substituting E[C(T,p,r)] into
the equation and by calculating ()P Tσ , we can get:

() ()
()1

2
()

0 0

() () ()
() 1

! !
LC

C i i jCI
m T LC

i j

m T m T m T
P T e

i j

χ

σ

⎢ ⎥
−⎢ ⎥

⎣ ⎦
−

= =

⎡ ⎤ ⎡ ⎤−
= − ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑

where

()

() () ()

0 4
1

2 2 1
1

(,) *() 1 (|)

1
() ()LC

C C p r W T C R x T
C

I
C m T C C m T

C

σ
χ

σ

⎢ ⎥= + + −⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥=
⎢ ⎥+
+ − −⎡ ⎤⎢ ⎥⎣ ⎦
⎣ ⎦

 and x⎢ ⎥⎣ ⎦ denotes the largest integer value that is less than or
equal to x.

3.4 Optimal release time algorithm: ORP-BEVRA
On the basis of the above comprehensive analysis, the
solving algorithm: ORP-BEVRA (Optimum Release Policy-
Based on Expected Value and Risk Analysis) about
existence and the uniqueness for the optimum solution is
presented.

1: ORP-BEVRA(Optimum Release Policy-Based on Expected

Value and Risk Analysis)
2:

3:
4:

5:

If F (0, p, r)<0 and F(TLC, p, r)>0, then exist a unique solution
T0 makes F(T0, p, r)=0.
In this case if R(x|0)<R0, then T*=max(T0, T1);
If F (0, p, r)<0 and F(TLC, p, r)>0, then exist a unique solution
T0 makes F(T0, p, r)=0.
In this case if R(x|0) ≥R0, then T*=max(T0, 0);

6:

7:

If F (0, p, r)<0 and F(TLC, p, r)<0 and R(x|0)<R0, then
T*=max(TLC, T1);
If F (0, p, r)<0 and F(TLC, p, r)<0 and R(x|0) ≥R0, then T*=
TLC;

8:
9:

If F (0, p, r)>0 and F(TLC, p, r)>0 and R(x|0)<R0, then T*= T1;
If F (0, p, r)>0 and F(TLC, p, r)>0 and R(x|0) ≥R0, then T*= 0;

// T* is quasi-optimal release time and can be calculated and obtained by
the combination of F(T, p, r) curve shape and reliability constraint
condition (R(x|T)≥R0).
10: If (*)P Tσ δ< then TOPT =T*;

11: Else obtain the solution of ()P Tσ δ< , and denote it with TRisk

(TRisk >T*), then TOPT = TRisk;

 In real situation, based on ORP-BEVRA, firstly, quasi-
optimal release time T* can be obtained, then a risk
evaluation is conducted according to risk objective δ set by
software project manager，and finally optimal release time
TOPT can be obtained.

4. Numerical examples
In this section, to demonstrate the validity of proposed
model, we apply the proposed SRGM, cost model and
optimal release policy to a real software failure data set.

4.1 SRGMs performance validation
4.1.1 Comparison criteria and data set

In order to verify the feasibility of the models, we selects
failure data set [22] that has been widely used to illustrate
the performance of SRGMs. In the meanwhile, to
quantitatively differentiate the differences in the models, the
following fitness and prediction criteria are adopted:

()2
1

1 ()
K

i i
i

MSE m t n
K =

= −∑

() (1)
K

i i
i k

MEOP m t n n k
=

= − − +∑

()() ()
2

1
() 1

K

i i
i

Variation n m t Bias K
=

= − − −∑

2 2RMSPE Variation Bias= +

()
1

1 ()
K

i i
i

Bias n m t
K =

= −∑

2

1
2

1

1

()
1,

K

i K
i

iK
i

i
i

m t n
R square n n

Kn n

=

=

=

⎡ ⎤−⎣ ⎦
− = =

⎡ ⎤−⎣ ⎦

∑
∑

∑

()2 2

1 1

() 100%
K K

i i i
i i

TS m t n n
= =

= − ×∑ ∑

()q

q

m t q
RE

t
−

=

where K is the number of failure data sample, ni and m(ti)
respectively represent the cumulative number of failures and
estimated value of faults by ti. Smaller values of MSE,
MEOP, Variation, RMSPE and TS, and the closer to 1 of R-
square indicate better fitting accuracy. The quickly closer to
0 of RE reveals better prediction performance.
4.1.2 Model performance analysis
The comparisons between the observed data and the
proposed model are illustrated graphically in Fig.2. For
comparison purposes, the fitting of three typical
SRGMs[10], [23], [24] related to TEF and/or ID are also
shown in Fig.2. Fig.3 demonstrates the relative error (RE)
curves for the models.

Ce ZHANG, Gang CUI, Fan-chao MENG, Hong-wei LIU and Shi-xiong WU
/Journal of Engineering Science and Technology Review 6 (3) (2013) 105-110

 115

Fig. 2-1. Kapur model Fig. 2-2. Ahmad model

Fig. 2-3. Huang model Fig. 2-4. SGIDM
Fig. 2. Comparison of goodness of fitting of the models

Fig. 3. RE curves of the models

 Thus it can be seen that, SGIDM and actual failure
curves are closely overlapped. In order to make a qualitative
comparison, the evaluation criteria values of the models are
listed in Table 1. From Table 1, we can see that the proposed
model (SGIDM) has lower value of MSE, Variation,
RMSPE, TS, MEOP, and R-square value is closer to 1. On
average, SGIDM yields a better fit for this data set and fits
significantly better than the others. On the other hand, it is
clear from Fig.3 that the RE value of SGIDM can quickly
approach zero in comparison with the other models and
provide better performance of prediction.

Table 1 Comparison of descriptive power of the models

Model Huang
Model[23]

Ahmad
Model[24]

Kapur
Model[10] SGIDM

MSE 114.085
11020

85.9633
8226 139.815 84.8733

3754

Variation 10.7718
9151

9.50029
390

12.0892
307

9.4646
0056

RMSPE 11.7367
0504

9.62537
492

12.3790
071

9.46717
703

R-square 1.06795
470

1.01778
405

0.94130
928

0.99552
145

TS 4.7624
28%

4.1340
02%

5.2721
90%

4.1077
08%

MEOP 7.49602
081

7.07343
043

9.89065
084

7.15859
585

Consequently, from Fig.2-3 and Table1, it can be concluded
that the proposed model (SGIDM) fits the real failure data
better than the others and gets reasonable prediction in
estimating the number of software errors.

4.2 Optimal software release time problem

Now we will explain optimal release time problem based on
the cost parameters in literature[7], [14], [15] and
appropriate adjustments. In particular, it's important to point
out that C0 should be calculated (C0=W(0)=N(1–v)/(1+u))
based on parameters obtained by real failure data set.
 Firstly, based on ORP-BEVRA, optimal release time
(TOPT), minimal expected cost (E[C(TOPT,p,r)]), the
cumulative number of faults detected by TOPT (m(TOPT)), and
reliability by TOPT (R(x|TOPT)) are calculated as shown in
Table 2. In comparison, the cost model and optimal release
algorithm related to imperfect debugging in literature[10] are
also incorporated. It should be pointed out that Xie model[12]
is not included here, because it has been proved that fault
removal probability p is obtained by numerical method not
estimated by real failure data set. Furthermore, expected cost
curve of Kapur model and the proposed model (SGIDM) are
depicted in Fig.4. It can be seen that two curves both show
firstly an increase-and-then-a-decrease trend, so we can
conclude that there exists minimum for both. Table 2 lists
the values of TOPT, E[C(TOPT,p,r)], m(TOPT) and R(x|TOPT) of
two models.

Fig. 4-1. Kapur model Fig. 4-2. SGIDM
Fig. 4. Expected cost curve

Table 2 Model result comparisons for (C0,C1,C2,C3,C4) =
(1.14,25,50,80,1000), x=0.05, R0=0.85, k=2, TLC=100 weeks

Model TOPT E[C(TOPT,p,r)] m(TOPT) R(x|TOPT)
Kapur model 62.65 28629.24 659.56 0.850006
SGIDM 26.19 19878.58 378.62 0.850090

 As seen from Table 2, it is found that two results of
experiment are significantly different: compared with Kapur
model, the optimal release time of SGIDM is much shorter,
its minimal expected cost much lower than that of Kapur
model, and reliability obtained by optimal release time
relatively higher. The reason for this is that the two SRGMs
are different in nature in describing software testing process.
In section 4.1, the proposed model has been proved to be
optimal. By contrast, although incomplete debugging and
introducing new faults are considered in Kapur model, the
description and formulation are “rough” (the expression of
a(t) is set subjectively) and TE is not incorporated either.
Furthermore, risk cost in operational stage is also ignored in
Kapur model.
 Next, we investigate the relationship of the size between
E[C(T, p, r)] and C(T, p, r), and conduct uncertainty risk
evaluation. Without loss of generality, let 0.1σ = , 0.2σ = ,

0.1δ = , 0.15δ = , and then ()P Tσ δ< can be calculated. The
curves of ()P Tσ with 0.1σ = and 0.2σ = have been drawn in
Fig.5. It shows that the two curves present decreasing trend
and the maximum are respectively 0.02 and 3×10－5. Table 3
further illustrates the relationship between ()P Tσ and δ .

Ce ZHANG, Gang CUI, Fan-chao MENG, Hong-wei LIU and Shi-xiong WU
/Journal of Engineering Science and Technology Review 6 (3) (2013) 105-110

 116

Fig. 5-1. σ= 0.1 Fig. 5-2. σ= 0.2

Fig. 5. Curve of ()P Tσ

Table 3 ()P Tσ δ< for varies values ofσ and δ

Case
()P Tσ δ<

(0.1σ = ,
0.1δ =)

()P Tσ δ<

(0.1σ = ,
0.15δ =)

()P Tσ δ<

(0.2σ = ,
0.1δ =)

()P Tσ δ<

(0.2σ = ,
0.15δ =)

max()P Tσ 0.02 3×10－5

Result
[]
[]
0.1()

0.1

P T

δ

<

=
 []

[]
0.1()

0.15

P T

δ

<

=
 []

[]
0.2 ()

0.1

P T

δ

<

=
 []

[]
0.2 ()

0.15

P T

δ

<

=

Yes Yes Yes Yes
 From Fig.5 and Table 3, we can see that the final results
are ()P Tσ δ< that indicates that actual testing cost
expenditure is approximate to expected testing cost and there
is no risk of cost overrun.
 Fig.6 graphically explores three dimensional image of
the cumulative number of faults detected, cost and software
release time.

Fig. 6. The cumulative number of faults detected and cost with release
time

 As shown in Fig.6, taken as a whole, an extension of
release time T results in the growth of cost C(T, p, r). Being
similar to S-shaped ()tλ discussed in section 2, C(T, p, r)
also has the characteristics of decreasing firstly and then
increasing and it tends to be stabilized gradually about 40
weeks later. From Fig.6, m(T) continues to grow over release
time T, but displays significant-initially-and-slow-later-
increasing trend. It can be explained by the fact that simple
faults that are easy to be detected and removed account for a
relatively large proportion during initial testing, and the
proportion of complex faults increases gradually as the
testing proceeds. Accordingly, under the influence of
imperfect debugging (mainly reflected by m(T)), the rising
speed of C(T, p, r) varies from high to low. This means that,
in software testing, in order to get adequate fault removal
probability(p) and introduction rate (r), to establish accurate
SRGM, to manage effectively testing cost and determine
optimal software release planning, available testing
resources(including test cases, CPU time and man power,
etc.) should be allocated reasonably according to the
projected target, and testing process should be improved and
optimized dramatically.

4.3 Sensitivity analysis
Due to many parameters in E[C(T, p, r)], sensitivity analysis
is conducted on p, r, k, C3 and their combinations, and could
be similar in other situations. Sensitivity analysis of
parameterθ can be performed by the following formula:

() ()
()

() ()
()

1 1 2 2 1 2

1 2

(1)
100%, single parameter

(1) ,(1) ,...,(1) , ,...
100%,multiple parameter

, ,...

RC

OPT OPT

OPT

OPT i i OPT i

OPT i

ROV IOVS
IOV

T v T
T

T v v v T
T

θ θ

θ
θ θ θ θ θ θ

θ θ θ

−
= =

+ −⎧
×⎪

⎪
⎨ + + + −⎪ ×
⎪⎩

where IOV is initial optimization value, ROV is regained
optimization value and vi is relative changes of iθ . Hereon,
relative changes of parameters are set ±10%、±20% and
±30%. Optimal release time (TOPT), expected cost
(E[C(TOPT,p,r)]) and reliability by TOPT (R(x|TOPT)) are
considered when the parameters of E[C(T, p, r)] change.

4.3.1 Single parameter sensitivity analysis
Fig.7 plots sensitivity analysis results of p, r, k and C3,
including TOPT, E[C(TOPT,p,r)] and R(x|TOPT). From Fig.7-1,
smaller value of p affects optimal release time significantly,
and larger value of p affects expected cost largely. For
example, when p decreases from 30% to 10%, optimal
release time (TOPT) increases from 5% to 2.8 expanding
nearly 3.62 times, and meanwhile, reliability by TOPT
improves by a factor of 18% over delay of optimal release
time. It can be explained that, this decrease of p causes a
decline in complete removal probability, and thus repairing
the same amount of faults takes more time, which results in
delay in optimal release time. On the other hand, when p
increases from 10% to 30%, expected cost (E[C(TOPT,p,r)])
increases from 5.5% to 68% and expands nearly 1.6 times.
In this course, optimal release time precedes baseline values
from 4% to 11%. By examining Fig.7-2, positive and
negative changes of r have some influences on TOPT and
E[C(TOPT,p,r)], but these influences are not significant
(<1%).

Fig. 7-1. Sensitivity analysis: p Fig. 7-2. Sensitivity analysis: r

Fig. 7-3. Sensitivity analysis: k Fig. 7-4. Sensitivity analysis: C3
Fig. 7. Single parameter sensitivity analysis

 From Fig.7-3 and Fig.7-4, k and C3 have some influence
on E[C(TOPT,p,r)], but no influence on TOPT and R(x|TOPT)
(this is not reflected in Fig.7-3 and Fig.7-4). For example,
when C3 decreases from 10% to30% and increases from
10% to 30% respectively, E[C(TOPT,p,r)] decreases from

Ce ZHANG, Gang CUI, Fan-chao MENG, Hong-wei LIU and Shi-xiong WU
/Journal of Engineering Science and Technology Review 6 (3) (2013) 105-110

 117

4.5% to 13.8% and increases from 4.7% to 13.8%. So, it can
be concluded that the changes of C3 have great effect on the
E[C(TOPT,p,r)]. Sensitivity analysis of the other single
parameters can also be conducted in a similar fashion.

4.3.2 Multiple parameter sensitivity analysis
Fig.8 shows the results of partial two-parameter sensitivity
analysis. From Fig.8-1, during the decreasing of p and C3
from 10% to 30%, TOPT postpones from 4% to 2.8
(expanding nearly 3.65 times), E[C(TOPT,p,r)] decreases
from 5% to 12%, and R(x|TOPT) improves 18%. The reason is
that, when p decreases, the curve shape of expected cost
changes from decreasing-then-increasing to decreasing,
which postpones optimal release time. Thus, we can see that
negative changes of p and C3 have significant influences on
TOPT and some influence on R(x|TOPT); positive changes of p
and C3 have large influence on E[C(TOPT,p,r)], some
influence on TOPT and no influence on R(x|TOPT). Finally
Fig.7 and Fig.8-1 reveal that p has significant influence on
TOPT and C3 has some influence on E[C(TOPT,p,r)]. Similarly,
the changes of p and k have influences on TOPT and
E[C(TOPT,p,r)]: when p and k decrease 30%, TOPT is delayed
about 13.5% and E[C(TOPT,p,r)] increases 6%; when both
increase 30%, E[C(TOPT,p,r)] increases 28%, TOPT is brought
forward by 11.5%, and R(x|TOPT) remains unchanged.
Finally, the positive or negative changes of k and C3 have
low influence on E[C(TOPT,p,r)] (<5%) and no influence on
TOPT and R(x|TOPT).
 Similarly, sensitivity analysis of the other multiple
parameter combinations can also be conducted. Altogether,
changes of these parameters have subtle influence on
R(x|TOPT) and different levels of influence on E[C(TOPT,p,r)].
Especially, p, r, the combination of p and k as well as p and
C3 have influences on TOPT, and the influence brought by p is
more significant. With imperfect debugging close to real
testing, software engineer can allocate available resources
based on much experience and knowledge of the system
being tested, decide the optimal parameters to model SRGM,
determine cost model and optimal release policy, which
boosts their testing efficiency.

Fig. 8-1. Sensitivity analysis: p, C3 Fig. 8-2. Sensitivity analysis: p,

k

Fig. 8-3. Sensitivity analysis: k, C3
Fig. 8. Multiple parameter sensitivity analysis

5. Conclusions
During software testing, reliability, testing resources and
cost, and release time are interrelated and interdependent
factors, so determining proper correlation model is the key
to optimizing testing process. The paper presents SRGM
with ID, cost model and optimal release policy and studies
the effect of ID on SRGM, cost model and optimal release.
Compared with other models, the proposed SRGM fits the
failure data better and predicts the future behavior well. On
this basis, ID is incorporated into software cost model and
optimal release policy based on risk analysis is elaborated.
In real software engineering situations, software testing is
subject to imperfect debugging, so software engineer should
optimize testing process making a balance between cost and
reliability objective.

6. Acknowledgments
 This research was supported in part by the National Key
R&D Program of China(No.2013BA17F02), the National
Nature Science Foundation of China (No.60503015) and the
Shandong province Science and Technology Program of
China(No.2011GGX10108, 2010GGX10104).

References

1. Lin, C. T., Huang, C. Y., “Enhancing and measuring the predictive

capabilities of testing-effort dependent software reliability models”,
The Journal of Systems and Software 81, 2008, pp. 1025-1038.

2. Jha, P. C., Gupta, D., Yang, B., et al., “Optimal testing resource
allocation during module testing considering cost, testing effort and
reliability”, Computers & Industrial Engineering 57(3), 2009, pp.
1122-1130.

3. Boehm, B., Abts, C., Chulani, S., “Software development cost
estimation approaches-A survey”, Annals of Software Engineering
10(1-4), 2000, 177-205.

4. Sharma, K., Garg, R., Nagpal, C. K., et al., “Selection of optimal
software reliability growth models using a distance based
approach”, IEEE Transactions on Reliability 59(2), 2010, pp. 266-
276.

5. Pham, H., Zhang, X., “A software cost model with warranty and
risk costs”, IEEE Transactions on Computers 48(1), 1999, pp. 71-
75.

6. Zhang, X., Pham, H., “A software cost model with error removal
times and risk costs”, International Journal of Systems Science
29(4), 1998, pp. 435-442.

7. Zhang, X., Pham, H., “A software cost model with warranty cost,
error removal times and risk costs”, IIE transactions 30(12), 1998,
pp. 1135-1142.

8. Pham, H., “A software cost model with imperfect debugging,
random life cycle and penalty cost”, International Journal of
Systems Science 27(5), 1996, pp. 455-463.

9. Williams, D., “Study of the warranty cost model for software
reliability with an imperfect debugging phenomenon”, Turk J Elec
Engin 15(3), 2007, pp. 369-381.

10. Kapur, P. K., Gupta, D., Gupta, A., et al., “Effect of introduction of
fault and imperfect debugging on release time”, Ratio Mathematica
18 (Journal of Applied Mathematics), 2008, pp. 62-90.

11. Boland, P. J., Ní, Chuív. N., “Optimal times for software release
when repair is imperfect”, Statistics & probability letters 77(12),
2007, pp. 1176-1184.

12. Xie, M., Yang, B., “A study of the effect of imperfect debugging on
software development cost”, IEEE Transactions on Software
Engineering 29(5), 2003, pp. 471-473.

13. Kapur, P. K., Pham, H., “Aggarwal A G, et al. Two Dimensional
Multi-Release Software Reliability Modeling and Optimal Release
Planning”, IEEE Transactions on Reliability 61(3), 2012, pp. 758-
768.

14. Huang, C. Y., Lyu, M. R., “Optimal release time for software
systems considering cost, testing-effort, and test efficiency”, IEEE
Transactions on Reliability 54(4), 2005, pp. 583-591.

Ce ZHANG, Gang CUI, Fan-chao MENG, Hong-wei LIU and Shi-xiong WU
/Journal of Engineering Science and Technology Review 6 (3) (2013) 105-110

 118

15. Huang, C. Y., “Cost-reliability-optimal release policy for software
reliability models incorporating improvements in testing efficiency”,
Journal of Systems and Software 77(2), 2005, pp. 139-155.

16. WILLIAMS, D. R. P., “Optimal release policies for a software
system with warranty cost and change-point phenomenon”, Turkish
Journal of Electrical Engineering & Computer Sciences 21, 2013,
pp. 234-245.

17. Ahmad, N., Bokhari, M. U., Quadri, S. M. K., et al., “The
exponentiated Weibull software reliability growth model with
various testing-efforts and optimal release policy: a performance
analysis”, International Journal of Quality & Reliability
Management 25(2), 2008, pp. 211-235.

18. Huang, C. Y., “Performance analysis of software reliability growth
models with testing-effort and change-point”, Journal of Systems
and Software 76(2), 2005, pp. 181-194.

19. Kapur, P. K., Singh, V. B., Anand, S., et al., “Software reliability
growth model with change-point and effort control using a power
function of the testing time”, International Journal of Production
Research 46(3), 2008, pp. 771-787.

20. Zhang, C., Cui, G., Liu, H. W., et al., “Unified and Flexible SRGM
Framework Incorporating Two Types of Imperfect Debugging”,
Journal of Convergence Information Technology 8(8), 2013, pp.
751-758.

21. Yang, B., Hu, H., Jia, L., “A study of uncertainty in software cost
and its impact on optimal software release time”, IEEE
Transactions on Software Engineering 34(6), 2008, pp. 813-825.

22. Ohba, M., “Software reliability analysis models”, IBM Journal of
research and Development 28(4), 1984, pp. 428-443.

23. Huang, C. Y., Kuo, S. Y., Lyu, M. R., “An assessment of testing-
effort dependent software reliability growth models”, IEEE
Transactions on 56(2), 2007, pp. 198-211.

24. Ahmad, N., Khan, M. G. M., Rafi, L. S., «A study of testing-effort
dependent inflection S-shaped software reliability growth models
with imperfect debugging”, International Journal of Quality &
Reliability Management 27(1), 2010, pp. 89-110.

