

Journal of Engineering Science and Technology Review 6 (2) (2013) 10-14

Research Article

Design of Test Wrapper Scan Chain Based on Differential Evolution

Aijun Zhu1, Zhi Li1, 2, 3,*, Wangchun Zhu2 and Chuanpei Xu2

1School of Mechano-Electronic Engineering，Xidian University，Xi'an 710071，China

2School of Electronic Engineering and Automation，Guilin University of Electronic Technology，Guilin 541004，China
3Guilin University of Aerospace Technology，Guilin 541004，China.

Received 25 June 2013; Accepted 15 August 2013

Abstract

Integrated Circuit has entered the era of design of the IP-based SoC (System on Chip), which makes the IP core reuse
become a key issue. SoC test wrapper design for scan chain is a NP Hard problem, we propose an algorithm based on
Differential Evolution (DE) to design wrapper scan chain. Through group’s mutation, crossover and selection operations,
the design of test wrapper scan chain is achieved. Experimental verification is carried out according to the international
standard benchmark ITC’02. The results show that the algorithm can obtain shorter longest wrapper scan chains,
compared with other algorithms.

 Keywords: SoC, Differential Evolution, Wrapper Scan Chain.
 __

1. Introduction

Because of the fast development of modern semiconductor
technology, the integration of integrated circuit is
continuously improved. In this context, the design of SoC
enters a fast development track. To reduce the time-to-
market, the design of IP-based core is popular nowadays.
However, it brings us new problems and challenges, such as
the increasing test cost and test time. All these problems
become the bottleneck, which impedes development of SoC
[1, 5, 12-16]. The main motivation of this paper is to
optimize the wrapper scan chains so as to reduce the length
of the longest scan chain of IP core. Because the test time of
IP module is determined by the length of the longest
wrapper scan chain of IP core, by reducing the length of the
longest wrapper scan chain of IP module, the test time of IP
module is reduced and SoC test costs are minimized.
 IYENGAR V, et al [2] proposed a classic algorithm
called Best Fit Decreasing (BFD) to design wrapper scan
chain. Although BFD algorithm is fast, simple and widely
used, it only possesses local optimization capabilities [4]. To
improve the BFD algorithm, NIU D H, et al [4] proposed a
re-optimization algorithm for SoC wrapper chain balance
using Mean-Value Approximation (MVA), which makes use
of the average value of the whole internal scan chains to
guide the global optimization. However, there are some
drawbacks in the MVA algorithm, i.e. it does not always
give priority to current longest internal scan chain. In order
to improve MVA algorithm, YU Y, et al [3] proposed a
wrapper scan chain balance algorithm based on Mean-Value
Allowance Residue (MVAR). The MVAR algorithm first
calculate the average value of all the internal scan chains,

and then add an appropriate residue on the basis of the
average value to guide global optimization However, the
MVAR algorithm also has its drawback: it is difficult to
select an appropriate residue, for example, if the residue is
selected as more than five percent of the mean value, the
MVAR algorithm is no better than the MVA algorithm. If
the residue is selected as less than one percent of the mean
value, there is no apparent difference between the MVAR
algorithm and the MVA algorithm.
 In a word, all these algorithms aim at shortening the
longest wrapper scan chain to reduce test time of the IP core.
Because design for test wrapper scan chain is NP hard
problem [2], this paper proposes an algorithm based on
differential evolution to solve this problem. Differential
evolutionary optimization method is different from
traditional optimization methods; it belongs to heuristic
optimization method. In the traditional optimization
methods, additional information such as the gradient of the
objective function are required to search deterministically
optimal solution; while most of heuristic optimization
methods simulate natural optimization mechanism, which
are also known as natural computation or evolutionary
computation. With a strong ability of global optimization,
differential evolution optimization has become a hot area [6-
10].
 In this paper, differential evolution algorithm is adopted
to design wrapper scan chain. The typical SoC IP cores are
verified by the experiment and experimental results show the
superiority of the DE algorithm.
 Organization of the rest of this paper is as follows.
Problem formulation is introduced briefly in Section 2. The
differential evolution algorithm is presented in Section 3.
The proposed algorithm is introduced in detail in Section 4.
The proposed algorithm is evaluated by a numerical
simulation on ITC02 benchmarks, and experimental results

Jestr

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

 * E-mail address: zbluebird@guet.edu.cn, cclizhi@guet.edu.cn
ISSN: 1791-2377 © 2013 Kavala Institute of Technology. All rights reserved.

Aijun Zhu, Zhi Li, Wangchun Zhu and Chuanpei Xu/Journal of Engineering Science and Technology Review 6 (2) (2013) 10-14

 11

are presented in Section 5. Finally, concluding remarks is
given in Section 6.

2. Problem Formulation

When IP core vendors sell their IP core, they also provide
some relative information about IP core to help the SoC
integration developers. Suppose there is an IP core Ci and its
relative information is consist of the number of functional
input port, the number of functional output port, the number
of functional bidirectional port, the number of internal scan
chains and their length. Given a set called CoreInfori, which
denotes relative information about IP core Ci,
CoreInfori={NumIni ,NumOuti, NumIOi, NumScani,
{LenScanij，j∈[1, NScani]}}, where NumIni is the number
of functional input port, NumOuti is the number of
functional output port, NumIOi is the number of functional
bidirectional port, NumScani is the number of internal scan
chains, and {LenScanij, j∈[1, NumScani]} is the set of the
length of all the internal scan chains. When the SoC
integration developers design the test wrapper, they combine
IP core test ports with internal scan chains in series into a
certain number of wrapper scan chains, which are used to
load the test vectors and collect test response.
 The mathematical model [5] of wrapper design is
described as follows: Given an input port set IN = {IN1, IN2,
..., INi, ..., INm}, each input cell corresponds to an input port,
and its length L (INi) = 1, i ∈ [1, m]. Given an output port
set OU = {OU1, OU2, ..., OUj, ..., OUg}, each output cell
corresponds to an output port, and its length L(OUj) = 1, j ∈
[1, g]. Given an bidirectional port set BIO = {BIO1, BIO2,...,
BIOk, ... , BIOu}, each bidirectional cell corresponds to an
bidirectional port, and its length L (BIOk) = 1, k ∈ [1, u] .
Given a set of n internal scan chains of the IP core Sc =
{Sc1, Sc2, ..., Scv, ..., Scn}, and the length of each internal
scan chain equal L(Scv), v ∈ [1, n].
 Let A be a given subset, A ()IN BIO Sc⊆ U U . Let L(A)
be a sum of length of every element in subset A,

a A
L(A) L(a)

∈
=∑ . We can partition ()IN BIO ScU U into w

wrapper scan-in chains, namely,
1 2{ , ,..., ,... }x wE E E E E= ，

, (),x xE E IN BIO Sc∀ ⊆ U U],1[wx∈ . We define

1() max ()x w xSi E L E≤ ≤= as the longest wrapper scan-in chain.
 Let B be a given subset, B ()OU BIO Sc⊆ U U . Let L(B)
be a sum of length of every element in subset B,

b B
L(B) L(b)

∈
=∑ . We can partition ()OU BIO ScU U into w

wrapper scan-out chains, namely,
1 2{ , ,..., ,... }y wF F F F F= ,

, (),y yF F OU BIO Sc∀ ⊆ U U [1,]y w∈ . We define

1() max ()y w ySo F L F≤ ≤= as the longest wrapper scan-out
chain.
 In BFD algorithm [2], first partition the internal scan
chains among w wrapper scan chains to minimize the
longest wrapper scan chain in part one; Next the above
process is repeated for part two, considering the input cell
and output cell as internal scan chains of length 1. Because
part two is similar to part one, which is also a special case of
part one, we only discuss part one in this paper. The longest
wrapper scan chain can be defined as follows:
 Let C be a given subset, C Sc⊆ . Let L(C) be a sum of
length of every element in subset C,

c C
L(C) L(c)

∈
=∑ . We

can partition Sc into w wrapper scan chains, namely,

1 2{ , ,..., ,... }z wD D D D D= , , ,z zD D Sc∀ ⊆ [1,]z w∈ . We define

1() max ()z w zS D L D≤ ≤= as the longest wrapper scan chain.

3. Differential Evolution Algorithm

Differential evolution algorithm was proposed by R.Storn in
1997. Because differential evolution algorithm is concise
and of less control parameters, it has been widely used in
various fields [6, 7, 8, 9, 10].
 Differential Evolution algorithm is similar to genetic
algorithm, and it also includes crossover, mutation and
selection. Standard genetic algorithm adopts roulette
selection strategy generally, but differential evolution
algorithm uses tournament selection strategy; For the
crossover operation, the differential evolution algorithm and
genetic algorithm is similar in general, but for the mutation
operation, the differential evolution algorithm uses a
completely different strategies: it makes use of the
difference vector between two different individuals and let
the difference vector be scaled, enabling the individual
variation of the disturbance, which can compensate for the
variation operation of genetic algorithm.
 In general, the optimization problem is divided into two
kinds: maximization and minimization problems. However,
maximization problem can be transformed into minimization
problem. Without loss of generality, we only consider the
minimization problem:

1 2 3min f(x ,x ,x ,..., x)d
.s t x x xlow up

i i i≤ ≤ , 1,2,...,i d= ⑴

 Where d is the number of the dimension of the
solution; x lowi is the upper bound of the i-th component of

candidate solution; xupi is the lower bound of the i-th
component of candidate solution.
 In Differential evolution algorithm, an initialized
population is generally generated randomly, then through
mutation, crossover and selection operations, the next
generation population is obtained; the evolution does not
stop until the maximum number of iterations; at the end of
the evolution, the optimal solution is obtained, each part is
introduced in detail as follows.

3.1 Generation of Initial Population
Generally speaking, initial population is generated randomly
in evolutionary computation algorithm, and there is no
exception for differential evolution.
 Let R be the initial population, which can be defined as
below.

1 2{ , ,..., ,..., }k NPR X X X X= ⑵

 Where NP is the population size; k is the serial number
of individuals, and k=1, 2, 3,…, NP. Each individual can be
expressed as:

1 2(, ,..., ,...,)k k k k k
p dX X X X X=

 ⑶

Aijun Zhu, Zhi Li, Wangchun Zhu and Chuanpei Xu/Journal of Engineering Science and Technology Review 6 (2) (2013) 10-14

 12

 Where d is the number of the dimension of the solution
(individual); p=1, 2,…, d; k=1, 2,…, NP.

() (() ()) (0,1)k k k k
p p p pX X low X up X low rand= + − × ⑷

 Where ()k
pX low is the lower bound of the p-th

component of the k-th individual; ()k
pX up is the upper

bound of the p-th component of the k-th individual;

p=1,2,…,d; k=1,2,…, NP; (0,1)rand represents a random
number between 0 and 1.

3.2 Mutation Operation
In most evolutionary algorithms, to achieve the mutation
operation, an individual in a viable domain is produced
randomly; while in differential evolution algorithm a
differential strategy is adopted to generate the variation of an
individual. In the standard differential strategy, three
individuals that are not the same are randomly selected, and
the difference vector of two individuals is zoomed and then
it is synthesized with the third individual to achieve the
mutation operation.

31 2(1) () (() ()),rr riV g X g F X g X g+ = + ⋅ −
1 2 3r r r i≠ ≠ ≠ ⑸

 Where g is the generation number; F is the scaling
factor; g=0,1,2…MaxGen; MaxGen is the maximum of
iteration generation.
 The above differential strategy is the famous strategy
DE/rand/1/bin, which is the most widely used; because it can
remain diversity of population. In addition, there is another
differential strategy which is widely used, that is
DE/best/2/bin. Because its faster convergence speed is an
advantage, the DE/best/2/bin differential strategy is as
follows:

3 52 4(1) () (() () () ()),r rr ri bV g X g F X g X g X g X g+ = + ⋅ + − − ⑹

 Where 4 2 3 5r r r r i≠ ≠ ≠ ≠ ; ()bX g represents the best
individual in current population; In addition to the above two
differential strategies, there are other strategies, such as:
DE/rand/2/bin, DE/best/1/bin, DE/rand-to-best/bin,
DE/current-to-best/bin and DE/ current -to-rand/bin.

3.3 Crossover Operation

The g-th generation
1 2{ (), (),..., (),..., ()}k NPX g X g X g X g

and its variant are crossed as follows:

(1),

((0,1) || j)
(1)

(),

k
j

randk
j k

j

V g
if rand CR j

U g
X g
otherwise

⎧ +
⎪

≤ =⎪
+ = ⎨

⎪
⎪
⎩ ⑺

 Where CR represents the crossover probability; randj is
a random integer between 1 and d.

3.4 Select Operation

Differential evolution algorithm uses greedy strategy to
select individuals for the next generation. That is to say, if
the individual, which is obtained by crossover operation, is
better than the original one, then select the new individual as
the one in new generation, or the individual maintain
unchanged.

(1),
(((1)) ((1)))

(1)
(),

k

k k
k

k

U g
if f U g f X g

X g
X g
otherwise

⎧ +
⎪

+ ≤ +⎪
+ = ⎨

⎪
⎪
⎩ ⑻

3.5 Operation for Infeasible solutions
In the differential evolution process, in order to ensure the
effectiveness of solutions, each individual must be judged
whether each gene is within the specified range. If the
current individual is not in feasible region, then a similar
method to generate the initial population of individuals is
used. Namely, a new individual is generated randomly to
replace the one which is not in feasible region.

4. Proposed Algorithm

The proposed algorithm based on differential evolution for
wrapper scan chain design is described as follows:
 Step (1): system initialization: according to the number
of internal scan chains in the IP core, set the number of the
dimension of the solution space d; according to the number
of wrapper scan chains needed, set the value of w; set the
scaling factor F; set the value of the crossover probability Pc;
set the value of population size NP; set the value of the
maximum iterative generation MaxG.
 Step (2): in the feasible region, generate a random initial
parent population whose size is NP, then use the cost
function formula (10) to calculate the cost function value of
each individual in the initial parent population.
 Step (3): according to the formula (5), generate the
mutant population, whose size is NP.
 Step (4): check the boundary of each gene of each
individual in mutant population; if the value of a gene is less
than 1, then change its value to 1, if it is greater than w, then
change its value to w.
 Step (5): for each gene of the NP individuals, generates a
random number rand between 0 and1, if rand is greater than
Pc, the value of a gene of current individual in the child
population is set as that of the gene of the corresponding
individual in the parent population; otherwise, the value of
the gene of current individual in the child population is set as
that of the gene of the corresponding individual in the
mutant population.
 Step (6): use the cost function formula (10) to calculate
the cost function value of each individual in the child
population.
 Step (7): for the NP individuals, if the cost function
value of the current individual in the child population is less
than that of corresponding individual in the parent
population, use the individual in child population to replace
the corresponding individual in parent population.
 Step (8): through the Step (7), a new generation of
population, the parent population, is obtained, and then
calculate the cost function value of NP individuals in the
parent population.

Aijun Zhu, Zhi Li, Wangchun Zhu and Chuanpei Xu/Journal of Engineering Science and Technology Review 6 (2) (2013) 10-14

 13

 Step (9): judge whether the number of iterative
generation reach MaxG or not; if not, turn Step (3).
 Step (10): according to the cost function value, sort the
NP individuals in the parent population in ascending order,
and then obtain the individual whose cost function is
minimum. The individual, whose cost function is minimum,
is the optimal solution.

4.1 Solution Encoding
There are two encoding schemes for Evolutionary
computation algorithm: binary encoding and real number
encoding. However, there is a big redundancy in binary
coding scheme in general. Since this study is to solve the
problem of the partition of internal scan chains, and the
number of internal scan chains and their corresponding scan
chain length are all discrete integers, so the real number
(integer) coding scheme is adopted here.
 Definition 1 (individual): every individual is a candidate
solution Xi=(Xi1, Xi2,…, Xid), where i=1,2,…,NP; d is the
number of dimension of solution; NP is the population size.
If there are n internal scan chains in IP core, d equal n; for
arbitrary Xij, Xij is an integer between 1 and w. where w is
the number of wrapper scan chains; i=1,2,…,NP; j=1,2,…,d.
For example, d695.soc in ITC02 benchmark [11] has 16 IP
cores (modules); where IP core 6 has 16 internal scan chains,
namely, {S1, S2,…, S16}; their length are 41，41，40，40，
40，40，40，40，40，40，40，40，39，39，39，39,
respectively. Since d is determined by the number of internal
scan chain in IP core, d equals 16. If we want to partition 16
internal scan chains of IP core 6 in d695.soc among 2
wrapper scan chains, that means w = 2. As a matter of fact,
every internal scan chain belongs to either the first wrapper
scan chain or the second wrapper scan chain; therefore, the
value of each gene of a candidate solution is either 1 or 2.
Assume a candidate solution X = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
1, 2, 1, 2, 1, 2) with 16 dimensions, which means odd-
numbered series of internal scan chains are connected
together to form the first wrapper scan chain and even-
numbered series of internal scan chains are connected
together to form the second wrapper scan chain.

4.2 System Initialization
The population size NP is set as 20; the maximum number
of generation MaxG is set as 1500; the scaling factor F is set
as 0.5; the crossover probability Pc is set as 0.2; according to
the number of current wrapper scan chains needed, set the
value of w; according to the number of internal scan chains
in the current IP core, set the number of the dimension of the
solution space d.

4.3 Population Initialization
The random initial population is generated as follows.

0 i,j G round(a (b-a).rand),= +
1,2,..., ; 1,2,...,i NP j d= = ⑼

 Where round(x) is a function that rounds the elements of
x to the nearest integers; a is the minimum value of each
gene, here let a be 1; b is the maximum value of each gene,
here let b be w, which is determined by the number of
wrapper scan chains; d is the number of the dimension of a
solution (individual); NP is the population size.

4.4 Cost Function

In order to evaluate every individual, we should define a cost
function, whose value is inversely proportional to the fitness
of the corresponding individual. In other words, the greater
the cost function value, the less the fitness and the worse the
individual (solution).

2

1 1

1() (() (()) ,
j ni w

gk i j
i j

cf G L D L Sc
n

==

= =

= −∑ ∑

0,1,..., ; 1,2,...,g MaxG k NP= = ⑽

 Where L(Di) is a sum of length of every internal scan
chain in the i-th wrapper scan chain; L(Scj) is the length of
the j-th internal scan chain; n is the number of internal scan
chains; w is the number of wrapper scan chains; Ggk is the
k-th individual of the g-th generation; NP is the population
size.

5. Experimental Verification

To compare the various algorithms for wrapper design, we
use ITC’02 benchmarks [11]. Because most of internal scan
chains in IP Module have little difference in length, so it is
difficult to determine which algorithm is better in such IP
Modules. To prove the effectiveness of the proposed
algorithm, we select two typical unbalanced IP Module
(p34392 IP Module 2 and p22810 IP Module 5,) in ITC’02
benchmarks [11].

Table 1. Results of p34392 Module 2

w The longest wrapper scan chain
DE BFD MAV MAVR

2 4534 4538 4536 4536
3 2953 2954 2954 2953
4 2269 2269 2269 2269
5 1772 1773 1772 1786
6 1701 1701 1701 1701
7 1699 1700 1699 1699
8 1135 1135 1135 1135
9 1134 1134 1134 1134

10 1134 1134 1134 1134
11 1134 1134 1134 1134
12 1134 1134 1134 1134
13 1133 1133 1133 1133
14 1132 1132 1132 1132
15 611 611 611 611
16 570 570 570 570
17 570 570 570 570
18 570 570 570 570

 In table 1, w is the number of wrapper scan chains (TAM
width); the second column is the results of DE algorithm; the
third column is the results of BFD algorithm; the forth
column is the results of MAV algorithm; the last column is
the results of MAVR algorithm. From table 1, we can
conclude that the proposed algorithm can shorten the longest
wrapper scan chain when w is less than or equal 7; the
longest wrapper scan chain cannot be shortened any more
for all the algorithms, if w is more than 8.

Table 2. Results of of p22810 Module 5

w The longest wrapper scan chain
DE BFD MAV MAVR

2 1128 1128 1133 1138
3 754 763 757 757
4 567 572 578 578
5 460 461 463 463

Aijun Zhu, Zhi Li, Wangchun Zhu and Chuanpei Xu/Journal of Engineering Science and Technology Review 6 (2) (2013) 10-14

 14

w The longest wrapper scan chain
DE BFD MAV MAVR

2 1128 1128 1133 1138
6 387 389 389 387
7 334 342 335 335
8 294 295 295 295
9 266 274 260 260

10 246 239 247 247
11 214 214 214 216
12 214 214 214 214
13 214 214 214 214
14 214 214 214 214
15 214 214 214 214
16 214 214 214 214
17 214 214 214 214
18 214 214 214 214

 In table 2, w and the other parameters are the same as
those in table 1. From table 2, we can conclude that the
proposed algorithm can shorten the longest wrapper scan
chain when w is less than or equal 10; the longest wrapper

scan chain cannot be shortened any more for all the
algorithms, if w is more than 12.

6. Conclusion

An algorithm based on differential evolution is proposed to
shorten the longest wrapper scan chain, so as to minimize
the test time of IP module. Experimental results show that
proposed algorithm can obtain shorter longest wrapper scan
chain in general.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (Grant No. 60766001) and Guangxi
Natural Science Foundation of China (Grant No.
2013GXNSFAA019332).

References

1. Chakrabarty K, “Optimal Test Access Architectures for System on-

a-Chip,” ACM Transactions on Design Automation of Electronic
Systems, vol. 6, no. 1, 2001, pp. 26–49.

2. IYENGAR V, CHAKRABARTY K, MARINISSEN E J, “Test
Wrapper and test access mechanism co-optimization for system-on-
chip”, Journal of Electronic testing: Theory and Application, vol.
18, no. 2, 2002, pp. 213-230.

3. YU Y, CHENG Y F, PENG Y, “Wrapper scan chain balance
algorithm based on mean-value allowance”, Chinese Journal of
Scientific Instrument”, vol. 32, no. 10, 2011, pp. 2290-2296.

4. NIU D H，WANG H，YANG S Y，et al, “Re-optimization
algorithm for SoC Wrapper-chain balance using mean-value
approximation”, Tsinghua Science and Technology, vol.12,
no.suppl. 1, 2007, pp. 61-66.

5. ZHU A J, LI Z, XU C P, “Wrapper scan chain design algorithm for
SoC test based on biogeography optimization”, Chinese Journal of
Scientific Instrument, vol. 33, no. 12 , 2012, pp. 2774-2780.

6. Shahryar Rahnamayan, Hamid R. Tizhoosh, “Opposition-Based
Differential Evolution”, IEEE Trans Evol Comput, vol. 12, no. 1,
2008, pp.64-78.

7. Storn R, “System design by constraint adaptation and differential
evolution”, IEEE Trans Evol Comput, vol. 3, no. 1, 1999, pp.22-34.

8. Sharma, Harish, “Fitness based Differential Evolution”, Memetic
Computing, vol.4, no.4, 2012, pp.303–316.

9. Carbajal-Gómez, V.H., “Optimizing the positive Lyapunov
exponent in multi-scroll chaotic oscillators with differential
evolution algorithm”, Applied Mathematics and Computation,
vol.219, no.15, 2013, pp.8163–8168.

10. Subudhi, Bidyadhar, Jena, Debashisha, “A differential evolution
based neural network approach to nonlinear system identification”,
Applied Soft Computing Journal, vol.11, no.1, 2011, pp.861–871.

11. MARINISSEN E J, IYENGAR V, CHAKRABARTY K, “A set of
benchmarks for modular testing of SOCs”, International Test
Conference, 2002, pp. 519-528.

12. V. Iyengar, K. Chakrabarty, and E.J. Marinissen. “Efficient test
access mechanism optimization for system-on-chip”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol.5, May 2003, pp. 635-643.

13. Xiaoxia Wu, YiboChen , Krishnendu Chakrabarty , YuanXie .
“Test-access mechanism optimization for core-based three-
dimensional SOCs”, Microelectronics Journal, January 2010, pp.
601-615.

14. Dean L. Lewis Shreepad Panth Xin Zhao Sung Kyu Lim
Hsien-Hsin S. Lee. “Designing 3D Test Wrappers for Pre-bond
and Post-bond Test of 3D Embedded Cores”, IEEE International
Conference on Computer Design: VLSI in Computers and
Processors, 2011, pp. 90-95.

15. Qiang Xu, Nicola Nicolici. “Modular SOC Testing With Reduced
Wrapper Count”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol.24, December 2005, pp. 1894-
1908.

16. Jaehoon Song, “An Efficient SoC Test Technique by Reusing
On/Off-Chip Bus Bridge”, IEEE Trans circuits and systems, vol. 56,
no. 3, 2009, pp.554-565.

