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___________________________________________________________________________________________ 
 
Abstract 
 

One-way shear failure of Fiber-Reinforced Polymer-reinforced concrete (FRP-RC) elements occurs with no adequate 
warning as well as it happens in a complicated and devastating manner. Recent research efforts have yielded several 
pioneering works in this area; however, there is a lack of agreement on the physical understanding of the behavior continues 
to be an issue. Thus, in the current study, a Machine Learning shear strength model is developed for FRP-RC elements. A 
boosted regression model is developed and trained using an experimental database composed of 420 records. The boosted 
model has proved a better prediction accuracy using statistical measures, the model reported a variation coefficient (R!) = 
0.91, root mean square error (RMSE) = 13175 and mean absolute error (MAE) = 8.8684. Also, a study of the importance 
of the input parameters has been presented. The proposed model captured the depth effect, the wide beam effect, and the 
dowel action. 
 
Keywords: Fiber-reinforced polymer (FRP), Slender FRP-reinforced concrete elements, One-way shear failure, Shear strength, Machine 
Learning, Boosted regression model. 
____________________________________________________________________________________________ 

 
1. Introduction 
 
Revisiting the old problem, which is the shear design of rein-
forced concrete elements has been and continues to be a di-
lemma. This dilemma is influenced by various mechanisms 
and parameters; thus, no one model is capable of resolving it 
[1-4]. In addition, Fiber-Reinforced Polymer-Reinforced 
Concrete (FRP-RC) elements increase the uncertainty of this 
old problem by additional factors such as different Young’s 
modulus for different FRP types, the linear behavior up to the 
failure of Fiber-Reinforced Polymer (FRP), etc. [5-7]. Thus, 
the demand for developing a robust model that is capable of 
capturing the behavior of FRP-RC elements under shear is 
growing [8-10]. This is crucial to attaining a greater compre-
hension of the shear failure and better shear provisions; thus, 
achieving the following: optimum material usage, reliable de-
sign, and life span [11-12]. 
 For eight decades, researchers have attempted to develop 
shear strength physical models for steel reinforced concrete 
(RC) elements; thus, many models have been developed. 
Back in the 50s, simplified empirical models were the only 
option [13], which included the basic parameters considered 
significant for the shear strength [14]. In addition, other pa-
rameters were found to be significant, including the depth ef-
fect; this, future models included [15–17]. Moreover, the ef-
fect of the element shear slenderness, the fracture energy, and 
the maximum nominal aggregate depth [13, 18-19] were in-
vestigated and included in the modeling. Experimental 

databases were used to calibrate these empirical models; how-
ever, the mechanism and true behavior were too ambiguous 
and complicated to model. Last but not least, advanced exper-
imental measurements and numerical analysis techniques 
were implemented in recent studies to further explore the 
mechanism and true behavior under shear [20–22]. Therefore, 
a handful of mechanical models were developed based on a 
more advanced understanding of the contribution of each 
shear mechanism [23–25]. 
 A handful of one-way shear models were developed for 
steel-RC elements, including the Critical Shear Crack theory, 
the compression chord, the compression field, the multi-ac-
tion model, the crack sliding shear, the critical shear displace-
ment, the Reineck, and the Shear Crack Propagation [21, 26-
35]. However, very limited models focused on FRP-rein-
forced concrete elements under shear. Those models include 
the compression chord, field, and Modified compression field 
models [36-39]. 
 Artificial Intelligence (AI) has recently been increasingly 
used in various applications due to computing innovations. 
Machine Learning (ML) is a subset of AI trained and tested 
using large databases, increasing the prediction accuracy. ML 
techniques have become a powerful alternative for establish-
ing an accurate prediction model based on experimental data. 
Many ML approaches have been used in the prediction of 
shear strength, such as artificial neural networks (ANN), mul-
tiple linear regression (MLR), support vector machine 
(SVM), and ensembled boosted regression. ANN and SVM 
are considered traditional ML techniques. These techniques 
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have distinct frameworks with strong and weak aspects; there-
fore, these algorithms still need further tuning. Ensemble 
techniques were proposed to benefit from the many abilities 
of each individual model. 
 Machine learning (ML) methods have been extensively 
utilized in concrete research, enabling comprehensive and in-
depth studies within this field; the scalability and adaptability 
of boosted machine learning algorithms make them highly 
suitable for broader applications. It is designed to handle large 
and complex datasets efficiently, leveraging parallelization 
techniques to process high-dimensional data, ensuring scala-
bility for real-world scenarios. Additionally, their inherent 
flexibility allows adaptation to various problem domains by 
retraining with new datasets or updating hyperparameters, 
making them applicable to diverse applications such as pre-
dicting shear strength for different FRP materials, structural 
configurations, or environmental conditions. Furthermore, 
feature importance analysis in boosted models offers valuable 
insights into critical parameters, enabling domain-specific 
customization and improved decision-making. Highlighting 
these attributes confirms the algorithm's potential for practical 
deployment in diverse engineering problems, enhancing the 
study's relevance and significance [40-52].  
 In this research, one of the most precise ensemble algo-
rithms, the boosting ensembled regression model, is adapted 
to simulate the slender FRP-reinforced concrete elements. It 
is considered a powerful ML based on the employment of var-
ious weak learners to decrease overfitting, and it also shows 
superior prediction results when compared with any other ML 
models [40]. The model was trained with an experimental da-
tabase composed of 420 samples. The final results proved that 
the boosted model exhibits the most robust and accurate pre-
dictions for the shear strength.  
 
 
2. Experimental Database 
 
The most thorough database for slender FRP-RC beams ac-
cessible to date, which consists of 420 specimens tested in 57 
studies, is adopted in the present study [1, 2]. Table 1 and Fig-
ure 1 show the frequency distribution of the geometrical and 
mechanical parameters of the database. The database speci-
mens have FRP flexure reinforcement, including, and not lim-
ited to, two Aramid-FRP (AFRP) bars, nine Basalt-FRP 
(BFRP) bars, 111 Carbon-FRP (CFRP) bars, and 298 Glass-
FRP (GFRP) bars. The element width (b) ranges between 89 
mm and 1830 mm, the effective depth (d) ranges between 73 
mm and 938 mm, the compressive strength of concrete (f"’) 
range between 20 MPa and 93 MPa, the flexural reinforce-
ment ratio (ρ#) range between 0.09% and 3.98%, the young’s 
modulus (E#) value between 29 and 192 GPa, and the rupture 
stress of the FRP (f#$) value between 397 and 2640 MPa. 
 
Table 1. Distribution of parameters for database. 

Source Range 
Size of the database  420 
Studies in the database 57 
Compressive strength of concrete (f!, MPa) 20 – 93 
Element width (b, mm) 89 – 1830 
Element effective depth (d, mm) 73 – 938 
Shear span (a, mm) 299.6 – 3096 
Shear span to depth ratio (a/d)  2.5 – 16.2 
Ratio of longitudinal reinforcement ρ" (%) 0.09 – 3.98 
Young’s modulus ratio of longitudinal reinforcement 
(E", GPa) 29 – 192 

 
 

 
Fig. 1. Database frequency distribution. 

 
 
3. Development and Validation of the Machine Learning 
(ML) Model 
 
The boosted ensemble regression method is a statistical meth-
odology used in developing a strong, accurate prediction 
model. It has also improved traditional decision tree methods. 
It creates several weak models to produce an optimal single 
model to reduce overfitting [40], which allows this method to 
work on different datasets and maintain the same efficient, 
accurate results. 
 For a given dataset with n records and p input features D 
= {𝑋% , 𝑦%}, The output prediction is defined by: 
 
𝑌% =	∑ 𝑓%(𝑋%)&

%'( 	 , 𝑓% 	 ∈ 𝐹          (1) 
 
where, F is the regression tree space. 
 
𝐹 =	 2𝑓(𝑋) = 𝑤)(+)4           (2) 
 
where, I is the number of trees. Each 𝑓% is corresponding to 
p, an independent tree structure, and w leaf weights. The ob-
jective function is expressed by: 
 
Loss = ∑ 𝐿(𝑌% , 𝑦%)% +	∑ 𝜑(𝑓%)%          (3) 
 
 The prediction of the𝑘-.  instance at the 𝑛-. iteration is 
defined by:  
 
𝑌/
(0) = 𝑌/

(01() + 𝑓%(𝑋%)          (4) 
 
 Also, the objective function could be updated as in: 
 
𝐿𝑜𝑠𝑠(0) =	∑ 𝐿𝑜𝑠𝑠(	𝑦% , 𝑌/

(01() + 𝑓%(𝑋%) + 	𝜑(𝑓%))&
/'(       (5) 

 
where 
 
𝜑(𝑓%) = 𝛾𝑇 +	(

!
	𝜆 ∑ 𝑤2!3

2'(          (6) 
 
 The boosted method employs second-order Taylor opti-
mization for optimizing the objective function: 
 
𝐿𝑜𝑠𝑠(0) ≅	∑ [𝐿𝑜𝑠𝑠 A𝑦% , 𝑌/

(01() + 𝑔%𝑓%(𝑋%) +&
/'(

(
!
ℎ%𝑓%!(𝑋%)D + 𝜑(𝑓%))          (7) 



Nermin M. Salem, Denise-Penelope N. Kontoni, Ahmed Farouk Deifalla and Ambrosios-Antonios Savvides/ 
Journal of Engineering Science and Technology Review 18 (1) (2025) 48 - 56 

 50 

where, 𝑔% =	
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 The final objective function is defined as follows: 
  

𝐿𝑜𝑠𝑠(0)(𝑝) = 	− (
!
∑

(∑ <##∈,- )*

.#=>
+ 𝛾𝑇3

2'(         (8) 
 
 Figure 2 shows a flowchart of how the Boosted Algorithm 
works. For best output results, 15-fold held-out validation is 
used and applied to the model. The model is trained using the 
experimental dataset composed of six input features as previ-
ously defined in previous sections. This dataset was divided 
into two main sets; the training set contains 70% of the dataset 
records, and the testing set contains the remaining 30%. The 
number of trees used in the training process was set to 100 
with a learning rate equal to 0.1. The needed reduction in the 
minimum loss for further partitioning each tree leaf node is 
set to 0. The model was implemented using MATLAB.  
 Figure 3 compares the experimentally real results and the 
predictions produced during the training phase. The model 
can accurately predict the shear strength with a higher accu-
racy than other constitutive models. 
 Figure 4 shows the prediction performance of the boosted 
model, where the x-axis represents the experimental test data 
while the y-axis represents the produced predicted output, re-
spectively. The ideal predictions are represented by the black 
straight line, where the predictions are equal to the real output, 
while the predictions are presented by the pink dots. The ver-
tical difference between the black line and the pink dots is the 
error in predictions. Most of the predicted points are located 
beneath the black diagonal line. This could also be used as a 
safety margin during the design process. However, it does not 
influence the analysis process.  

 

 
Fig. 2. Flow Chart of the boosted Algorithm. 

 
Fig. 3. Predicted versus Actual data points during the Training Phase. 

 

 
Fig. 4. Prediction results of the boosted model for the testing dataset. 

 
 Performance evaluation was performed by computing 
some common statistical measures such as the variation coef-
ficient (𝑅!), root mean square error (RMSE), and mean abso-
lute error (MAE). The performance metrics considered have 
been carefully chosen and implemented to assure the accuracy 
of the proposed model over existing ones. Thus, the proposed 
model provides reliable and more accurate predictions of the 
shear capacity of the non-slender FRP-reinforced beams, ul-
timately leading to a safer and more economically resilient 
structure. 𝑅! reports how well the proposed model can pre-
dict the trained data. RMSE is the cost function that plays a 
fundamental role in the learning process of the boosted model. 
RMSE and MAE play a vital role in the accuracy of the pre-
dictions that are obtained. The boosted model reported 𝑅! = 
0.91, RMSE = 13175 and MAE = 8.8684. The training loss is 
shown in Figure 5.  
 Figure 6 provides a study of the importance of the six in-
put parameters. That study concluded that the dominant pa-
rameters are the d, followed by the element width-to-depth 
ratio, thus emphasizing the importance of the depth and the 
wide beam effect (i.e., rectangularity ratio). Therefore, poten-
tial biases, such as overrepresenting certain FRP types (e.g., 
Glass-FRP), won’t influence the model performance as Ef has 
minimal effect on the FRP-shear strength. 

 
Fig. 5. Training Loss. 

 
Fig. 6. Importance of the six input parameters. 
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4. Comparison between Selected Models and the Pro-
posed Model 
 
Several methods for concrete elements under shear with FRP 
reinforcements have been developed, and a handful of these 

models, namely the selected models M, DN, and B, were se-
lected and implemented as shown in Table 2 to be compared 
to the proposed ML model. 
 

 
Table 2. The selected methods. 

Method Shear resistance, 𝐕 Symbols 

M [36] 
The compression chord model: 

ξ J(1.072 − 0.01n)
c
d + 0.036D f"?bd 

ξ = 1.2 − 0.2
a
dd 

c
d = nρW−1 +X1 +

2
nρY 

DN [37] 

The compression field-based model: 

AE

⎝

⎛
−2.58 +_7.18 + 10506(0.15l@ + 0.72c)bf"

A

AE
5253

⎠

⎞ 
V ≥ 0.14(0.15l@ + 0.72c)bf"A 

B [38] 
Based on the MCFT [39], the following model was developed: 

0.07 f
Eρb
f"Ad

ghf"A	bd 0.05hf"A	bd	 ≤ V ≤ 0.3hf"Abd 

 
4.1 Overview 
Figure 7 depicts the measured versus the calculated strength 
employing the ML, B, M and DN methods, respectively, as 
well as for each of them, the theoretical line representing the 
best-fit line, an ideal 45 degrees line, and the 𝜒 factor. The 𝜒 
factor, derived as the inverse of the slope of the trend line, 
serves as an indicator of the under- or over-estimation of the 
employed method. Also, Table 3 displays the variation of the 
SR, which is the ratio between the measured and the calcu-
lated strength employing different methods. The statistical 
measures include the maximum, the minimum, the average, 
the variation coefficient, and the median. The ML showed ex-
cellent accuracy with a 𝜒 value of 1.12 and an average SR 
value of 1.01. With a factor 𝜒 value of 0.42 and an average 
SR value of 0.46, the B model is the least conservative. While, 
for the other models, the 𝜒 factor ranged between 0.65-0.91 
and the average SR value ranged between 0.47-0.96. With re-
spect to consistency, the variation coefficient ranged between 
42% to 53%, indicating a significant lack of consistency. 
While the proposed ML model showed excellent consistency 
with a variation coefficient value of 21%. With respect to 
safety, the ML and M models showed a lower 95% of values 
above 0.85, which is reasonably safe. Still, the B and DN 
models showed a lower 95% value than 0.85, which needs 
further improvement for the design purpose. The correlation 
coefficient between the measured and the calculated strength 
for the ML, B, M and DN methods showed a value of 0.95, 
0.88, 0.86 and 0.66, respectively. Although calculated 
strength for all methods was found to be in correlation to that 
experimentally measured; however, the DN was the weakest 
correlation. Finally, the strength calculated using the ML 
model is the most accurate, the most consistent, and the 
strongest in correlation compared to the measured strength. 
 
Table 3. Statistical measures for the SR.  

M DN B ML 
Mean 0.96 0.65 0.47 1.01 
C.O.V. (Coefficient of Variation) 46% 63% 48% 21% 
L.L. 99% (Lower Limit 99%) 0.91 0.60 0.44 0.98 
Minimum 0.31 0.09 0.13 0.47 
Maximum 3.04 2.68 1.68 2.02 
Median 0.82 0.61 0.40 1.00 
Correlation coefficient 0.87 0.68 0.88 0.95 

 

4.2 Effect of Size 
Table 4 demonstrates the correlation coefficient between SR 
versus element size. For ML, M, DN and B models, the coef-
ficient of correlation between depth and the SR was 0.08, 
0.43, 0.86 and 0.13, respectively. Thus, the ML and B mod-
els’ predictions are weakly correlated to the depth compared 
to the DN and M models. Moreover, Figure 8 exhibits the cal-
culated SR for ML, M, DN, and B models plotted against 
depth, along with the corresponding best-fit line for each 
model. Moreover, the slope of the trend line for the Calculated 
SR for ML, M, DN and B models versus the depth are values 
of 0.0001, 0.001, 0.002 and 0.0002, respectively. Safety de-
creases as depth decreases across all models consistently. The 
M and DN are less consistent versus depth compared to other 
models. The proposed ML model is more consistent and well-
presented versus depth compared to other models. 
 

 
Fig. 7. Calculated versus measured strength for selected (M, DN, B and 
ML) models. 
 
4.3 Effect of Compressive Strength of Concrete 
The coefficient of correlation between the compressive 
strength of concrete and the calculated SR using ML, B, M 
and DN, was found to be -0.00, -0.12, -0.17 and -0.41, 
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respectively, as per Table 4. Therefore, the calculated SR us-
ing all methods, except the DN, is weakly correlated to the 
compressive strength of concrete. Furthermore, Figure 9 illus-
trates the calculated SR using ML, M, DN and B models plot-
ted against the compressive strength of concrete, along with 
the corresponding best-fit-line for each model. Moreover, the 
slope of the trend line for the calculated SR for ML, B, M and 
DN models versus the compressive strength of concrete are 
values of 0.00002, -0.0017, -0.0047 and -0.0103, respec-
tively. Except for the ML model, the safety of models de-
creases with the increase in the compressive strength of con-
crete. DN is the least consistent with respect to the compres-
sive strength of concrete compared to other models. Thus, it 
needs further investigation into the compressive strength of 
concrete. The proposed ML model is more consistent and 
well-presented versus the compressive strength of concrete 
compared to other methods. 
 
Table 4. Coefficient of correlation between variables and 
models.  

M DN B ML 
Size 0.43 0.86 0.13 0.08 
Compressive strength of concrete  -0.17 -0.41 -0.12 0.00 
Ratio of longitudinal reinforcement -0.44 -0.12 -0.09 0.08 
FRP Young’s modulus -0.23 0.02 0.08 0.07 
 
 

 
Fig. 8. Calculated SR using selected models (ML, M, B and DN) versus 
size. 
 
4.4 Effect of Reinforcement Young’s Modulus 
From Table 4, the coefficient of correlation between rein-
forcement Young’s modulus and calculated SR using ML, M, 
DN and B was 0.07, -0.23, 0.02 and 0.08, respectively. There-
fore, the calculated SR using M methods is highly correlated 
to the reinforcement ratio compared to other models (Figure 
10); thus, it needs further investigation into the reinforcement 
Young’s modulus. Additionally, Figure 11 presents the calcu-
lated SR using ML, M, DN and B models versus the reinforce-
ments Young’s modulus, along with the best-fit-line for each 

model. Moreover, the slope of the trend line for the calculated 
SR using ML, M, DN and B methods versus the reinforce-
ment Young’s modulus are the values of 0.0004, -0.0026, 
0.0002 and 0.0005, respectively. Except for the M model, the 
safety decreases with the increase in the flexure reinforce-
ments Young’s modulus for all models. The ML is more con-
sistent with Flexure reinforcement Young’s modulus com-
pared to other models. The proposed ML model is more con-
sistent and well-presented versus FRP Young’s modulus 
compared to other models. Boosted ML algorithms consist-
ently outperform traditional methods as shear strength models 
must account for the variability in material properties, envi-
ronmental conditions, and testing methods. Traditional mod-
els are often based on rigid assumptions that limit their ap-
plicability outside predefined conditions. Boosted ensemble 
methods excel because: 

• They are data-driven, relying on the richness of the 
dataset rather than predefined equations. 

• They are adaptive, adjusting for different scales, con-
ditions, and data distributions. 

• They provide explainability, such as feature im-
portance, helping users understand the key factors 
influencing predictions. 

 
 Therefore, the ML model's ability to capture intricate, 
high-dimensional relationships and adapt to new data without 
explicit assumptions makes it a more versatile and robust tool 
than traditional models. 
 Last but not least, implementing this accurate and reliable 
proposed model in the design of new structures will guarantee 
optimized material and factor of safety. Thus, the cost savings 
are tremendous, opening the door for a new era of resilient 
structures with maximum potential and minimal probability 
of failure. 
 

 
Fig. 9. Calculated SR utilizing selected models (ML, M, B and DN) 
versus compressive strength of concrete. 
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Fig. 10. Calculated SR utilizing selected models (ML, M, B and DN) 
versus the flexure reinforcement's ratio. 
 

 
Fig. 11. Calculated SR utilizing selected models (ML, M, B and DN) 
versus the flexure reinforcement Young’s modulus. 
 
 
5. Parametric Study 
 
In order to further examine the potential of the proposed 
model, a case study was implemented where Figure 12 shows 
behavior trends of the strength versus the effective depth, 
width-to-depth ratio, compressive strength of concrete, ratio 

of longitudinal reinforcement, and flexure reinforcement 
Young’s modulus. For the effective depth, the predicted be-
havior shows two-fold as follows: (1) large strength for ele-
ments depth of less than 200 mm; (2) a steady decrease of the 
strength with depth for elements with a depth of more than 
200 mm. The model captured the depth effect. 

 
Fig. 12. Behavior trends observed using the proposed model. 
 
 
 For the element width-to-depth ratio, the behavior trend is 
two folds as follows: (1) highly nonlinear for a width-to-depth 
ratio less than 7, where the strength decreases with the in-
crease in the width-to-depth ratio; (2) a linear decrease in the 
strength for ratio between 7 to 9. The mode captures the effect 
of the wide beam. 
 For the shear slenderness ratio, the observed behavior is 
in three folds as follows: (1) almost constant from a value of 
3 to 5; (2) a linear decrease up to the value of 8; (3) almost 
constant up to the value of 16. The proposed model captured 
the failure model, where elements with a high shear slender-
ness ratio fail mainly due to flexure. 
 For the compressive strength of concrete, the observed be-
havior is into three folds as follows: (1) a linear increase up to 
the value of 40 MPa; (2) a linear increase from compressive 
strength of concrete from the value of 40 to 60 MPa; (3) al-
most constant for value more than 60 MPa. The model cap-
tured the difference in behavior between the normal strength 
of the concrete, the high-strength concrete, and the ultra-high 
strength concrete. 
 For the ratio of longitudinal reinforcement, the observed 
behavior is into three folds as follows: (1) a nonlinear increase 
up to 1%; (2) a linear increase from a value of 1% up to the 
value of 2.5%; (3) an almost constant up to the value of 4%. 
The model captured the dowel effect, which is dependent on 
the value of the ratio of longitudinal reinforcement. 
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 For the flexure reinforcement Young’s modulus, the ob-
served behavior is into three folds as follows: (1) a linear in-
crease from 40 GPa to 50 GPa; (2) a linear increase from the 
value of 50 GPa up to the value of 100 GPa; (3) almost con-
stant for Young’s modulus more than 100 GPa. The proposed 
model showed an interesting behavior. Also, the model is pri-
marily developed and validated based on the provided data 
range, including slender beams. While the methodology and 
underlying principles could be extended to other configura-
tions, its direct applicability to non-slender beams or signifi-
cantly different configurations would require additional vali-
dation and potentially new data. 
 
 
6. Future recommendations 
 
The boosted ML model has demonstrated high effectiveness 
within the data range on which it was trained. However, its 
performance may be limited when applied to scenarios be-
yond this range, such as non-slender beams or significantly 
different configurations. This limitation stems from its reli-
ance on the training data, which directly influences its gener-
alization ability. 
 To further validate the robustness and generalizability of 
the proposed machine learning shear strength model, future 
studies should focus on testing the model using additional da-
tasets. This includes incorporating independent datasets from 
diverse experimental programs or real-world case studies to 
evaluate its performance under varied conditions. Further-
more, applying the model to the design of real-world FRP-RC 
elements subjected to actual load conditions would provide 
valuable insights into its practical applicability and reliability 
in field settings. Expanding these evaluations would help to 
understand the model's limitations better and enhance its util-
ity across a broader range of structural applications. 
 Additionally, the model's interpretability can be challeng-
ing due to the complex nature of boosted algorithms. While it 
provides accurate predictions, understanding the underlying 
physical behavior might require supplementary analysis. 
 
 
7. Conclusions 
 
Using an experimental database for FRP-reinforced concrete 
beams failing in shear with a total of 420 records, a machine 

learning (ML) boosted regression model for shear of slender 
FRP-reinforced concrete beams was developed, validated, 
and implemented in a parametric study; thus, the following 
concluding remarks were reached as follows: 
 

• The proposed model captured the effect of (1) the 
beam depth; (2) the wide beam; (3) the failure 
model, where elements with a high shear slender-
ness ratio fail mainly due to flexure; (4) the differ-
ence between the normal strength of the concrete, 
the high strength concrete, and the ultrahigh strength 
concrete; (5) the dowel effect, which is dependent 
on the value of the ratio of longitudinal reinforce-
ment; (6) different strength patterns depending on 
the value of Young’s modulus. 

• The boosted model has proved a better prediction 
accuracy using statistical measures, whereas the 
model reported a variation coefficient (𝑅!) = 0.91, a 
root mean square error (RMSE) of 13175 and a 
mean absolute error (MAE) of 8.8684. 

• The importance of the variables is effective beam 
depth, width-to-depth ratio, concrete compressive 
strength, FRP Young's modulus, shear span, and 
FRP percentage, respectively. Thus, the effective 
depth of the beam and the width-to-depth ratio are 
the most critical factors. 

 
Future studies would be: 
o Develop models for non-slender FRP-reinforced 

concrete beams. 
o Develop design guidelines for slender and non-slen-

der FRP-reinforced concrete beams. 
o Develop mechanical models for slender and non-

slender FRP-reinforced concrete beams. 
o Investigate the machine learning models, design 

guidelines and mechanical models for punching 
shear of FRP-reinforced concrete slabs. 

 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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List of Symbols  
D The dataset for training and testing 
𝑋% Input Features 
𝑦% Output Feature 
𝑌% Predicted Output 
F Regression tree space 
𝑓% The ith number of regression tree 
I Total number of regression trees 
w Leaf weights 

𝐿(𝑌% , 𝑦%) The error between the predicted and actual output 
𝜑(𝑓%) Regularization Term 
𝛾 Regularization Parameter 
T The number of iterations or the number of boosting steps 
𝜆 Other regularization term 
𝑤2! The squared weights over all boosting steps 
𝑔% The first-order derivative of the loss function with respect to the predicted value. It represents the gradient. 
ℎ% The second-order derivative (Hessian) of the loss function with respect to the predicted value. 

 


