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Abstract 
 

Particle swarm optimization (PSO) is a stochastic search technique for solving optimization problems, which has been 
proven to be efficient and effective in wide applications. However, the PSO can easily fly into the local optima and lack 
the ability to jump out of the local optima. A novel adaptive PSO is proposed by evaluating convergence of the fitness 
value. The novel mechanism is to ensure the diversity of particles. Simulations for benchmark test functions have 
illustrated that the proposed algorithm possesses better ability to find the global optima than other variants and is an 
effective global optimization tool. 
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1. Introduction 
 
PSO has been introduced by Kennedy and Eberhart [1] and 
is inspired by the emergent motion of a flock of birds 
searching for food [2]. As a stochastic search scheme [3], 
PSO has characters of simple computation and rapid 
convergence capability; it has been widely extended to 
function optimization [4]. 
 Unfortunately, when solving complex multimodal tasks, 
the standard PSO can easily fly into the local optima and 
lack the ability to jump out of the local optima [5, 6, 7].A 
novel adaptive PSO is proposed by evaluating convergence 
of the fitness value. If the convergence is lower to one 
certain value, a mutation operation is carried out to the 
position of the best particle found so far in the swarm. The 
novel mechanism is to ensure the diversity of particles. 
Well-known nonlinear benchmark functions have been 
tested and experiment results have demonstrated that the 
performance of the proposed PSO is better than that of 
standard PSO, linear PSO (LPSO) and LPSO with time-
varying acceleration coefficients. 
 The rest part of the paper is organized as follows: 
Section 2 provides a brief introduction of the standard PSO. 
Section 3 presents the novel algorithm. Numerical examples 
used to illustrate the efficiency of the proposed algorithm are 
given in Section 4. Finally, conclusions are made in section 
5. 
 
 
2. Standard PSO 
 
In the standard PSO, a swarm consists of m individuals 

(called particles) that fly around in an n-dimensional search 
space. The position of the ith particle at the tth iteration is 
used to evaluate the particle and represent the candidate 
solution for the optimization problem. It can be represented 
as 1 2[ , ,..., ]t t t t

i i i inX x x x= , where t
ijx  is the position value 

of the ith particle with respect to the jth dimension 
( 1,2,..., )j n= . During the search process, the position of 
a particle is guided by two factors: the best position visited 
by itself ( bestP ) denoted as 1 2[ , ,..., ]t t t t

i i i inP p p p= , and 
the position of the best particle found so far in the swarm 
( bestg ) denoted as 1 2[ , ,..., ]t t t t

nG g g g= . The new 

velocity (denoted as 1 2[ , ,..., ]t t t t
i i i inV v v v= ) and position of 

particle i at the next iteration are calculated according to: 
 

1
1 1 2 2( ) ( )t t t t t t

ij ij ij ij j ijv w v c r p x c r g x+ = × + × × − + × × −      (1) 
1 1t t t

ij ij ijx x v+ += +                                                        (2) 
 
 where w is the inertia weight, 1 2,c c  are respectively 

the cognitive and social learning parameters, and 1 2,r r  are 
random numbers between (0,1). Based on the above 
equations, the particle can fly through search space toward 

bestP and bestg in a navigated way [8, 9, 10]. 
 
 
3. Adaptive Particle Swarm Optimization (APSO) 
 
As PSO has no ability to jump out of the local optima, 
APSO is proposed to improve the performance of PSO. It 
focuses on the   convergence of particles. When a particle 
discovers a current optima position, the other particles will 
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draw together to the particle. If the position is the local 
optima, the PSO will be convergence and clustered in local 
optima. The premature may appear. Suppose that the 
population size of APSO is N , the fitness value of ith  
particle is if  and the average fitness value is avgf . The 

convergence degree is defined as following: 
 

2

1
1

( )
max{1 max( )

N
i avg

i i avgi N

f f
c

f f=
≤ ≤

−
=

−∑
，

                       (3) 

 
 The parameter c  reflects the convergence degree. When 
the parameter c  is large, the algorithm is in random search. 
On the other hand, the algorithm will be convergence and 
premature maybe occur. In order to evaluate the 
parameter c , cσ  is given as following, where mp  is the 
mutation probability.  
 

0
c

m

k c
p

others
σ<⎧

= ⎨
⎩

                                                      (4) 

 
 Generally, [0.5,2]cσ ∈ .If the parameter c  is less 

than cσ , the mutation probability gp is equal to k  and is 

as following: 
 

(1 0.5 )g gp pη= +                                                         (5) 

 
 where the parameter η  obeys Gauss(0,1) distribution.  
 With the efforts, the APSO has the ability to jump out of 
the local optima. Besides, according to the research [5,11], 
the inertia weight, cognitive and social learning parameters 
are adjusted by Eq.(6-8). The nonlinear descending can 
achieve faster convergence speed than that with linear inertia 
weight. 
 

2
max

1 2 22
max

( )( )
( )

iter iterw w w w
iter
−

= − × +                        (6) 

1 1 1 1
max

( )( )f i i
iterc c c c
iter

= − +                                         (7) 

2 2 2 2
max

( )( )f i i
iterc c c c
iter

= − +                                       (8) 

 
 where 1 2,w w  are the initial and final values of weight, 

1 1 2 2, , ,i f i fc c c c  are initial and final values of cognitive 

and social acceleration factors respectively, usually 

1 2 2.5i fc c= =  and 1 2 0.5f ic c= = . 

 The main procedure of APSO is presented in Table 1. 
 
Table 1: The main procedure of APSO 
for i=1 to the swarm size do 

 Initialize ix , iv  within the search range randomly 

End for 
Evaluate each particle 

i iP x= and Identify the best position gP  

While maxiter Iter≤  

Update weight w  by Eq.(6) 

Update acceleration coefficients 1c  and 2c by Eq.(7,8) 

respectively 
for i=1 to the swarm size do 

Update velocity 1t
iv
+  and position 1t

ix
+   according to Eq.(1,2) 

respectively. 

Evaluation fitness( 1t
ix
+ ) 

If 1t
ix
+  is better than iP    

 set 1t
i iP x +=   

End if 

If 1t
ix
+  is better than gP   

  set 1t
g iP x +=  

End if 
End for 
Calculate parameter c  using Eq.(3) 

If parameter meets the requirement of Eq.(4) 
   Generate a random number rand in (0,1). 

If rand is less than mp  Update gP  using Eq.(5)   

End if 
End if 

End while 
 
 
4. Experimental Results 
4.1Experiment Setup 
 
Eight benchmark functions are listed in Table 2 and (9)-(16) 
are utilized to test the performance of APSO. Asymmetric 
initializations are used for the functions whose global 
optimum is at the center of the search range. Algorithms 
parameters initializations are presented in Table 3. For all 
test functions, PSO algorithms including SPSO, LPSO and 
PSO-TVAC[11] carry out 50 independent runs in order to 
eliminate random discrepancy.  
 
Table 2: Benchmark configurations 
Function Name Search Space Initial Range 

f1 Sphere [-100,100] [-100,50] 
f2 Weighted Sphere [-100,100] [-100,50] 
f3 Rosenbrock [-5,5] [-5,2] 
f4 Griewank [-600,600] [-600,200] 
f5 Rastrigrin [-5,5] [-5,2] 
f6 Noncontinuous 

Rastrigin 
[-5,5] [-5,2] 

f7 Ackely [-32,32] [-32,16] 
f8 Penalized [-50,50] [-50,20] 

 
Table 3: Algorithms Parameters Initializations. 

Algorithm Parameters 
SPSO 1 20.729; 1.49w c c= = =  

LPSO max min 1 20.9; 0.4; 2w w c c= = = =  

LPSO -TVAC 
max min

1 2 1 2

0.9; 0.4;
2.5; 0.5i f f i

w w
c c c c

= =

= = = =
 

APSO 
1 2

1 2 1 2

0.9; 0.2;
2.5; 0.5;

1.2; 0.3
i f f i

c

w w
c c c c

kσ

= =

= = = =

= =
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 The maximum number of generations is set as 1000 and 
1500 corresponding to dimensions 10 and 20 respectively. 

1( )f x  and 2 ( )f x  are used to test the convergence speeds 

of algorithms. It is very difficult to optimize 3( )f x  which 

can be viewed as a multimodal problem. 4 ( )f x  to 8( )f x  
are also multimodal problems which are hard to optimize.  
 

2
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                                                                             (9) 
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4.2. Performance Comparison 
 
The mean solutions of the algorithms in 50 independent runs 
are listed in Table 4. The best results among these PSO 
algorithms are indicated by boldface. Figs. 1–8 show the 
comparisons in terms of evolution processes in solving the 
eight benchmark functions. 
 
Table 4: The mean fitness values for test functions of PSO, LPSO, 
LPSO–TVAC and APSO 

Function Dimension Generation SPSO LPSO PSO-
TVAC APSO 

Sphere 10 1000 0.2196 3.0936e-
5 

1.3120e-
6 

2.5092e-
184 

20 1500 7.3770 0.0653 0.0528 0 

Weighted  
Sphere 

10 1000 2.7986 4.2905e-
5 

9.3364e-
8 0 

20 1500 134.201 1.9801 0.5226 2.1649e-
139 

Rosenbrock 
10 1000 13.6857 6.5100 5.2725 5.2294 

20 1500 338.454
9 29.7961 24.5617 16.2419 

Griewank 10 1000 3.1070 0.2406 0.2119 0 
20 1500 23.3454 0.5490 0.8046 0 

Rastrigrin 10 1000 20.9339 10.9448 0.0698 0 
20 1500 94.5326 49.8762 38.8608 0 

Non 
continuous 
Rastrigin 

10 1000 18.0000 12.0200 8.0000 0 

20 1500 58.0000 47.0000 39.0000 0.9000 

Ackely 
10 1000 5.8409 3.2224 0.0023 8.8818e-

16 

20 1500 14.8498 1.6440 1.2093 8.8818e-
16 

Penalized 
10 1000 9.1749 0.9632 1.8741e-

4 
5.3945e-

7 

20 1500 3.851.4 1.9195 0.0194 4.6805e-
6 

 
 
 From the Table 4 and Figs. 1–8, it is very clear that the 
proposed PSO has the strong ability to jump out of the local 
optima. It can effectively prevent the premature convergence 

and significantly enhance the convergence rate and 
accuracy. It provides best performance on the 4f , 5f  

and 6f , which reach the highest accuracy on them. The 

APSO ranks the second on 1f , 2f , 7f  and 8f . The 
performances of LPSO and LPSO-TVAC are among APSO 
and SPSO. The LPSO-TVAC is a little better than that of 
LPSO. It’s easy to see that the SPSO algorithm converges 
quickly and slows its convergence speed down when 
reaching the local optima, which exhibits significant 
prematurely. All the algorithms perform badly on 3f  which 
approves that the function is very hard to optimize. With the 
increasing of population size, the performance of SPSO, 
LPSO and LPSO-TVAC become bad.  
 Through the thorough comparison, the performance of 
APSO is the best among the four algorithms. 
 

 

 
Fig.1. Evolution of logarithmic average fitness of Sphere function for 
SPSO, LPSO, LPSO-TVAC and APSO. 
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Fig.2. Evolution of logarithmic average fitness of Weighted Sphere 
function for SPSO, LPSO, LPSO-TVAC and APSO. 
 

 

 
Fig.3. Evolution of logarithmic average fitness of Rosenbrock function 
for SPSO, LPSO, LPSO–TVAC and APSO. 
 

 

 
Fig.4. Evolution of logarithmic average fitness of Griewank function for 
SPSO, LPSO, LPSO–TVAC and APSO. 
 

 

 
Fig.5. Evolution of logarithmic average fitness of Rastrigrin function 
for SPSO, LPSO, LPSO–TVAC and APSO. 
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Fig.6. Evolution of logarithmic average fitness of Non continuous 
Rastrigrin function for SPSO, LPSO, LPSO–TVAC and APSO. 
 

 

 
Fig.7. Evolution of logarithmic average fitness of Ackely function for 
SPSO, LPSO, LPSO–TVAC and APSO. 
 

 

 
Fig.8. Evolution of logarithmic average fitness of Penalized function for 
SPSO, LPSO, LPSO–TVAC and APSO. 
 
 
5. Conclusions 
 
In this paper, a novel PSO algorithm is proposed. The main 
procedure of this new variant of PSO is presented. This new 
approach can enhance diversity by mutation. The new 
adaptive PSO is discussed in comparison with SPSO, LPSO, 
and LPSO-TVAC through empirical simulations with well-
known benchmark functions from the standard literature. 
Results have shown that the novel PSO is a promising 
method with good global convergence performance. 
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