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Abstract 
 

The upwind scheme exhibits spurious oscillations in resolving the convectively dominated problems. In this paper, a 
high-resolution scheme for advection equation was developed by using the undetermined coefficient method to reduce 
the numerical diffusion. The new scheme is applied to a rectangular wave and a Gaussian wave. The results show that the 
new scheme agrees well with the exact solution for pure convection of a Gauss wave and the rectangular wave. The new 
scheme has better accuracy than the conventional upwind scheme. 
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1. Introduction 
 
The advection-diffusion equation has been widely used to 
simulate sediment transport, pollutant advection and heat 
transfer, and so on. But it is hard to get the exact solution for 
the advection-diffusion equation [1,2,3]. Therefore, many 
numerical schemes have been proposed to get the numerical 
solution of the equation. Advective transport refers to a 
substance being carried along with fluid motion. Consider a 
contaminant being advected downstream with some fluid 
flowing through a one-dimensional pipe at a constant 
velocity, u . Then the concentration or density c  of the 
contaminant satisfies the advection equation of the form 
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 It is easy to verify that this equation admits solutions of 
the form 
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 for any function c . The concentration profile or wave 
form specified by c  simply propagates with constant speed 
u  and unchanged shape. Equation (1) is generally called 
one space dimension advection equation. Similarly, we can 
get the two space dimension advection equation 
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 In Equation (3), u is the flow velocity in the x direction, 
v is the flow velocity in the y direction, x and y are flow 
directions, and c is the transport substance concentration.  
As to 1-D advection equation, the classical up-wind 
difference scheme can be express as [4], 
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 But the accuracy is not quite high, especially in shock 
capturing [5,6,7,8]. The truncation error is so large that its 
using area is confined. Efforts have been made to obtain a 
class of schemes for this equation [9,10,11,12]. In this paper, 
a new upwind difference scheme based on the undetermined 
coefficient method for the advection equations with the 
dimensionless parameters was developed to reduce the 
numerical diffusion.  
 
 
2. Upwind scheme based on the undetermined coefficient 
method 
 
2.1 The new upwind scheme for 1-D advection equation 
Case 1: u>0 
When the velocity, parameter u in Eq.(1), is greater than 
zero, 1

1
−
−
n
jc  and 1−n

jc  can be introduced to the conventional 

upwind scheme, Eq. (4), and the new upwind scheme is 
constructed as, 
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Using Taylor expansion about the point (n，j）, we obtain 
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Comparing (7) and (1), we have the following equations. 
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where m is a dimensionless parameter to reduce the 
numerical diffusion, and ( ) xtuCr ΔΔ= / . By solving the 
Eq. (8)-(11), we get the expressions of the parameters: 
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Case 2: u<0 
When there is u<0, 1

1
−
+
n
jc  and 1−n

jc  are introduced to 

Equation (5), and we get 
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At the point (n, j), using Taylor expansion we have 
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Substituting (1) into (13), we obtain 
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where n is a dimensionless parameter. Solving Eqs (13)-
(17), we have 
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Unifying case 1 and case 2, we obtain the new upwind 
scheme method of the form  
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 Formula (18) is the new upwind scheme based on the 
undetermined coefficient method for 1-D advection 
equation. 
 
2.2 The new upwind scheme for 2-D advection equation 
 
Vectors split method is employed in the numerical solution 
of the 2-D advection equation [2]. The two-dimensional 
convection is expressed in the following two equations, Eq, 
(19) and Eq. (20). 
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 Using the undetermined coefficients method, we can get 
the numerical solutions of the above equations. 
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 Same as (18), it is easy to get the expression of 
parameters in (21) and (22). 
 
 
3. Numerical experiments 
 
When the velocity u is constant, Equation (1) has analytical 
solution. For the original boundary conditions of 

)()0,( xfxC = ， ∞<<∞− x , the analytical solution 
of Equation (1) is  
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(1) Case of one-dimensional rectangular wave 
Set the initial concentration as  
 

1),( =txC ， 10 xxx ≤≤                                            (24) 
 

0),( =txC ， 0xx <≤∞− ， +∞≤< xx1           (25) 
 

Computing parameters: ① 0>u , 1500 =x , 3501 =x , 

10=Δx , 10=Δt s, 4.0=u m/s, 02.0=m , and the 
total computing time is 1000 seconds; ② 0<u , 

9500 =x , 11501 =x , 10=Δx , 10=Δt s, 

4.0−=u m/s, 02.0=n , the total computing time is 
1000 seconds. The computed results are shown in Figure 1. 
It indicates that, whether u>0 or u<0, the computed results of 
the new scheme based on the undetermined coefficient 
method are close to the analytical solution results. 
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(b) u<0 

Fig.1. Test on the rectangular wave with the conventional upwind 
scheme and the new method 
 
(2) Case of two-dimensional Gauss wave 
 When the velocity in two-dimensional convection 
equation is constant, the initial surface will move 
horizontally over time. Set the initial surface expressed as 
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 where 4.0−=u m/s, 4.0−=v  m/s, x0=1200, 
y0=1200, 1000 =δ , �t=10s, �x=10m, �y=10m, the total 
computing time is 800 seconds, and the original conditions 

0),,0( =tyc , 0),0,( =txc . The computed results are 
shown in Figure 2. It showed that the Gaussian wave shape 
was kept well after 800 seconds, and the numerical diffusion 
is little. The new upwind scheme can be used to compute the 
advection of two-dimensional Gauss wave. 
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(a) initial value 

 
(b) Computed value 

Fig. 2. Test on the 2-D Gaussian wave by the new upwind scheme 
 
(3) Case of two-dimensional rectangular wave 
 Most schemes can well simulate waves with flat 
changes, such as Gauss wave and elliptical wave, etc. But 
when the wave changes rapidly such as rectangular wave, it 
is hard to get good simulation results, and serious dispersion 
and dissipation problems generally occur. To verify the 
performance of the new upwind scheme in solving two-
dimensional advection equation, test on the new upwind 
scheme is deployed. In this case, the height of the 
rectangular wave is 1.0, the top width and length are 200m, 
and the rectangular wave locates at 750≤x≤10500 and 
750≤y≤1050 at the beginning. In the computation, the 
parameters set as Δt=5s, Δx=10m, Δy=10m, u0=-0.4m/s, 
v0=-0.4m/s, and t=500s. The plane extent is 0~2000m 
respectively in x and y direction. When u and v are 
constants, Equation (1) has analytical solution. Let 
s(x,y,0)=f(x, y), and the analytical solution of Equation (1) 
on any time t can be expressed as  
 

),,(),,( tvyuxftyxs −−= ,                       (27) 
 

 which means that the initial wave shape moves 
horizontally without numerical diffusion after t seconds 
later, and the moving distances are ut meter and vt meter 
respectively in x and y direction. Figure 3 is the computing 
result on the 2-D rectangular wave by the new upwind 
scheme. It showed that the new upwind scheme had a little 

numerical diffusion after 800 seconds later, while it can 
reflect the rectangular wave shape well. It presents a good 
result in solving 2-D rectangular wave problem. 
 

 
(a) initial value 

 

 
(b)Computed value 

Fig. 3. Test on the 2-D rectangular wave by the new upwind scheme 
 
 
4. Conclusions 
 
Numerical diffusion generally occurs in the conventional 
upwind scheme when it is applied to resolve advection 
equations. To reduce the numerical diffusion, a high-
resolution is constructed based on the undetermined 
coefficient method. In the test of rectangular wave and 
Gauss wave, the results of the new scheme method are 
agreed with the exact solution. The new scheme has better 
accuracy than the conventional upwind scheme in computing 
the rectangular wave.  
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