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Abstract 
 

In allusion to the flaws in software cost model and optimal release policy, inadequate consideration for real debugging, a 
cost model and optimal release policy for SRGM (Software Reliability Growth Model) incorporating imperfect 
debugging is proposed. A SRGM is presented, based on incomplete debugging, introduction of new faults and TE 
(Testing Effort). It is verified to describe real testing process well by actual failure data set and has better performance as 
compared to other models. Based on the proposed SRGM, a formulation of cost function is also established especially 
considering the impact of imperfect debugging on cost. Furthermore, the optimal release policies given limited reliability 
objective and the uncertainty in actual total cost exceeding expected one are developed and elaborated. Finally, a 
numerical example and related data analyses are illustrated and parameter sensitivity analysis is performed. 
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1. Introduction 
 
To improve reliability, testing resources are expended to 
detect and remove faults during the testing phase of a 
software product[1], [2]. Generally speaking, achieving 
higher reliability needs more cost and software release time 
could be postpone; less testing time could not incur cost 
overrun, but the reliability of software can't be guaranteed 
completely[3]. Currently, many SRGMs (Software 
Reliability Growth Models) have been proposed[4] to 
measure, predict and ensure reliability. Moreover, the 
growth of reliability, and the tradeoff between cost 
expenditure and optimal release both depend on the accuracy 
of SRGM established. So, in SRE (Software Reliability 
Engineering), building accurate SRGM, implementing 
effectively balance control between software cost—
reliability and optimal release time are important guarantees 
for realizing projected objectives. 
 So far, many research about CM&ORPs (Cost Model & 
Optimal Release Policies) have been presented and 
studied[5], [6], [7], [8], [9], [10], [11], [12], [13]. They 
mainly focus on several areas including SRGM with perfect 
or imperfect debugging[8], [9], [10], [11], [12], TE (Testing 
Effort) [14], [15] and cost structure in testing and operational 
phase[5], [6], [7], [16]. Compared with perfect debugging, 
ID (Imperfect Debugging), a further description of software 
testing process, can depict more details in testing. In 
CM&ORPs based on imperfect debugging, some progress 
has been achieved[8], [9], [10], [11], [12]. Hoang Pham[8] is 
the first person who introduced ID from the perspective of 
introducing new faults into CM&ORPs, where he combined 
ID, penalty cost and random life cycle to serve as the 
foundation for optimal software release. Considering 

incomplete debugging, literature[9] took into account 
warranty cost[5], [7], [16](including the cost in operational 
phase) to determine optimal release policy. Moreover, based 
on classical J-M model, Philip J. Boland[11] also studied 
SRGM and CM&ORPs only with incomplete debugging. 
Later, P. K. Kapur[10]explicitly pointed out minimum cost 
(C(T)) can be solved by mathematical resolution, but fault 
removal probability (p) should be estimated by real failure 
data not by numerical solutions in [12], because p obtained 
by numerical solutions is not very likely consistent with the 
real testing process. Thus, Kapur presented SRGM with ID 
covering fault removal probability and introduction of new 
faults and studied CM&ORP-related problem, obtaining the 
good effects. The main shortcomings of the above research 
works are lack of deepness and of consideration of TE. On 
the basis of related works in TE, Huang[14], [15] 
incorporated generalized Logistic TEF into SRGM, 
established CM&ORP models considering the improvement 
of testing efficiency, and finally developed a more 
comprehensive optimal software release policy. The 
disadvantage lies in the lack of study of CM&ORP in ID. 
 In response to the problems and deficiencies of current 
research, the paper studies CM&ORP with ID considering 
TE. SGIDM (Semi-Generalized Imperfect Debugging 
Model) is proposed, software cost model across the life cycle 
is built, and ORP-BEVRA (Optimum Release Policy Based 
on Expected Value and Risk Analysis) is illustrated in this 
paper. Finally, a numerical example is verified and analyzed 
based on real testing data set. 
  
 
2. SRGM with ID 
 
To accurately describe real software test, the proposed 
SRGM is based on the following assumptions[1], [10], [12], 
[14], [15]. 
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(1)  Fault removal process follows a NHPP (Non-
Homogeneous Poisson Process), where N(t) is the 
cumulative number of failures with mean value function 
m(t)=E(N(t)) and N(0)=0; 

(2) In (t,t+Δt], a failure occurs at most and FDR (Fault 
Detection Rate) is proportional to the remaining faults 
in software by the current TE expenditures; 

(3) In (t,t+Δt], fault is removed with probability p(t) and 
new faults can be introduced with introduction rate r(t); 

(4) TE is modeled by improved Logistic TEF formulation. 
 The following differential equations can be derived from 
above assumptions (1)~(4): 
 

( )( ) ( ) ( ) ( ) ( )

( ) ( )( )

( ) ( )( )

dm t dW t b t a t c t
dt dt
da t dc tr t
dt dt
dc t dm tp t
dt dt

⎧ = × × −⎪
⎪⎪

= ×⎨
⎪
⎪ = ×
⎪⎩

 

 
where a(t) represents the total number of faults in software, 
c(t) is the cumulative number of faults removed in [0,t], b(t) 
is FDR with current TE expenditures and w(t) denotes 
testing resource consumption rate at t, that is dW(t)/dt=w(t). 
The second formula in (1) means that the number of new 
faults introduced is proportional to that of the removed at t 
with proportion function r(t). Generally speaking, fault 
introduction occurs in correcting not in detecting, so da(t)/dt 
should be proportional to dc(t)/dt not dm(t)/dt. Solving the 
above differential equations with the boundary condition of 
m(0)=0, c(0)=0, a(0)=a yields:  
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 During a testing process, with the expenditures of TE, 
the faults in software are continually detected and removed 
and the remaining faults are decreasing, which makes the 
growing reliability. And in lots of situations, TE 
consumption rate first shows an increase, and then a 
decrease trend. So, we present:  
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where N is the totally available testing resources, α is 
consumption rate and u and v represent the adjustment 
coefficient. It's easy to prove that w(t) obtains maximum 
when max

lnut α= . So, w(t) shows S-shaped trend. 

Considering dW(t)/dt=w(t) and the existence of W(t) 
initialization, the following equation can be derived as: 
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 This is a kind of improved Logistic TEF. At the 
beginning of testing (t=0), W(0)=N(1–v)/(1+u), so W(0)≠0 
which is different from that of Weibull TEF[17] and Logistic 
TEF[14], [15]. This indicates that testing preparation works 
will consume a part of testing resources at the beginning.  
 Hereon, The main focus centers on the effect of W(t) on 
SRGM. Without loss of generality, let b(t)=b, r(t)=r, p(t)=p, 
thus m(t) can be rewritten as:   
 

[ ]0
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where

0
*( ) ( ) ( ) (0)

t
W t w x dx W t W= = −∫ . It is easy to know, m(t) 

is increasing function with testing time t. At this point, 
[ ](1 ) *( )( ) ( ) bp r W tt abw t eλ − −=  is discussed as follows: 
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+
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+

；(2) ( ) 0λ ∞ = . Thus it can 

be seen that, as a whole, ( )tλ  remains a decreasing trend. (3) 
Differentiate ( )tλ with respect to t:   
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where h=bp(1–r)(u+v)N. Obviously, ( )d t
dt
λ is decreasing 

function, and when ( )( )2 20,ln 4 2t h h u α⎡ ⎤∈ − + +⎢ ⎥⎣ ⎦
, ( ) 0d t
dt
λ
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when ( )( )( )2 2ln 4 2 ,t h h u α∈ − + + ∞ , ( ) 0d t
dt
λ

< . Thus, the 

fact that ( )tλ shows a decreasing then increasing S-shaped 
variation trend versus time t, as indicated in most testing 
process[1], [18], [19], means that the established SRGM can 
be used to describe the testing process. Similarly, a(t) can be 
solved as follows: 
 

[ ](1 ) *( )( ) 1
(1 )
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r
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 Obviously, a(t) is also increasing function with t. This 
can be explained that, due to the new faults introduction rate 
r, there is a rising process in the total number of faults in 
software. When t→∞ , we can get: 
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 During testing, in time interval (t,t+x), software 
reliability can be represented as(assume the latest failure 
time is t, t≥0, x>0): 

( ) ( )( ) ( )
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 Considering incomplete debugging and introducing new 
faults[20], the proposed SRGM in this study incorporates the 
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measurement of TE into modeling, so it is defined as 
SGIDM (Semi-Generalized Imperfect Debugging Model). 
 
 
3. Software cost model and optimal release time policy 
considering ID 
 
3.1 Cost mode considering ID 
 
Obviously, software cost is different under perfect or 
imperfect debugging circumstance. Through analysis in 
section 2, with imperfect debugging, m(t) can be influenced 
by p, r and W*(t) and software cost can also be influenced 
accordingly. Let T and TOPT be software release time and 
optimal release time respectively, so software cost function 
E[C(T, p, r)] can be denoted as: 
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 Software cost structure is described in Figure 1 from 
testing preparation (t=0) to the end of software life cycle 
(t=TLC). 

 
Fig. 1. Software life cycle and cost structure 
 
 
As can be seen from Fig.1, cost function E[C(T, p, r)] 
consists of testing phase cost t T

TestC <  and operation phase 
cost t T

OperationC ≥ . With W(0)≠0, there exists testing cost 
initialization: C0=W(0)=N(1–v)/(1+u), where the related 
parameters can be estimated by real failure data set. C1 and 
C2 represent the expected cost of a fault removing during the 
testing phase and the operation phase respectively and 
C2>C1[3], [8], [12], TLC is the length of software life cycle, 
and C4 is risk cost (that is the cost incurred by software 
failure in operation phase). R(x|T) as the reliability after 
releasing software, in particular, instead should be:  
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C(p, r) is testing cost by current TE expenditure during 
testing process including the cost caused by imperfect 
debugging. Hereon, C(p, r) is defined as: 
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where k is imperfect debugging adjustment factor for 
describing the impact of imperfect debugging on cost. Min 
Xie[12] has introduced the concept of testing level (TL) 
denoted by p describing the extent of perfect debugging. 
And on this basis we redefine TL including fault 
introduction rate r as follows: TL=p(1–r). Obviously, larger 
values of TL indicate higher perfect debugging content 

(namely, TL is more close to 1). In the meantime, when p→1 
and r→0, TL→1 and ( , )C p r →∞ , which matches what one 
expects from perfect debugging process.  
 
3.2 Cost mode and optimal release policy 
Considering minimum of reliability R0 that should be 
reached when releasing software, the optimal release 
problem can be formulated as the follows: 
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 In equation above, objective function and constraints are 
both nonlinear with respect to argument T, so the solving 
process can be viewed as NPP (Nonlinear Programming 
Problem). Differentiating E[C(T, p, r)] with respect to T, we 
can get: 
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Substituting ( )Tλ  and ( )d T dTλ into the above equation can  

get: ( )
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where l=bp(1–r). F(T, p, r) is the function that depends on 
w(T) and many other parameters. It is clear that,  
when T →∞ , ( ) 0w ∞ = and ( , , ) 0F p r∞ = ; when T=0,  
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 Obviously, due to the complexity of parameters, there 
exists possibility of F(0, p, r)>0 or F(0, p, r)<0. In summary, 

[ ( , , )]dE C T p r
dT

 remains downward trend, and is gradually 

tending to 0. Due to the uncertainty in relation of 
[ ( , , )]dE C T p r
dT

 and 0, variation tendency (increasing function 

or decreasing function) of E[C(T, p, r)] is not directly 
determined by F(T, p, r). So, nonlinear and complex F(T, p, 
r) means the above optimization problem has to be solved by 
numerical calculation. 
 Furthermore, through the equation of R(x|T), R(x|T) is a 
increasing function, thus we can get: if R(x|0)<R0, then exists 
T≥TR(x|T)≥R0= T1 that makes R(x|T)≥R0 met, that is R(x|T1)=R0; 

if R(x|0) ≥R0, then for 0T∀ ≥ , R(x|T) ≥R0，that is TR(x|T)≥R0= 
T1=0.   
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3.3 Risk analysis of cost mode 
 
Obviously, based on the above analysis, the obtained 
minimum cost is ETC (Expected Testing Cost). Bo Yang has 
noted that[21] ATC (Actual Testing Cost): C(T, p, r) is a 
random variable and it may have a serious deviation from 
ETC: E[C(T, p, r)]. There is a risk that ATC may also be 
larger than ETC (a certain extent uncertainty), resulting in 
the serious problem of budget overruns during software 
testing. So, it is necessary to conduct a risk evaluation. Thus, 
the optimal release problem can be extended as:  
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setting coefficient ( )1 σ+ , ATC exceeding ETC is limited to a 
specified range: thresholdδ . Substituting E[C(T,p,r)] into 
the equation and by calculating ( )P Tσ , we can get: 
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 and x⎢ ⎥⎣ ⎦  denotes the largest integer value that is less than or 
equal to x. 
 
3.4 Optimal release time algorithm: ORP-BEVRA 
On the basis of the above comprehensive analysis, the 
solving algorithm: ORP-BEVRA (Optimum Release Policy-
Based on Expected Value and Risk Analysis) about 
existence and the uniqueness for the optimum solution is 
presented. 
 
1: ORP-BEVRA(Optimum Release Policy-Based on Expected 

Value and Risk Analysis) 
2: 
 
3: 
4: 
 
5: 

If F (0, p, r)<0 and F(TLC, p, r)>0, then exist a unique solution 
T0 makes F(T0, p, r)=0.  
In this case if R(x|0)<R0, then T*=max(T0, T1); 
If F (0, p, r)<0 and F(TLC, p, r)>0, then exist a unique solution 
T0 makes F(T0, p, r)=0.  
In this case if R(x|0) ≥R0, then T*=max(T0, 0); 

6: 
 
7: 

If F (0, p, r)<0 and F(TLC, p, r)<0 and R(x|0)<R0, then 
T*=max(TLC, T1); 
If F (0, p, r)<0 and F(TLC, p, r)<0 and R(x|0) ≥R0, then T*= 
TLC; 

8: 
9: 

If F (0, p, r)>0 and F(TLC, p, r)>0 and R(x|0)<R0, then T*= T1; 
If F (0, p, r)>0 and F(TLC, p, r)>0 and R(x|0) ≥R0, then T*= 0;  

// T* is quasi-optimal release time and can be calculated and obtained by 
the combination of F(T, p, r) curve shape and reliability constraint 
condition (R(x|T)≥R0). 
10: If ( *)P Tσ δ< then TOPT =T*; 

11: Else obtain the solution of ( )P Tσ δ< , and denote it with TRisk 

(TRisk >T*), then TOPT = TRisk; 

  
 In real situation, based on ORP-BEVRA, firstly, quasi-
optimal release time T* can be obtained, then a risk 
evaluation is conducted according to risk objective δ set by 
software project manager，and finally optimal release time 
TOPT can be obtained. 
 
 
4. Numerical examples 
In this section, to demonstrate the validity of proposed 
model, we apply the proposed SRGM, cost model and 
optimal release policy to a real software failure data set. 
 
4.1 SRGMs performance validation 
4.1.1 Comparison criteria and data set 
 
In order to verify the feasibility of the models, we selects 
failure data set [22] that has been widely used to illustrate 
the performance of SRGMs. In the meanwhile, to 
quantitatively differentiate the differences in the models, the 
following fitness and prediction criteria are adopted: 
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where K is the number of failure data sample, ni and m(ti) 
respectively represent the cumulative number of failures and 
estimated value of faults by ti. Smaller values of MSE, 
MEOP, Variation, RMSPE and TS, and the closer to 1 of R-
square indicate better fitting accuracy. The quickly closer to 
0 of RE reveals better prediction performance. 
4.1.2 Model performance analysis 
The comparisons between the observed data and the 
proposed model are illustrated graphically in Fig.2. For 
comparison purposes, the fitting of three typical 
SRGMs[10], [23], [24] related to TEF and/or ID are also 
shown in Fig.2. Fig.3 demonstrates the relative error (RE) 
curves for the models. 
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Fig. 2-1. Kapur model Fig. 2-2. Ahmad model 

  
Fig. 2-3. Huang model Fig. 2-4. SGIDM 
Fig. 2. Comparison of goodness of fitting of the models 
 
 

 
Fig. 3. RE curves of the models 
 
 
 Thus it can be seen that, SGIDM and actual failure 
curves are closely overlapped. In order to make a qualitative 
comparison, the evaluation criteria values of the models are 
listed in Table 1. From Table 1, we can see that the proposed 
model (SGIDM) has lower value of MSE, Variation, 
RMSPE, TS, MEOP, and R-square value is closer to 1. On 
average, SGIDM yields a better fit for this data set and fits 
significantly better than the others. On the other hand, it is 
clear from Fig.3 that the RE value of SGIDM can quickly 
approach zero in comparison with the other models and 
provide better performance of prediction. 

 
Table 1 Comparison of descriptive power of the models 

Model Huang 
Model[23] 

Ahmad 
Model[24] 

Kapur 
Model[10] SGIDM 

MSE 114.085 
11020 

85.9633 
8226 139.815 84.8733 

3754 

Variation 10.7718 
9151 

9.50029 
390 

12.0892 
307 

9.4646 
0056 

RMSPE 11.7367 
0504 

9.62537 
492 

12.3790 
071 

9.46717 
703 

R-square 1.06795 
470 

1.01778 
405 

0.94130 
928 

0.99552 
145 

TS 4.7624 
28% 

4.1340 
02% 

5.2721 
90% 

4.1077 
08% 

MEOP 7.49602 
081 

7.07343 
043 

9.89065 
084 

7.15859 
585 

  
Consequently, from Fig.2-3 and Table1, it can be concluded 
that the proposed model (SGIDM) fits the real failure data 
better than the others and gets reasonable prediction in 
estimating the number of software errors. 
 

4.2 Optimal software release time problem 
 
Now we will explain optimal release time problem based on 
the cost parameters in literature[7], [14], [15] and 
appropriate adjustments. In particular, it's important to point 
out that C0 should be calculated (C0=W(0)=N(1–v)/(1+u)) 
based on parameters obtained by real failure data set. 
 Firstly, based on ORP-BEVRA, optimal release time 
(TOPT), minimal expected cost (E[C(TOPT,p,r)]), the 
cumulative number of faults detected by TOPT (m(TOPT)), and 
reliability by TOPT (R(x|TOPT)) are calculated as shown in 
Table 2. In comparison, the cost model and optimal release 
algorithm related to imperfect debugging in literature[10] are 
also incorporated. It should be pointed out that Xie model[12] 
is not included here, because it has been proved that fault 
removal probability p is obtained by numerical method not 
estimated by real failure data set. Furthermore, expected cost 
curve of Kapur model and the proposed model (SGIDM) are 
depicted in Fig.4. It can be seen that two curves both show 
firstly an increase-and-then-a-decrease trend, so we can 
conclude that there exists minimum for both. Table 2 lists 
the values of TOPT, E[C(TOPT,p,r)], m(TOPT) and R(x|TOPT) of 
two models. 

  
Fig. 4-1. Kapur model Fig. 4-2. SGIDM 
Fig. 4. Expected cost curve 
 
 
Table 2 Model result comparisons for (C0,C1,C2,C3,C4) = 
(1.14,25,50,80,1000), x=0.05, R0=0.85, k=2, TLC=100 weeks 

Model TOPT E[C(TOPT,p,r)] m(TOPT) R(x|TOPT) 
Kapur model 62.65 28629.24 659.56 0.850006 
SGIDM 26.19 19878.58 378.62 0.850090 

 
 As seen from Table 2, it is found that two results of 
experiment are significantly different: compared with Kapur 
model, the optimal release time of SGIDM is much shorter, 
its minimal expected cost much lower than that of Kapur 
model, and reliability obtained by optimal release time 
relatively higher. The reason for this is that the two SRGMs 
are different in nature in describing software testing process. 
In section 4.1, the proposed model has been proved to be 
optimal. By contrast, although incomplete debugging and 
introducing new faults are considered in Kapur model, the 
description and formulation are “rough” (the expression of 
a(t) is set subjectively) and TE is not incorporated either. 
Furthermore, risk cost in operational stage is also ignored in 
Kapur model. 
 Next, we investigate the relationship of the size between 
E[C(T, p, r)] and C(T, p, r), and conduct uncertainty risk 
evaluation. Without loss of generality, let 0.1σ = , 0.2σ =  , 

0.1δ =  , 0.15δ =  , and then ( )P Tσ δ<  can be calculated. The 
curves of ( )P Tσ with 0.1σ =  and 0.2σ = have been drawn in 
Fig.5. It shows that the two curves present decreasing trend 
and the maximum are respectively 0.02 and 3×10－5. Table 3 
further illustrates the relationship between ( )P Tσ and δ .  
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Fig. 5-1. σ= 0.1 Fig. 5-2. σ= 0.2 

Fig. 5. Curve of ( )P Tσ  
 

Table 3 ( )P Tσ δ<  for varies values ofσ and δ  

Case 
( )P Tσ δ<  

( 0.1σ = , 
0.1δ = ) 

( )P Tσ δ<  

( 0.1σ = , 
0.15δ = ) 

( )P Tσ δ<  

( 0.2σ = , 
0.1δ = ) 

( )P Tσ δ<  

( 0.2σ = , 
0.15δ = ) 

max( )P Tσ  0.02 3×10－5 

Result 
[ ]
[ ]
0.1( )

0.1

P T

δ

<

=
 [ ]

[ ]
0.1( )

0.15

P T

δ

<

=
 [ ]

[ ]
0.2 ( )

0.1

P T

δ

<

=
 [ ]

[ ]
0.2 ( )

0.15

P T

δ

<

=
 

Yes Yes Yes Yes 
 From Fig.5 and Table 3, we can see that the final results 
are ( )P Tσ δ<  that indicates that actual testing cost 
expenditure is approximate to expected testing cost and there 
is no risk of cost overrun. 
 Fig.6 graphically explores three dimensional image of 
the cumulative number of faults detected, cost and software 
release time.   

 
Fig. 6. The cumulative number of faults detected and cost with release 
time 
 
 
 As shown in Fig.6, taken as a whole, an extension of 
release time T results in the growth of cost C(T, p, r). Being 
similar to S-shaped ( )tλ  discussed in section 2, C(T, p, r) 
also has the characteristics of decreasing firstly and then 
increasing and it tends to be stabilized gradually about 40 
weeks later. From Fig.6, m(T) continues to grow over release 
time T, but displays significant-initially-and-slow-later-
increasing trend. It can be explained by the fact that simple 
faults that are easy to be detected and removed account for a 
relatively large proportion during initial testing, and the 
proportion of complex faults increases gradually as the 
testing proceeds. Accordingly, under the influence of 
imperfect debugging (mainly reflected by m(T)), the rising 
speed of C(T, p, r) varies from high to low. This means that, 
in software testing, in order to get adequate fault removal 
probability(p) and introduction rate (r), to establish accurate 
SRGM, to manage effectively testing cost and determine 
optimal software release planning, available testing 
resources(including test cases, CPU time and man power, 
etc.) should be allocated reasonably according to the 
projected target, and testing process should be improved and 
optimized dramatically. 

 
4.3 Sensitivity analysis 
Due to many parameters in E[C(T, p, r)], sensitivity analysis 
is conducted on p, r, k, C3 and their combinations, and could 
be similar in other situations. Sensitivity analysis of 
parameterθ can be performed by the following formula: 
 

( ) ( )
( )

( ) ( )
( )

1 1 2 2 1 2

1 2

(1 )
100%, single parameter

(1 ) ,(1 ) ,...,(1 ) , ,...
100%,multiple parameter

, ,...

RC

OPT OPT

OPT

OPT i i OPT i

OPT i

ROV IOVS
IOV

T v T
T

T v v v T
T

θ θ

θ
θ θ θ θ θ θ

θ θ θ

−
= =

+ −⎧
×⎪

⎪
⎨ + + + −⎪ ×
⎪⎩

 
 
where IOV is initial optimization value, ROV is regained 
optimization value and vi is relative changes of iθ . Hereon, 
relative changes of parameters are set ±10%、±20% and 
±30%. Optimal release time (TOPT), expected cost 
(E[C(TOPT,p,r)]) and reliability by TOPT (R(x|TOPT)) are 
considered when the parameters of E[C(T, p, r)] change.   
 
4.3.1 Single parameter sensitivity analysis 
Fig.7 plots sensitivity analysis results of p, r, k and C3, 
including TOPT, E[C(TOPT,p,r)] and R(x|TOPT). From Fig.7-1, 
smaller value of p affects optimal release time significantly, 
and larger value of p affects expected cost largely. For 
example, when p decreases from 30% to 10%, optimal 
release time (TOPT) increases from 5% to 2.8 expanding 
nearly 3.62 times, and meanwhile, reliability by TOPT 
improves by a factor of 18% over delay of optimal release 
time. It can be explained that, this decrease of p causes a 
decline in complete removal probability, and thus repairing 
the same amount of faults takes more time, which results in 
delay in optimal release time. On the other hand, when p 
increases from 10% to 30%, expected cost (E[C(TOPT,p,r)]) 
increases from 5.5% to 68% and expands nearly 1.6 times. 
In this course, optimal release time precedes baseline values 
from 4% to 11%. By examining Fig.7-2, positive and 
negative changes of r have some influences on TOPT and 
E[C(TOPT,p,r)], but these influences are not significant 
(<1%). 

  
Fig. 7-1. Sensitivity analysis: p Fig. 7-2. Sensitivity analysis: r 

  
Fig. 7-3. Sensitivity analysis: k Fig. 7-4. Sensitivity analysis: C3 
Fig. 7. Single parameter sensitivity analysis 
  
 
 From Fig.7-3 and Fig.7-4, k and C3 have some influence 
on E[C(TOPT,p,r)], but no influence on TOPT and R(x|TOPT) 
(this is not reflected in Fig.7-3 and Fig.7-4). For example, 
when C3 decreases from 10% to30% and increases from 
10% to 30% respectively, E[C(TOPT,p,r)] decreases from 
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4.5% to 13.8% and increases from 4.7% to 13.8%. So, it can 
be concluded that the changes of C3 have great effect on the 
E[C(TOPT,p,r)]. Sensitivity analysis of the other single 
parameters can also be conducted in a similar fashion. 
 
4.3.2 Multiple parameter sensitivity analysis 
Fig.8 shows the results of partial two-parameter sensitivity 
analysis. From Fig.8-1, during the decreasing of p and C3 
from 10% to 30%, TOPT postpones from 4% to 2.8 
(expanding nearly 3.65 times), E[C(TOPT,p,r)] decreases 
from 5% to 12%, and R(x|TOPT) improves 18%. The reason is 
that, when p decreases, the curve shape of expected cost 
changes from decreasing-then-increasing to decreasing, 
which postpones optimal release time. Thus, we can see that 
negative changes of p and C3 have significant influences on 
TOPT and some influence on R(x|TOPT); positive changes of p 
and C3 have large influence on E[C(TOPT,p,r)], some 
influence on TOPT and no influence on R(x|TOPT). Finally 
Fig.7 and Fig.8-1 reveal that p has significant influence on 
TOPT and C3 has some influence on E[C(TOPT,p,r)]. Similarly, 
the changes of p and k have influences on TOPT and 
E[C(TOPT,p,r)]: when p and k decrease 30%, TOPT is delayed 
about 13.5% and E[C(TOPT,p,r)] increases 6%; when both 
increase 30%, E[C(TOPT,p,r)] increases 28%, TOPT is brought 
forward by 11.5%, and R(x|TOPT) remains unchanged. 
Finally, the positive or negative changes of k and C3 have 
low influence on E[C(TOPT,p,r)] (<5%) and no influence on 
TOPT and R(x|TOPT). 
 Similarly, sensitivity analysis of the other multiple 
parameter combinations can also be conducted. Altogether, 
changes of these parameters have subtle influence on 
R(x|TOPT) and different levels of influence on E[C(TOPT,p,r)]. 
Especially, p, r, the combination of p and k as well as p and 
C3 have influences on TOPT, and the influence brought by p is 
more significant. With  imperfect debugging close to real 
testing, software engineer can allocate available resources 
based on much experience and knowledge of the system 
being tested, decide the optimal parameters to model SRGM, 
determine cost model and optimal release policy, which 
boosts their testing efficiency.    
 

  
Fig. 8-1. Sensitivity analysis: p, C3 Fig. 8-2. Sensitivity analysis: p, 

k 

 
Fig. 8-3. Sensitivity analysis: k, C3 
Fig. 8. Multiple parameter sensitivity analysis 
 
 
5. Conclusions 
During software testing, reliability, testing resources and 
cost, and release time are interrelated and interdependent 
factors, so determining proper correlation model is the key 
to optimizing testing process. The paper presents SRGM 
with ID, cost model and optimal release policy and studies 
the effect of ID on SRGM, cost model and optimal release. 
Compared with other models, the proposed SRGM fits the 
failure data better and predicts the future behavior well. On 
this basis, ID is incorporated into software cost model and 
optimal release policy based on risk analysis is elaborated. 
In real software engineering situations, software testing is 
subject to imperfect debugging, so software engineer should 
optimize testing process making a balance between cost and 
reliability objective. 
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