

Journal of Engineering Science and Technology Review 5 (2) (2012) 30-34

Research Article

Dynamic Adaptive Streaming over HTTP

M. G. Michalos1, S. P. Kessanidis2 and S. L. Nalmpantis3*

1School of Computing, Information Systems & Mathematics, Kingston University, London, United Kingdom.
2University of Piraeus, Dpt of Digital Systems, Greece.

3Dpt of Electrical Engineering, Kavala Institute of Technology, Kavala, Greece.

Received 21 August 2012; Accepted 29 September 2012

Abstract

In this paper, an in depth elaboration and analysis of adaptive streaming is taking place. Current implementation
techniques of Dynamic Adaptive Streaming over HTTP from Adobe, Apple and Microsoft are being presented along
with all detailed transmission procedures including server, distribution and client components. Specifically, all exploited
protocols along with their attributes are being described and then the streaming media preparation and the delivery
process are being represented. Following, a simulation of a DASH employment is taking place using JW Player 5 for
Flash and HTML5 installed on a server with specific streaming video of 4 quality levels. Finally, measurements are
taken through Quality Monitor plugin and reasoned out for a better comprehension of DASH experience.

 Keywords: HTTP, DASH, dynamic adaptive streaming.
 __

1. Introduction

Moving backwards in the early days of the internet where
the first websites landed, the next most amazing element to
embed in web pages apart from plain text, were pictures or
even, later on, animation GIFs. Now days, with internet’s
massive evolution, web elements seem to meet no frontier.
Music, Videos, High Definition Videos or even live
streaming are some of the most popular web objects to be
implemented on websites. In addition to this rapid web
evolution comes the enormous outspread of handheld
devices such as smartphones, tablets, netbooks, notebooks
and laptops where all web appliances must be in compliance
with.

Video embed for web today can be considered more as a
necessity than a feature. Although it has been embraced by
all biggest websites all over the world, it isn’t flawless, like
every other multimedia streaming service available on the
web. Taking all the above under consideration, a new
delivery service has been developed in order to render the
best possible video streaming and it was named Dynamic
Adaptive Streaming over HTTP (DASH). DASH is a
streaming technology which set off in 2010 developing in
parallel with MPEG [2] and managed to standardize only
until recently, late 2011. Despite its infant development, the
DASH experience isn’t very far from most of the Internet
users as the famous YouTube is based on the DASH
initiative.

2. Protocol approach

Since Hyper Text Transfer Protocol (HTTP) has been
chosen to deliver the video streaming, a protocol approach

should be materialized in order to better understand how
DASH takes advantage of the existing network
infrastructure. Internet Protocol (IP) is the keystone to the
Internet structure because it is responsible for transferring
datagrams (packets) across the Internet network. TCP on the
other hand is a protocol that is responsible for carrying out
reliable interconnectivity and with no loss of packets
network connections.

TCP may sound like a guaranteed mean of streaming but
through a closer look it isn’t. Its error correction techniques
may result on displaying a visual or audio impairment while
the eventual and undesired method of playback would be to
pause the streaming media and press play when packet
transmission recurs [11]. Also, through TCP, video should
initially be downloaded completely and then viewed while
through DASH user has the ability to choose the part of the
video that desires to view. This part of DASH is being
fulfilled by the Real Time Messaging Protocol (RTMP) [2].
RTMP is based on TCP but dodges its lack of pre-
downloading the video providing the ability of seeking
through the video timeline and watching any part of it at the
same time. Last, but not least HTTP is the protocol that
bridges the website files through the World Wide Web
(WWW) with the end user.

It is important to mention that HTTP serves almost all
websites available on the Internet while it is responsible for
delivering any kinds of files throughout the web such as
images and html, php, xhtml and images. HTTP consists of
two messages, Response and Request as shown in Fig. 1.
HTTP Get is the most considerable Request HTTP message
which is responsible for retrieving the address (URL) of a
file from the server. But, apart from the messages, there are
some concrete processes that reinforce DASH and emanate
from HTTP. More specifically, HTTP downloading,
progressive downloading and HTTP pseudo-streaming are

Jestr

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

 * E-mail address: stefnal@sch.gr
ISSN: 1791-2377 © 2012 Kavala Institute of Technology. All rights reserved.

M. G. Michalos, S. P. Kessanidis and S. L. Nalmpantis /Journal of Engineering Science and Technology Review 5 (2) (2012) 30-34

 31

integral procedures that without their presence, DASH
wouldn’t be available [1].

HTTP downloading represents the simplest video
carrying procedure as the user selects the video, downloads
it and then views it. Although it sounds as a reliable
procedure the disadvantage is that the user must download
the whole video first in order to view it. Moving forward to
HTTP progressive downloading [9], it is a procedure that
many Internet users are familiar with since it includes
multimedia downloading while the specific file is being
viewed or generally played. It is in fact a not so trustworthy
service as it requires a very fast Internet connection in order
for the downloading to stay ahead of the playback. In order
to overcome this clog, HTTP pseudo-streaming was
invented. This feature of streaming can recognize the client’s
internet connection as well as other hardware features (CPU,
RAM memory, HD compatibility etc.) and delivers the best
available video quality by taking under consideration all the
above factors [9]. The final outcome would be the best video
quality streaming in compliance with the desired, most
smooth viewing experience.

HTTP transcends in some other features also. Firstly, as
standardized protocol it can overcome any firewall
protections thus, making it even more easy to be approached
by clients that are not so comfortable with the Internet use
[12]. Secondly and most important, HTTP is a stateless
protocol which means that a server assigns a unique
connection to every client in order to view a video and when
the client is done, server closes the connection without
saving any recent information. To sum up, HTTP is a widely
used protocol since it delivers the Internet to almost every
user worldwide and it gives full control of the streaming
procedure.

3. What’s DASH all about?

DASH is all about delivering video to the internet user in an
adaptive mode. This means that the stream is being delivered
to the client by recognizing and adapting to network’s
capacities every time a new request takes place. Most
internet users don’t possess a fixed line, thus not having a
stable bandwidth for downloading media. This is where
DASH takes over by chopping the file into smaller pieces,
the segments and downloading them in a dynamic way thus
the streaming is in a continuous, without interruption
playback mode no matter which part of the stream is being
watched while the rest is being downloaded [8]. Still, if the
network used is proven to be inadequate and undesirable
breaks interrupt, DASH seamlessly changes stream to a
lower quality video, which is also stored in the server.

An HTTP streaming system consists of Server
Components, Distribution Components and Client
Components. Concerning the Server Components, if a live
streaming is taking place, an encoder is necessary that would
encode media to be afterwards encapsulated for transference
[10]. This mostly takes place if a live streaming is being
delivered. Then the file is being elaborated in the segmenter
where according to the file’s duration, a group of multiple
files is being generated. Segmenter is part of HTTP pseudo-
streaming in which video delivery includes a preparation
stage. More particularly, DASH includes the Media
Preparation Description (MPD) and file format definition
[3]. MDP includes a wide variety of operations which
mostly concentrate in dividing the file to be delivered in
segments. Then, MPD is responsible for allocating a

particular server address which then will be called by the
client using this specific URL address [14].

3rd Generation Partnership Project (3GPP) took over the
standardization of the DASH process. MPD process requires
segments definition and this is where 3GPP participates by
undertaking the naming. Thus, all segments defined in the
preparation process receive 3GP file format (.3gp) and a
specific URL is being allocated in order for them to be
smoothly retrieved [14]. 3GP file format was the initial
labeling for the segment files but more implementations
came along afterwards and more file formats had to be
invented according to every implementation sort for
segments.

After cropping the file into segments and defining them
through 3GPP standards, all MPD information is contained
into a manifest file where the location of the media is being
declared [14]. This file can basically be considered as an
encoder of multiple files and XML was the best file type
chosen to represent the manifest. Then, HTTP engages to
retrieve all files required to substantiate the stream.

Distribution components for the case of DASH refer to a
simple HTTP web based server. Server is responsible for
storing the stream and transferring the appropriate XML
manifest files created by the segmenter to the client.

Last, but not least, the client component refers to the
XML manifest file which identifies the URL of the stream.
XML file, as mentioned above, also refer to all information
associated with segments as well as their bit rate and other
playback intelligence. Taking under consideration the client
potentials, the client can call for specific segment types
regarding byte ranges and other adaptive data without
having to download the whole segments [10].

Fig. 1. HTTP Request/Response scheme.

Fig. 2. MPD format [13]

4. Current implementations

Although Move Networks was the company that recognized
and found the adaptive streaming technology, it was only
until 2010 that it was awarded the Fundamental Patent for
inventing adaptive streaming. The only difference between
the process described above and Move Networks’ patent is
that the streaming file is being chopped in streamlets and not

M. G. Michalos, S. P. Kessanidis and S. L. Nalmpantis /Journal of Engineering Science and Technology Review 5 (2) (2012) 30-34

 32

segments. Nevertheless, giants of computer society such as
Adobe, Apple and Microsoft had made a significant growth
on adaptive streaming over HTTP by offering developers
with tools for developing media delivery websites. Their
appliances are already being enjoyed by millions of users in
personal computers, tablets, even mobile phones taking into
consideration the fact that YouTube and Vimeo are based on
the aforementioned company’s implementation foundations.

4.1. Adobe Adaptive Streaming

Through Flash, Adobe has developed streaming technologies
for several years now but she soon acknowledged the need
for adaptive playback and pioneered in adaptive web media
delivery [4]. Adobe upholds adaptive streaming by
presuming upon both RTMP and HTTP protocols but by
implementing different server applications. RTMP requires
Flash Media Server instatement as server component and
Flash Media Player as client component. On this settlement,
RTMP supports multiple files which are used to generate a
multi-bitrate playback. It also supports bit rate alteration
with file reuse of existing multiple bitrate encoded media.
On the other hand HTTP requires Adobe Air as server
component and Flash Player on the client component side
[4]. Adobe HTTP supports standardized formats of VP6 and
H246 file types which are chopped into fragments and used
from a specific manifest, the FMF which is just a similar
format to the one of XML.

4.2. Apple HTTP Live streaming

Apple developed HTTP Live Streaming (HLS), a protocol
referring to media streaming communications that was
primarily established in QuickTime player and the iPhone
[5]. HLS applies DASH process in its simplest form by
clipping the stream into smaller HTTP-based file downloads.
Client may select any stream available which includes media
encoded in a variety of data rates, allowing this way the
most appropriate data rate adaptation. Apple’s manifest is
reflected on a playlist which contains the list of available
qualities. This playlist is divided into smaller sub-playlists
which include URLs for each M3U segment [5].

Apple has documented an Internet Draft which was
submitted to the IETF as a proposed standard. The specific
RFC [16] is still in draft mode and as this paper is written it
has reached Draft Version 08. It is important to mention that
HLS has found profitable ground through very noted
company’s applications such as Adobe’s Flash Media
Server, Microsoft’s Internet Information Services and
Google’s Android. Apple has also implemented the HLS
protocol to all of its current iOS handheld devices which are
iPhone, iPad and iPod Touch.

4.3. Microsoft Live Smooth Streaming

Live Smooth Streaming is an adaptive media streaming over
HTTP which mainly is an outspread of Internet Information
Services (IIS) Media Services web server application. As of
2009, Microsoft’s DASH approach on Live Smooth
Streaming specification was based on the ISO Base Media
File Format. It was also standardized as the Protected
Interoperable File Format (PIFF) and the manifest file is
based on XML file types [6]. The XML manifest file is used
to convey the table of segments URLs to the client which
contain audio and video material of fragmented MP4. The
only difference with the rest of the DASH implementations

is that the specific segments may contain irrespectively
audio and video material [6]. This way, both media files that
refer to a specific segment may be downloaded distinctively
depending on the network’s available quality.

Though Server Component is Microsoft’s IIS with the
extension of Smooth Streaming, a Client Component is also
indispensable. Thus, the client must install to his browser
Microsoft’s Silverlight Player which supports H.264 and
VC-1 video as well as AAC and WMA audio of codec-
agnostic material. Microsoft has also developed Smooth
Streaming Porting Kid which is a used for other operating
systems than Microsoft such as Apple iOS, Google Android
and Linus. Last but not least, Microsoft has managed to
evolve collaboration with NVIDIA graphics which resulted
to demonstrate both live and on demand 1080p 3D HD video
with Smooth Streaming to clients outfitted with NVIDIA 3D
vision equipment.

5. Simulation of Adaptive Streaming over HTTP using
JW Player

Since DASH has been established as video technique not
only for home entertainment delivery but mobile as well,
many open source embeddable media players have been
evolved. JW Player is an embeddable media player that
supports most ordinary video and audio format and comes
with a lot of plugins and modification options.

JW Player supports both Flash and HTML5 making
streaming media accessible across multiple devices and
internet browsers. It’s important to mention player’s
accessibility as it is supported using Flash Player or HTML5
by all major browsers such as Google Chrome, Mozilla
Firefox, Microsoft Internet Explorer, Opera, Safari and most
widespread mobile operating systems such as Apple iOS
(only HTML5) and Google Android. It also supports an easy
to use Application Programming Interface (API) based on
JavaScript for flexible manipulation by developers.
Furthermore, it can be enhanced through Flash and
JavaScript plugins allowing customized video delivery with
amplified streaming experience. In addition, it supports
video delivery and bitrate switching using HTTP Pseudo
streaming and RTMP streaming protocols but unfortunately,
for the time being, only through Flash exploitation. Last but
not least, JW Player supports FLV/F4V, H.264/MP4, MP3
and AAC video and audio formats through Flash while
HTML5 upholds formats that are being supported by the
browsers.

5.1. Simulation appliance

In order to simulate Adaptive Streaming over HTTP, a new
server account has been allocated with a domain at a
datacenter in Texas USA. JW Player has been published in a
single webpage named index.html to the specific domain
through a common File Transfer Protocol (FTP) program.
Then, a video has been recorded with a Canon 550D digital
camera of 51” in which was subjoined an audio sequence of
44.1KHz and 128kbps. The specific video has been
converted to .flv file in order to comply with the simplest
mean of video delivery and to reciprocate with all browsers.

Moreover, the initial file has been compressed to
multiple versions of size and bitrate as shown on Table 1.

M. G. Michalos, S. P. Kessanidis and S. L. Nalmpantis /Journal of Engineering Science and Technology Review 5 (2) (2012) 30-34

 33

Table 1. Multiple video characteristics used for adaptive
streaming simulation.

Filename Resolution/
Bitrate

Resolution
size

Ratio Level

240p.flv 240 320x240 4:3 1
360p.flv 360 640x360 4:3 2
480p.flv 480 640x480 4:3 3
720p.flv 720 1280x720 16:9 4

After uploading the videos through FTP, index.html has
been granted with the following HTML code.

<script type="text/javascript"
src="jwplayer.js"></script>
<div id="container">Loading the player…</div>
<script type="text/javascript">
jwplayer("container").setup({
flashplayer: "player.swf",
 plugins: {
 "qualitymonitor": {}
 },
 levels: [
 { bitrate: 240, file:
"http://www.website.com/240p.flv", width: 320 },
 { bitrate: 360, file:
"http://www.website.com/360p.flv", width: 640 },
 { bitrate: 480, file:
"http://www.website.com/480p.flv", width: 640 },
 { bitrate: 720, file:
"http://www.website.com/720p.flv", width: 1280 }],

provider: "http",
 "http.startparam":"starttime" });
</script>

As described above, it is evident from the HTML source
code that both JavaScript and Flash are being supported
through jwplayer.js and player.swf respectively [7].
Furthermore, JW Player supports HTTP streaming through
the “provider” command where HTTP is being declared.
Also, all bitrates along with the video source and width are
being mentioned. Another command that is being referred in
the source code is a plugin called quality monitor. Among
many plugins that JW Player supports, Quality Monitor is a
real time depicter of video streaming features such as
bandwidth used by video delivery (Green line), dropped
frames in case of frames rate alteration (Red line), width
(which in this case is still Blue line) and level (White line)
[7]. Level represents the multiple versions of video quality
as shown in Table 1.

5.2. Simulation results

Simulation has been conducted through personal computers,
laptops and netbooks that use the internet for regular use and
of course, to view streams of common videos. The video, as
described above has been published and measurements have
been taken through a variety of browsers, internet
connections and areas of Peloponnese contingent, Attica and
Thessaloniki.

In Fig. 3 and 4 one can see a smooth playback which is
being carried out in a very close range of internet line
bandwidth. Specifically Quality monitor consumes
bandwidth line of 1024 kbps and 1124 kbps for Fig. 3 and
Fig. 4 respectively. Although it’s small difference of only
100 kbps, stream in Fig. 4 displays better and smoother

playback, thus consolidating on level 3 video of 360p.
Stream in Figure stabilizes in level 4 on 240p and despite the
small difference of bandwidth, one can see that bandwidth
starts at a low range and also steadies quite low in contrast
with Fig. 4.

In Fig. 5 one can see that playback from Level 1 drops to
Level 4 and then swarms to Level 3. It is clear by the green
line that bandwidth of user’s line is quite low but,
surprisingly blue line that represents width rises up to 1680
pixels. This happens because user’s hardware is quite
advanced and since the bandwidth line can’t keep up in
order to serve maximum streaming experience JW Player
maintains bitrate but proliferates window width in order to
render better viewing quality.

On the other hand, Fig. 6 represents a smooth playback
of the stream as it consolidates at Level 2 of 480p where all
lines seem to maintain a stabilized flow.

Fig. 3. Level 4 playback in Attica with 24Mbits aDSL line.

Fig. 4. Level 3 Playback in Tripolis with 24Mbits aDSL line.

Fig. 5. Level 3 playback in Tripolis with 24Mbits aDSL line.

Fig. 6. Level 2 Playback in Thessaloniki with 24Mbits aDSL line.

In Fig. 7 and 8 one can notice a very interesting playback

occasion. Level 1 video is 720p of data rates which is
considered an HD stream. Although both streams seem to
behave very spacious with bandwidth consumption, none

M. G. Michalos, S. P. Kessanidis and S. L. Nalmpantis /Journal of Engineering Science and Technology Review 5 (2) (2012) 30-34

 34

swarms to Level 1 playback. This is happening because both
users’ hardware doesn’t cope with HD playback thus, it
intrudes 480p playback.

Fig. 7. Level 2 playback in Attica with 24Mbits aDSL line.

Fig. 8. Level 2 Playback in Attica with 24Mbits aDSL line.

6. Conclusion and Simulation Evaluation

From the simulation performed, one can realize that adaptive
streaming over HTTP is an accessible multimedia
networking technology from a developer’s but also a user’s
perspective. Developers can elaborate small streaming
distribution websites with open source programming toolkits
while users can already have access to DASH through
Content Distribution Networks (CDNs) where movies or live
streaming media are being stored for broadcast. Larger
delivery networks are being elaborated with more complex
and expensive toolkits in order to serve greater amount of
users and data.

Adaptive streaming technology proved to veil the chasm
that full media downloading has been performing until
recently. In addition to that, the already established and
firewall-compatible HTTP has been chosen to deliver
streaming media. It is a fact though that most of the adaptive
process is taking place on the user’s side as implementations
take advantage of the internet bandwidth and the available
computer hardware.

Over the recent years, Video on Demand (VoD) services
has raised gaining more enthusiasts. A future evolution of
DASH could include Scalable Video Coding (SVC) [15] as
well as Variable Bitrate (VBR) streams. Specifically for the
second instance, it is very important to implement such a
process since adaptivity may stick in a non-representative
bitrate of the media [1].

References

1. A brief tutorial on adaptive streaming. (2011). EBU Technical.

[Internet]. <http://tech.ebu.ch/news/ >. [Accessed 22nd December
2011].

2. Christopher Müller and Christian Timmerer. (2011). A Test-Bed
for the Dynamic Adaptive Streaming over HTTP featuring Session
Mobility. ACM Multimedia Systems 2011. February 23 –
February 25, San Jose, California, USA. ACM, 2011.

3. Frank Hartung, Sinan Kesici and Daniel Catrein. (2011). DRM
Protected Dynamic Adaptive HTTP Streaming. ACM Multimedia
Systems 2011. February 23 – February 25, San Jose, California,
USA. ACM, 2011.

4. HTTP Dynamic Streaming. (2011). Adobe.
<http://www.adobe.com>. [Accessed 23rd of December 2011].

5. HTTP Live Streaming Overview. (2011). Apple.
<http://www.apple.com>. [Accessed 27th December 2011].

6. IIS Smooth Streaming Technical Overview. (2011). Microsoft.
<http://www.microsoft.com>. [Accessed 25th December 2011].

7. JW Player 5 for Flash and HTML5 (2011). Longtail. [Internet].
<http://www.longtailvideo.com/players/>. [Accessed 20th
December 2011].

8. Kashaf Mazhar,Compliance Procedures for Dynamic Adaptive
Streaming over HTTP (DASH). Master’s Degree Project, The
Royal Institute of Technology, 2011.

9. Luciano Romero. A Dynamic Adaptive HTTP Streaming Video
Service for Google Android. Master’s Degree Project, The Royal
Institute of Technology, 2011.

10. Muhammad Siraj. HTTP Based Adaptive Streaming over HSPA.

Master’s Degree Project, The Royal Institute of Technology, 2011.
11. Saamer Akhshabi, Ali C. Begen and Constantine Dovrolis. (2011).

An Experimental Evaluation of Rate-Adaptation Algorithms in
Adaptive Streaming over HTTP. ACM Multimedia Systems 2011.
February 23 – February 25, San Jose, California, USA. ACM,
2011.

12. Sodagar Iraj. (2011). The MPEG-DASH Standard for Multimedia
Streaming Over the Internet, Multimedia, IEEE, Vol. 18 (4), pp.
62 – 67.

13. Thomas Stockhammer. (2011). Dynamic Adaptive Streaming over
HTTP – Standards and Design Principles. ACM Multimedia
Systems 2011. February 23 – February 25, San Jose, California,
USA. ACM, 2011.

14. Thorsten Lohmar, Torbjörn Einarsson, Per Fröjdh, Frédéric Gabin
and Markus Kampmann. (2011). Dynamic Adaptive HTTP
Streaming of Live Content. International Symposium on a World
of Wireless Mobile and Multimedia Networks (WoWMoM 2011),
June 20 – June 23, Lucca, Italy. IEEE, 2011.

15. Yago Sánchez, Thomas Schierl, Cornelius Hellge, Thomas
Wiegand and Danny De Vleeschauwer. (2011). iDASH: Improved
Dynamic Adaptive Streaming over HTTP using Scalable Video
Coding. ACM Multimedia Systems 2011. February 23 – February
25, San Jose, California, USA. ACM, 2011.

16. R. Pantos, and W. May. (2012). HTTP Live Streaming. [Online].
Available: http://tools.ietf.org/html/draft-pantos-http-live-
streaming-06.

