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Abstract 
 

As a key factor influencing the quality of tobacco production and a crucial indicator for assessing tobacco leaf quality, the 
recognition of tobacco leaf maturity has garnered significant attention from scholars. Integrating and advancing machine 
vision technologies in the discrimination of tobacco leaf maturity have made it feasible to apply machine vision in fully 
automated tobacco leaf harvesting processes. In this review, a comprehensive survey of the latest advancements on 
machine vision based algorithms for tobacco leaf maturity discrimination was presented, with a particular focus on 
feature engineering and classification algorithms. In terms of feature engineering, various image feature extraction 
techniques, analytical methods, and multi-feature fusion strategies for assessing tobacco leaf maturity were explored. 
These strategies included color and texture analysis, multispectral feature utilization, and advanced methods such as 
principal component analysis and information fusion. And a detailed discussion of the classification algorithms, spanning 
statistical recognition, machine learning and deep learning approaches was provided. By analyzing and comparing these 
existing methods, the study offered valuable insights into the advantages and limitations of various tobacco leaf maturity 
discrimination techniques. Results show that the accuracy of tobacco leaf maturity recognition using machine vision has 
reached an impressive 99.9%, establishing a significant milestone with clear practical application potential. Among the 
technologies applied, deep learning methods exhibit an absolute advantage, significantly outperforming traditional 
approaches in both feature engineering and classification methodologies. This comprehensive analysis summarizes 
current knowledge and points the way for future technological improvements and innovations. 
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1. Introduction 
 
With the high economic value of tobacco products such as 
cigarettes, cigars, and pipes, the tobacco industry serves as a 
significant economic pillar in more than a dozen countries, 
including China, the United States, India, Indonesia, and 
Russia [1-4]. Tobacco leaves are the primary raw material of 
tobacco commodities and have a decisive impact on their 
economic value. The taste, aroma, and combustion 
performance of tobacco products depend on the quality of 
the tobacco leaves [5]. Generally, tobacco quality is 
determined by the appearance and physicochemical 
properties of tobacco leaves. 

Among all production factors, the maturity status of 
tobacco leaves at harvest significantly affects their 
appearance, internal chemical composition, and sensory 
smoking qualities. Low total nitrogen and sugar content in 
tobacco leaves can lead to a lack of smoke and aroma, while 
high total nitrogen and sugar content can cause a burnt taste 
and a significant increase in tar content [6]. The chemical 
content of tobacco leaves is closely related to their maturity 
at harvest, as shown in Table 1 [7-8]. Mature tobacco leaves 
have a balanced chemical composition, including moderate 
levels of total nitrogen, nicotine, and sugar, allowing them to 
release smoke and aromatic compounds with appropriate 
physiological intensity and concentration during combustion. 
In contrast, immature tobacco leaves have lower total 
nitrogen and sugar content, resulting in insufficient smoke 

and aroma. Meanwhile, overripe tobacco leaves have 
excessively high total nitrogen and sugar content, leading to 
a burnt taste and a significant increase in tar content during 
combustion. Therefore, the accurate discrimination of the 
tobacco leaf maturity is considered one of the key methods 
to improve the quality of tobacco production. 

 
Table 1. Chemical composition of tobacco leaves with 
various maturity 

Maturity Total 
nitro. 

Prot. 
nitro. 

Am-
monia 

Nico-
tine Sugar Starch 

Immature 2.68 1.10 0.176 2.60 20.8 2.77 
Mature 2.49 1.04 0.144 2.75 20.4 2.58 

Overripe 2.44 0.98 0.124 2.95 18.5 2.54 
 
Early studies primarily focused on mimicking the 

concept of manual judgment by extracting the appearance 
features of tobacco leaves and classifying them on the basis 
of these features. Findings show that mature tobacco leaves 
not only exhibit distinct color and texture characteristics in 
their appearance [9-10] but also undergo changes in their 
internal pigments, such as chlorophyll, lutein, and 
carotenoids, which can serve as indicators of their maturity 
[11]. These findings led to the development of maturity 
recognition methods based on infrared spectroscopy. With 
the advancement of machine learning technologies, 
algorithms such as the backpropagation neural network 
(BPNN) [12], support vector machine (SVM) [13], and 
random forest (RF) [14] were widely applied to the task of 
tobacco leaf maturity assessment. The adoption of these 
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methods significantly enhanced the accuracy and efficiency 
of tobacco leaf maturity classification. 

In recent years, deep learning models have achieved 
notable progress in the field of tobacco leaf maturity 
discrimination. Deep learning approaches, exemplified by 
convolutional neural networks (CNNs) [15], the MobileNet 
model [16], and object detection models [17-18], construct 
adaptive feature learning networks by leveraging large-scale 
data samples. Through high-performance computing units, 
these models can capture subtle features that are challenging 
for traditional machine learning techniques to recognize, 
thereby significantly improving discriminative performance. 

The CiteSpace literature analysis tool [19] was used in 
this review to provide a more intuitive presentation of 
research progress in the field of tobacco leaf maturity 
discrimination. Searches were conducted in the core 
databases of China National Knowledge Infrastructure 
(CNKI) and Web of Science (WoS), where relevant research 

literature is relatively concentrated. The search time frame 
was from January 1, 1990, to November 30, 2024, using 
keywords such as “maturity tobacco classification,” 
“maturity tobacco discrimination,” “maturity tobacco 
identification,” “maturity tobacco detection,” and “maturity 
tobacco evaluation.” Fig. 1 depicts the curve of the number 
of Chinese and English literature publications within this 
statistical search period. As shown in Fig. 1, the first 
Chinese literature in the field of tobacco leaf maturity 
discrimination was published in 2007, while the first English 
literature appeared in 2011. In 2013, the number of Chinese 
literature publications reached its first peak. Despite 
fluctuations in the number of articles published in both 
Chinese and English, the overall trend is upward. Since 2020, 
the publication volume of Chinese and English literature has 
increased considerably, indicating that studies on tobacco 
leaf maturity discrimination have garnered growing attention 
with the development of machine vision technology. 

 

 
Fig. 1. Statistics of the number of Chinese and English publications 
 

 
 (a) The co-occurrence graph in CNKI.  

 
(b) The co-occurrence graph in WoS. 

Fig. 2.  The co-occurrence graph of the keywords in the databases. 

 
 The co-occurrence graph of CNKI literature keywords 
comprises 54 nodes and 123 lines, as shown in Fig. 2a. The 
keyword “maturity tobacco” was the first keyword that was    
introduced and has the highest centrality, connected to 34 
nodes. It is followed by “flue-cured tobacco” and “tobacco 
leaves,” with frequencies of 12 and 7, respectively. The co-
occurrence graph of WoS literature keywords consists of 44 
nodes and 99 lines, as shown in Fig. 2b. Among the 
keywords, the term “deep learning” has the highest 
frequency of occurrence, suggesting that foreign studies on 
tobacco leaf maturity discrimination are primarily based on 
deep learning methods. 

Given the absence of a comprehensive and detailed 
discussion on tobacco leaf maturity discrimination 
technology, this review systematically summarizes the major 
literature in the field of machine vision-based tobacco leaf 
maturity discrimination. Additionally, it examines pertinent 
research efforts within this domain. The review commences 
with an overview that encompasses two primary facets: 
feature engineering and classification methodologies. Then, 
it compares and analyzes existing studies, thereby 
summarizing the strengths and weaknesses of various 
approaches. Lastly, it prognosticates and deliberates upon 
forthcoming trends in the field of machine vision-based 
tobacco leaf maturity discrimination techniques. 
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2. Criteria and methods for judging the maturity of 
tobacco leaves  
 
Tobacco leaf maturity discrimination is the process of 
evaluating the maturity status of tobacco leaves using 
various techniques, which subsequently categorizes the 
maturity levels. Traditionally, the determination of tobacco 
leaf maturity has largely relied on artificial experience, 
which is primarily based on the visual characteristics of the 
leaves. The process involves assessing the maturity status by 
considering several factors, including the length of time the 
leaves have been growing in various sections, the degree of 
yellowing on the leaves, the amount of curling at the leaf 
edges, changes in the main branches, the loss of leaf fuzz, 
and the conditions of the cross-sections during the 
harvesting phase [20]. The primary criteria for this 
assessment are outlined in Table 2. 
 
Table 2. Maturity criteria for tobacco leaves 
Maturity 

levels Appearance characteristics of tobacco leaves 

Green The leaves are dark green to green, with no yellowing, the 
main veins are entirely green, and the hairs are still intact. 

Immature 

The leaves are green to light green, showing initial signs 
of yellowing. The main veins turn white from one-third to 
two-thirds, while the branch veins remain green, and there 
is minimal shedding of fuzz. 

Still 
ripening 

The leaves are transitioning from light green to yellow-
green, with two-thirds of the main veins turning white to 
entirely white, and one-third to two-thirds of the branch 
veins turning white. Some fuzz has shed, and the leaf tips 
are starting to curl downward slightly. 

Mature 

The leaves are predominantly yellow-green, featuring less 
green and more yellow, appearing yellow to translucent 
white. The main veins are entirely white, adorned with 
bright white hair, and two-thirds or more of the branch 
veins turn white. Most of the fuzz has been shed, and the 
leaf surface is covered in yellow spots. The leaf tips and 
edges turn white, showing slight wilting, pointedness, and 
charring. The leaf tips are curled downward. 

Overripe 

Both the main and branch veins are completely white, 
adorned with bright white hair. The leaves exhibit yellow 
and transparent white bubbles, and most of the fuzz has 
fallen off. The leaves and ears are all yellow, and 
numerous patches resembling red star disease are present, 
with withered and sharp edges. 

 
The criteria for human experience-based judgment are 

straightforward and easily comprehensible, featuring strong 
operational applicability and widespread implementation. 
The primary concept of machine vision-based tobacco leaf 
maturity discrimination aligns with manual evaluation, with 
its core discriminative process involving two essential steps: 
feature engineering and feature classification [21-22]. 
During the feature engineering phase, critical attributes that 
reflect tobacco leaf maturity are extracted through image 
analysis, encompassing color [23], texture [24], size [25], 
and internal pigment alterations [11]. The efficacy of feature 
engineering directly impacts the precision of subsequent 
maturity classification. In the feature classification stage, the 
leaves are categorized into corresponding maturity levels by 
utilizing machine learning or deep learning models. The 
synergistic integration of these two stages forms the 
cornerstone for ensuring the algorithm’s efficiency and 
accuracy in maturity discrimination. 
 
 
3. Feature engineering  

 

The basic characteristics of tobacco leaves at the visual level 
mainly include color, texture, size, and internal pigment 
features. By utilizing a variety of feature analysis and 
extraction techniques, the external and internal 
characteristics of tobacco leaves can be effectively captured. 
 
3.1 Feature analysis methods 
Feature analysis serves as a supplementary approach to 
enhance the quality of feature extraction. By employing 
feature analysis, it is possible to select the most 
representative features of tobacco maturity from the 
available features. The commonly used feature analysis 
methods include principal component analysis (PCA) [26], 
variable clustering [27], correlation analysis [28], and 
function fitting.  
 
3.1.1 PCA 
PCA is used for feature dimensionality reduction, which 
transforms original data into a novel set of variables (termed 
principal components) via linear transformation. Its 
objective is to maintain the majority of the data’s variance 
while minimizing its dimensionality. PCA is frequently 
employed to evaluate the strength and directionality of linear 
correlations between variables to pinpoint the most 
influential features on the basis of their contribution. 
 
3.1.2 Variable clustering 
Variable clustering is the process of grouping variables with 
similar characteristics or behaviors together. The method is 
instrumental in diminishing the dimensionality of variables 
while preserving their principal disparities, making it 
particularly advantageous for handling high-dimensional 
datasets. Common clustering algorithms include K-means 
and hierarchical clustering. 
 
3.1.3 Correlation analysis 
Correlation analysis gauges the magnitude and orientation of 
the linear association between two variables. By identifying 
and eliminating highly correlated features, this analytical 
approach not only curtails model complexity but also 
mitigates the risk of overfitting. Additionally, it facilitates a 
deeper comprehension of the linear interplays among 
variables. The Pearson correlation coefficient is the most 
frequently utilized metric among the various correlation 
measures. 
 
3.1.4 Function fitting 
The function fitting method is employed to select optimal 
parameter values within a function, ensuring the most 
accurate representation of a given dataset. This is achieved 
by assessing the correlation and contribution of features 
through mathematical modeling techniques. Commonly used 
function fitting methods include Gaussian fitting curves [29]. 
 
3.2 Color characteristics 
Color is a crucial independent attribute in determining the 
maturity level of tobacco leaves. The color characteristics of 
tobacco leaves can be quantified using color space models. 
This model, which is essentially a mathematical framework, 
depicts color traits, defines their representation, and clarifies 
the interplay among various hues. By closely observing and 
analyzing this model, scholars can discern the connection 
between task objectives and specific colors, thereby enabling 
the extraction of pertinent color features. Commonly 
employed color space models in academic studies comprise 
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the RGB color space; hue, saturation, intensity/hue, 
saturation, value (HSI/HSV) color space [30]; and CIELAB 
(Lab) color space [31]. 
 
3.2.1 RGB color space 
The RGB color space is represented by three components: R, 
G, and B, with each component typically ranging from 0 to 
255. The RGB color space has good linear properties, 
making the calculation of color mixing and transformation 
relatively simple. Liu Jianjun et al. [32] qualitatively 
analyzed the RGB variables related to maturity in tobacco 
images through Gaussian fitting curves of maturity 
distribution. They analyzed the red R, green G, blue B, R+G, 
R+B, G+B, R+G+B, and ’RGB color values’ C=(65536 × 
Red)+(256 × Green)+(Blue) eight color features and found 
that the red R component had the best effect in processing 
the given eight maturity values. 
 
3.2.2 HSI/HSV color space 
The HSI and HSV color spaces are represented by four 
components: H, S, V, and I. For lighting changes, the hue 
and saturation in the HSI color space are relatively stable, 
which is useful in tobacco image processing tasks. Xie 
Binyao et al. [33] first analyzed the normal parameter 
features of 10 colors on the basis of RGB color space 
combined with image processing algorithms, namely, 
R+G+B, R+B, R+G, B+G, R-B, R-G, G-B, G-R, B-R, and 
B-G. The R, G, B, H, S, and V values of all sample images 
are calculated on the basis of the HSV color model. Except 
for B, all other color features can reflect the color changes of 
tobacco leaves during the maturation process. Shi Longfei et 
al. [34] used PCA to analyze H, S, and V values and found 
that the brightness I and saturation S of images with 
different maturity levels did not change significantly, 
indicating that the color tone H plays a dominant role in the 
maturity of tobacco leaves. 
 
3.2.3 CIELAB (Lab) color space 
The CIELAB (Lab) color space is a color space model based 
on human visual perception, which performs well in color 
perception and color management. S. Guru and P B. 
Mallikarjuna [35-36] used the CIELAB color space model to 
estimate the density and greenness of mature spots on leaves. 
Lu Xiaochong et al. [37] conducted maturity discrimination 
classification on the basis of the five color components of L, 
a, b and H, S in CIELAB (Lab) and HSI/HSV color space. 
Liu Hao et al. [38] used correlation analysis to analyze the 
color mean and several combination features 2G-R-B, R/G, 
G-R based on R, G, and B color matrices, as well as a */b * 
10 features based on l * a * b * color matrices, on the basis 
of RGB and l * a * b * color spaces. The maturity of tobacco 
leaves can be determined by color characteristics R, a */b *, 
and l *. Shen Ping et al. [39] used Pearson correlation 
coefficient to analyze 21 color features, including mean, 
mode, median, kurtosis, and skewness of R, G, and B 
channel color levels, Lab color model parameters, and HSV 
color model parameters. They determined that R mean and B 
skewness had the highest participation in the tobacco leaf 
maturity correlation model. Lin Tianran et al. [40] added the 
mean, mode, median, kurtosis, and skewness features of 
grayscale images on the basis of Shen Ping’s work and used 
Pearson correlation coefficient to determine the reliability of 
the features. 

 

3.3 Texture features 
The veins of tobacco leave exhibit unique texture 
characteristics at different maturity levels. Texture features 
are typically represented by texture matrices such as gray 
level co-occurrence matrix (GLCM) [41] and gray level run 
length matrix [42]. GLCM is one of the most commonly 
used methods in image texture analysis and is widely used to 
describe the distribution characteristics of grayscale pixel 
pairs in images. 

GLCM describes texture features by calculating the co-
occurrence frequency of grayscale values and grayscale 
values in a specific direction and distance in an image. The 
calculation formula is as Eqs. (1): 
 

                        (1) 

    
where N is the grayscale level of the image,  is 

the number of occurrences of each grayscale value pair , 
and is the probability of the occurrence of grayscale 
values pair . 

GLCM can be used to capture spatial relationships in 
images and provide rich texture information. Multiple 
texture features can be extracted from normalized GLCM. 

 
3.3.1 Contrast 
Contrast reflects the intensity of local changes in an image, 
that is, the degree of unevenness in the grayscale values of 
the image. A high contrast value corresponds to high 
intensity of grayscale changes in the image. The calculation 
formula is: 
 

               (2) 

 
3.3.2 Correlation 
Correlation reflects the spatial correlation of grayscale 
values in an image, representing the linear dependence 
between adjacent pixels. It is calculated as follows: 
 

        (3) 

 
where and are the mean values of the rows and 

columns of the matrix, respectively, and are the 
standard deviations of the rows and columns of the matrix. 
The closer the correlation value is to 1 or −1, the stronger 
the spatial correlation of the grayscale values. 
 
3.3.3 Energy 
Energy, which is known as angular second moment, reflects 
the uniformity of an image, that is, the degree of 
concentration of the grayscale value distribution in the 
image. A high energy value corresponds to increased 
uniformity of the texture of the image. The calculation 
formula is: 
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                          (4) 

 
3.3.4 Entropy 
Entropy reflects the complexity of an image, that is, the 
uncertainty of the distribution of grayscale values in the 
image. A high entropy value corresponds to increased 
complexity of the texture of the image. The calculation 
formula is: 
 

             (5) 

 
3.3.5 Homogeneity 
Homogeneity, also known as inverse difference moment, 
reflects the degree of similarity in grayscale values in an 
image. A high homogeneity value corresponds to high 
similarity of the grayscale values in the image. The 
calculation formula is: 
 

                 (6) 

 
Shi Longfei et al. [34] analyzed five texture 

features(diagonal second moment, entropy, correlation, 
contrast, and offset) and found that these features can 
effectively describe the texture information of tobacco 
leaves at different maturity levels from different perspectives 
and better reflect the image texture changes of tobacco 
leaves during the maturation process. On this basis, Shen 
Ping et al. [39] and Xie Binyao et al. [33] introduced the 
inertia moment feature and reached similar conclusions. Lin 
Tianran et al. [40] conducted the same texture feature 
experiment on the basis of the work of Shen Ping et al. and 
obtained similar results. Liu Hao et al. [38] added a total of 
10 texture features, including grayscale average, gradient 
average, grayscale non-uniformity, gradient non-uniformity, 
energy, grayscale entropy, and gradient entropy. Through 
cluster analysis, they found that the characterization effect of 
inertia moment and gradient non-uniformity on tobacco 
maturity is not significant. 
 
3.4 Dimensional features 
The size characteristics of tobacco leaves are closely related 
to their maturity and serves as crucial indicators for 
evaluating the maturity status of tobacco leaves. The size 
characteristics can be determined by the minimum bounding 
rectangle (MBR) [43]. MBR is a rectangle determined by the 
maximum horizontal axis, minimum horizontal axis, 
maximum vertical axis, and minimum vertical axis as 
boundary points. Lin Tianran et al. [40] used the long side of 
MBR to approximate leaf length (LL) and the short side of 
MBR to approximate leaf width (LW) and calculated the 
MBR area (S), target leaf width-to-length ratio (WL), and 
target leaf area ratio (SS). Correlation analysis found that the 
above size characteristics are significantly negatively 
correlated with maturity. 
 
3.5 Internal pigment characteristics 
The pigment content of the leaves is an important chemical 
criterion for evaluating the maturity of tobacco leaves [44-
45]. Common methods for measuring internal pigment 
content include spectrophotometry [46], ratio vegetation 

index (RVI) [47], soil and plant analyzer development 
(SPAD) [48-49], and spectral curves [50]. 
 
3.5.1 Spectrophotometric method 
The spectrophotometric method is an analytical technique 
that determines the concentration of a substance on the basis 
of its absorption of specific wavelengths of light. The 
principle is the Beer– Lambert law, which states that when a 
beam of monochromatic light passes through a solution, its 
absorbance is proportional to the concentration of the 
absorbing substance in the solution and the thickness of the 
liquid layer: 
 

                                         (7) 
 
where A is the absorbance, c is the concentration of light-
absorbing substances,  is the molar absorptivity, and l is 
the thickness of the liquid layer. 

The concentration of the substance to be tested can be 
calculated by measuring the absorbance of the solution. 

 
3.5.2 RVI 
RVI is a remote sensing indicator used to estimate 
vegetation coverage and crop health status, which can be 
calculated by the reflectance ratio of near-infrared and red 
light bands: 
 

                                (8) 

 
where NIR represents the reflectance in the near-infrared 
band, and Red represents the reflectance of the red light band. 
 
3.5.3 SPAD  
SPAD infers the chlorophyll content in leaves by measuring 
their light absorption capacity at specific wavelengths. 
Usually, SPAD instruments measure the absorption of light 
at wavelengths of 650 and 940 nm and calculate the SPAD 
value on the basis of these data. 

Yu Zhihong et al. [47] used a spectrophotometer to 
measure the chlorophyll and carotenoid content of leaves 
and calculated the changes in all RVI analysis pigments 
composed of visible light and near-infrared bands. Gao 
Xianhui et al. [46] used spectrophotometry to determine the 
content of carotenoids and chlorophyll and then analyzed the 
pigment content through variance analysis and correlation 
analysis. 

 
3.5.4 Spectral characteristics 
The pigments inside the leaves exhibit different absorption, 
reflection and projection characteristics toward specific 
wavelengths of light. The content of pigments can be 
estimated by analyzing the spectral curve, thereby obtaining 
the maturity of tobacco leaves. According to different bands, 
spectral characteristics can be divided into visible light 
spectral characteristics, near-infrared spectral characteristics, 
and full band spectral characteristics. 
1) Visible light spectral characteristics 

The range of visible light is between 380–750 nm. Liang 
Yin et al. [51] extracted four spectral features from visible 
light reflection spectra and normalized visible light 
absorption spectra of tobacco leaves and measured the 
separability of the four spectral features and their pairwise 
combinations using J-M distance. They determined that the 
left half area of the chlorophyll absorption peak and the red 
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edge position parameter were the two combinations with 
good separability. Diao Hang et al. [52] collected spectra of 
each selected leaf sample in the 350–780 nm wavelength 
range, selecting two points in the middle of the leaf surface 
and two points on both sides of the midrib, and repeating the 
collection three times for each point. The average of 12 
spectra collected from four points of each tobacco leaf 
sample was taken as the reflectance spectrum of the tobacco 
leaf sample. A total of 431 points, visible light characteristic 
bands, and eight visible light spectral features (green peak 
amplitude, green peak position, red edge amplitude, blue 
edge amplitude, red edge area, blue edge area, red edge 
position, and blue edge position) were selected from the 
continuous spectrum of visible light as the final spectral 
features. 
2) Near-infrared spectral characteristics 

Light with a wavelength range between 750–1400 nm is 
near-infrared light. Fang Zhiwen et al. [53] collected near-
infrared spectral data of 56 sets of tobacco leaf samples in 
the 2630–1000 nm wavelength range. Wang Chengwei et al. 
[54] collected 45 sample points in the 900–1700 nm 
wavelength range. Each sample avoids the main vein within 
the line of sight and takes six points on each side. Each point 
is measured three times, and the average is taken. The 
average of all points is taken as the representative spectrum 
of the tobacco leaf. 
3) Full-band spectral characteristics 

Li Xin et al. [55] extracted 448 spectral data in the 400–
1000 nm wavelength range, divided them into 45 intervals, 
and then used genetic algorithm to select 19 intervals as the 
final spectral features. Lu et al. [56] used PCA to extract 22 
sets of full-band spectral features in the 400–1000 nm 
wavelength range. Deng Jianqiang et al. [57] used the 
average spectral reflectance of all pixels in the region of 
interest region of a multispectral image as the spectral 
reflectance feature point of tobacco leaves. 

In the visual images of tobacco leaves, features such as 
color, texture, size, and leaf pigments provide a unique and 
high-resolution basis for classification, as shown in Table 3. 
Specifically, scholars commonly use three types of features 
to characterize maturity: color, texture, and spectral features. 

 
Table 3. Comparison of feature extraction methods 

Features Feature extraction 
methods 

Description of the leaf 

Color Characteristics color space 
models 

Color distribution 

Texture GLCM Image structure 
Size MBR Size of the leaf 

Internal 
features 

Spectral characteristics Concentration of internal 
pigments in tobacco leaves 

 
By comparison, features such as color and texture are 

susceptible to human factors and external environmental 
interference. In contrast, discrimination based on internal 
pigment features shows robustness against external 
environmental influences and improves discrimination 
accuracy to a certain extent. However, acquiring spectral 
characteristics requires expensive specialized equipment, 
which significantly hinders their practical application. 
 
3.6 Multi-source feature fusion 
Fusing these features can obtain stronger maturity 
representations because of the commonality of color, texture, 
and spectral features. Wang Qiang et al. [58] extracted the 
HSV values of tobacco leaves and established an HSV 

chlorophyll PAD relationship model. A tobacco maturity 
discrimination model was briefly established by using this 
model. Pei Wencan et al. [59] first constructed a fresh 
tobacco leaf SPAD value prediction model based on 19 
dimensions of color feature data, including third-order color 
moments and yellowing rates of each component in the RGB 
and HSV color spaces, as well as texture feature data in four 
dimensions, namely, ENE, CON, CORR, and HOM, for a 
total of 23 color and texture features. Then, a maturity 
recognition model was constructed on the basis of SPAD 
values, and the accuracy of maturity recognition was 
improved by adding SPAD values. Yang Rui et al. [60] used 
PCA to analyze a total of 30 fused features, including the 
mean, standard deviation, ENE, ENT, MOI, COR, and 20 
color and texture features of H, S, and V, as well as the full 
band parameters of near-infrared spectra (920–2400 nm). 

For tobacco images, feature extraction based on visual 
level can significantly enhance the ability to represent the 
maturity level. Visual perception has always been an 
important basis for early manual judgment of tobacco 
maturity. With the development of machine vision 
technology, existing methods quantify the appearance 
characteristics of tobacco leaves on the basis of artificial 
sensory perception. These features come from visible light 
images and hyperspectral images, both of which can clearly 
display the characteristics of maturity. Studies have shown 
that the accuracy of tobacco leaf maturity recognition can be 
significantly improved through multi-source feature fusion. 

 
 

4. Classification methods 
 

The determination of tobacco maturity belongs to the task of 
image classification. The methods used can be classified into 
three categories: statistical recognition, machine learning, 
and deep learning methods. 
 
4.1 Statistical recognition methods 
Statistical recognition methods refer to a set of image 
classification techniques based on statistical principles, 
which classify data samples by analyzing their statistical 
characteristics. The methods are based on probability theory 
and statistical inference. Mathematical models such as 
partial least squares analysis [61] and Fisher’s linear 
discriminant [62] are used to make objective classification 
decisions. 

Liu Jianjun et al. [32] converted the obtained tobacco 
leaf characteristics into maturity values between 0–10 on the 
basis of artificial sensory judgment criteria and used the 
TRIMMEAN function to perform extremum removal and 
mean processing to obtain the maturity level of the entire 
fresh tobacco leaf. D. S. Guru and P B. Mallikarjuna [35-36] 
judged the maturity of tobacco leaves by the density of 
mature spots on the leaves and the greenness of the leaves. 
Wang Qiang et al. [58] established a TMDHSV tobacco 
maturity discrimination function relationship model by using 
the relationship between maturity and SPAD values. Lu et al. 
[56] established a least squares discriminant analysis model 
for 22 full-band spectral characteristic bands, with 
accuracies of 99.32% and 98.46% on the correction and 
prediction sets, respectively. Gao Xianhui et al. [46] 
constructed a maturity level function using Fisher’s linear 
discriminant analysis. They substituted three color value 
indicators of unknown maturity levels into each discriminant 
function and calculated the function values. The function 
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value with the highest value indicates which maturity level 
the fresh tobacco belongs to. Yu Zhihong et al. [47] 
constructed a tobacco leaf maturity classification model 
based on the relationship between the RVI and chlorophyll 
content, and the correlation coefficient of the model was as 
high as 0.9029. 

Statistical identification methods can utilize various 
statistical analysis tools and techniques for data processing 
and classification, as well as establish mathematical models 
for objective classification, adapting to different scenarios 
and needs, with strong interpretability. 
 
4.2 Machine learning methods 
Machine learning is a branch of artificial intelligence that 
learns patterns and relationships from data through 
algorithms, enabling computers to make decisions or 
predictions without explicit programming. Machine learning 
methods have a wide range of applications in various fields, 
including but not limited to natural language processing, 
computer vision, and medical diagnosis. 

In the task of tobacco maturity discrimination, BPNN 
[12], SVM [13], RF [14], clustering analysis [63], extreme 
learning machine (ELM) [64], and XGBoost [65] are the 
most commonly used classification methods. BPNN is 
widely used for classifying the color, texture, and size 
features of tobacco leaves, while SVM is more commonly 
used for classifying internal pigment features. 

 
4.2.1 BP neural network 
BPNN is a multilayer feedforward neural network that 
consists of an input layer, one or more hidden layers, and an 
output layer, which has strong nonlinear mapping ability. 
The input layer is the starting point of the BPNN, 
responsible for receiving external data. Each neuron 
corresponds to a feature value, and data enter the network 
through these neurons. The input layer has no computing 
function and only serves as a channel for data transmission. 
The hidden layer is the core of the BPNN, responsible for 
extracting features from input data and performing nonlinear 
transformations. Each hidden layer is composed of multiple 
neurons, each of which computes a weighted sum of the 
outputs from the previous layer and transforms them through 
an activation function. The choice of activation function has 
a significant effect on network performance. The output 
layer is the endpoint of the BPNN, responsible for 
generating the final prediction results. For classification 
problems, the output layer typically uses the softmax 
activation function. The network structure is shown in Fig. 3.  
 

 
Fig. 3. BPNN structure diagram 
 

Color, texture, and size features typically contain many 
nonlinear relationships. A BPNN can handle such complex 
data relationships well because of its powerful nonlinear 
mapping ability. Through the learning of multiple layers of 

neurons, it captures complex patterns in the data. In addition, 
when a network has many layers or a large amount of data, 
the training cost of BPNN is large. However, for the 
classification of color, texture, and size features, this 
computational cost is acceptable because of the richness of 
image data. In Literatures [34], [37], [39], and [40] BPNNs 
were used to classify tobacco leaf maturity with an accuracy 
of more than 90%. 
 
4.2.2 Support vector machine 
SVM is a supervised learning model that is primarily used 
for classification and regression analysis. For linearly 
separable binary classification problems, the dataset consists 
of feature vectors and labels. The goal of SVM is to find a 
hyperplane that correctly classifies data points of different 
categories and maximizes the classification interval. For a 
sample, its distance to the hyperplane is: 
 

                                           (9) 

 
The distance needs to be minimized to maximize the 

classification accuracy. Therefore, the optimization problem 
can be expressed as: 
 

          (10) 

 
where  is a vector that represents the normal vector of the 
hyperplane, and b is a bias term that determines the position 
of the hyperplane. 

Spectral features are the most important characteristic of 
internal pigment features. SVM is often used in tobacco leaf 
maturity discrimination tasks based on spectral features 
because of the strong linear separability between spectral 
features. In addition, SVM selects the optimal hyperplane by 
maximizing the classification margin, which enables it to 
achieve good performance even in small sample situations, 
which is particularly important for spectral data 
classification. In Literatures [51], [52], [55], [56], and [57], 
SVM was employed to classify features, achieving a 
classification accuracy of more than 90%. Liu Hao et al. and 
Xie Binyao et al. conducted comparative experiments using 
BPNN and SVM, respectively, and found that SVM had 
better discrimination performance, with discrimination 
accuracies of 92.00% and 97.53%, respectively. 
 
4.2.3 Random forest 
RF is an ensemble learning method that constructs multiple 
decision trees and makes final decisions through voting or 
averaging. It can improve the accuracy and robustness of the 
model. 

Yang Rui et al. [60] used RF to construct a 
discriminative model for multi-source feature data reduced 
by PCA. For each bootstrap sample, an unmodified 
classification tree was constructed and optimized. Randomly 
selecting the number of variables at each node and obtaining 
the optimal separation ratio ensure that the construction of 
each tree has the characteristics of training samples and 
random selection. Wang Chengwei et al. [54] conducted 
detection based on SVM and RF and found that RF had the 
best discrimination effect, with a high prediction accuracy of 
more than 90% for upper, middle, and lower leaves. 
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4.2.4 Cluster analysis 
Cluster analysis is an unsupervised learning method used to 
group data points in a dataset into several clusters, such that 
data points within the same cluster have high similarity, 
while data points between different clusters have low 
similarity. In the case of a large amount of data, cluster 
analysis can improve the efficiency of data classification. 
Fang Zhiwen et al. [53] used systematic clustering analysis 
to perform binary classification on tobacco samples of 
different maturity levels, achieving an accuracy rate of 
92.86%. 
 
4.2.5 Extreme learning machine 
ELM is a simple and fast feedforward neural network 
learning algorithm that not only has extremely fast 
computation speed but also does not fall into local optima. 
The parameter selection of ELM is simple. Selecting only 
appropriate hidden layer nodes can achieve good 
performance. Traditional gradient descent algorithms such as 
BP networks require selecting appropriate learning rates and 
training steps, yet improper selection can affect the 
generalization of the network. Wang Jie et al. [66] used 
ELM to discriminate 60 dimensional color features analyzed 
by PCA, achieving an accuracy of 96.43%, which is better 
than that of SVM and BP neural networks. 
 
4.2.6 XGBoost 
The XGBoost algorithm is a supervised ensemble machine 
learning algorithm implemented on the basis of the concept 
of gradient boosting, where the constructed model is 
integrated from multiple tree models (or linear models) 
based on the boosting method. They undergo multiple 
iterations during the construction process, with each iteration 
adding a new weak learner. The weak learner generated by 
the iteration trains and fits the performance of the existing 
weak learners and finally integrates all weak learners into 
one strong learner, that is, the output of all weak learners is 
superimposed as the final prediction result of the model. Pei 
Wencan et al. [59] found that both feature data and type data 
are floating-point types. Therefore, XGBoost was selected to 
build a maturity and SPAD value correlation model, with an 
F1 score of 95.27%. 

Unlike statistical recognition methods, machine learning 
methods can handle high-dimensional data and complex 
nonlinear relationships, have good scalability, and can 
handle larger datasets by increasing computational resources. 
In tobacco leaf maturity discrimination, machine learning-
based methods can achieve high accuracy and efficiency 
with appropriate feature data support and have become the 
mainstream classification method in this field. 
 
4.3 Deep learning methods 
Deep learning is a subfield of machine learning that 
simulates the way the human brain processes information by 
building multiple layers of neural networks. Deep learning 
can automatically extract features from original data without 
the need for manual feature selection and extraction. This 
feature ensures that deep learning performs well in 
processing complex data such as images, speech, and text. 
Deep learning has also made many achievements in the field 
of crop image classification. Sparse autoencoder, CNN [15], 
residual network (ResNet) [67], You Only Look Once 
(YOLO) series of models [17-18], and MobileNet series of 
models [16] are the most commonly used deep learning 
methods in image classification studies. 

 
4.3.1 Sparse autoencoder 
Sparse autoencoder is mainly used for unsupervised learning. 
The hidden layers of the model are made sparser when 
representing data by learning the compressed representation 
(i.e., encoding) of data and introducing sparsity constraints, 
thereby extracting more meaningful features. Wang Jie et al. 
[68] used a sparse autoencoder to classify the maturity of 
tobacco images, achieving an accuracy of 98.63%. 
 
4.3.2 Convolutional neural network 
CNN is a deep learning model specifically designed for 
processing data with grid structures, such as images and 
audio. It is widely used in computer vision tasks such as 
image recognition, object detection, and image segmentation. 
The core network layers of CNN include convolutional layer, 
pooling layer, fully connected layer, and batch normalization 
(BN) layer. 

Convolutional layer is the core part of CNN and is used 
to extract local features from input data. The convolutional 
layer convolves the input image using a convolutional kernel 
(or filter) to generate a feature map. A convolutional kernel 
is a small weight matrix used to detect specific patterns in an 
image. Each convolution kernel slides (or scans) on the input 
image, performs dot product operation on each position, 
generates a scalar value, and finally forms a feature map. 
Multiple types of local features can be extracted through 
multiple different convolution kernels. 

The pooling layer is usually located after the 
convolutional layer and is employed to reduce the spatial 
dimension of the feature map, decrease computational 
complexity, and model parameters. The most common 
pooling methods are max pooling and average pooling. Max 
pooling selects the maximum value within a small region of 
the feature map, while average pooling selects the average 
value of that region. Through the pooling layer, important 
features can be retained while reducing the size of the 
feature map and improving the robustness of the model. 

The fully connected layer is usually located in the last 
few layers of the network and is used to comprehensively 
process the features extracted from the previous layers and 
output the final classification result. Each neuron in the fully 
connected layer is connected to all neurons in the previous 
layer. Learning the weight matrix transforms the feature map 
into a fixed-size vector for classification or regression tasks. 
The output of the fully connected layer can be converted into 
a probability distribution using functions such as softmax, 
which can be used for multiple classification tasks. 

The BN layer is employed to accelerate the training 
process and improve the stability of the model. BN reduces 
internal covariate shift and makes the training process more 
stable by normalizing the activation values on each batch of 
data. BN layers are usually located after convolutional or 
fully connected layers and used in conjunction with 
activation functions to significantly improve the training 
efficiency and accuracy of the model. 

The CNN structure forms a powerful feature extraction 
and classification model through the combination of the 
above layers. Each layer undertakes specific tasks, working 
together on input data, gradually extracting high-level 
features, and ultimately completing classification or other 
tasks. 

Chen et al. [69] used CNN to extract and classify 
features from near-infrared spectral images and constructed 
a tobacco leaf maturity identification model. The model 
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achieved identification accuracies of 96.18%, 95.2%, and 
97.31% at three different leaf positions, respectively. Wu et 
al. [70] used a three-dimensional CNN architecture to extract 
spectral and spatial features from 150 raw hyperspectral 
images, and the average accuracy of the model reached 
99.93%. 
 
4.3.3 Residual network 
A residual block is a core component of ResNet, designed to 
address degradation issues in deep neural network training. 
Its main feature is that it achieves residual learning by 
introducing skip connections, allowing the network to learn 
the residuals (i.e., differences) between input and output, 
rather than directly learning the mapping from input to 
output. The ResNet network structure is shown in Fig. 4. 

ResNet allows the feature matrix to be added in layers, 
where Ϝ(X) is the result obtained through two convolutional 
layers, and X is the original feature matrix. The so-called 
addition is the addition of numbers at the same position in 
the feature matrix. The added matrix as input can effectively 
solve the problem of deep network degradation and improve 
the depth of the network. 

Sun et al. [71] designed a semi-supervised learning 
framework on the basis of the ResNet50 backbone network 
and combined with maturity structure constraints. This 
framework only needs to label 25% of tobacco leaf samples 
to achieve the same recognition accuracy as supervised 
learning. 
 

 
Fig. 4. ResNet network structure 
 
4.3.4 YOLO series models 
The YOLO series of models are a set of object detection 
algorithms that are popular in the field of computer vision 
for their high efficiency and real-time performance. The 
object detection algorithm includes two parts: image 
classification and object detection. It can select and classify 
multiple objects from the image. For fresh tobacco leaves in 
situ in the field, the object detection algorithm has high 
practicality. 

The YOLO series has been updated to YOLO v9 so far. 
YOLOv5 is one of the most widely studied and applied 
models in the series. The network structure of YOLOv5 
consists of four main parts: input, backbone, neck, and head. 
The input includes mosaic data augmentation, image size 
processing, and adaptive anchor box algorithm. The 
backbone includes the focus module, which performs slicing 
operations on the original image size set by this model, and 
then connects them through concat operation. Feature maps 

downsampled by 8, 16, and 32 times are used as the feature 
layers of the detection target, improving the detection speed. 
The neck layer integrates extracted semantic and positional 
features, while the backbone layer and detection layer enrich 
the model’s feature information. The head outputs the 
category probability, score situation, and bounding box 
position information vector of the detected object. 

Wang Ruiqi et al. [72] introduced the lightweight object 
detection model YOLOv5s to recognize the maturity of fresh 
tobacco leaves, and the mAP values in all three tobacco leaf 
part models reached 0.9 or above. 
 
4.3.5 MobileNet series models 
The MobileNet series of models are a set of lightweight 
CNN models designed specifically for mobile devices and 
embedded systems, aiming to provide efficient performance 
and lower computational complexity. The MobileNet series 
currently has three versions: MobileNet v1, v2, and v3. 
These network structures are centered around depthwise 
separable convolutions, which optimize the network 
structure and reduce the number of parameters to achieve 
efficient model operation, making them particularly suitable 
for resource-constrained devices. For fresh tobacco leaves in 
the field, the MobileNet model has strong scene adaptability 
and is convenient for embedded applications in agricultural 
machinery. 

Li Junxian et al. [73] designed a lightweight tobacco leaf 
maturity discrimination model based on the MobileNetv2 
structure, which reduces the model size and number of 
operations compared with other classical deep learning 
models. Zhang Y. et al. [74] proposed a field in-situ tobacco 
leaf maturity discrimination model that combines feature 
pyramid network, attention mechanism, and MobileNetv1. 
This model has high robustness in complex environments. 

The biggest advantage of deep learning methods over the 
previous two methods is that they can learn more thorough 
and abstract feature details through complex neural networks 
and have stronger feature extraction capabilities in 
structurally complex images. 

The characteristic comparison of the above tobacco 
maturity classification methods is shown in Table 4. The 
statistical recognition method has strong interpretability and 
can achieve good classification results in small sample 
tobacco leaf discrimination. Machine learning methods, with 
their powerful feature processing and classification 
capabilities, have become the cornerstone models for many 
scholars. Deep learning methods have demonstrated 
powerful feature extraction and complex pattern recognition 
capabilities, but studies in the field of tobacco maturity 
discrimination are still in their infancy. The main reason 
may be related to the sample size of the tobacco maturity 
discrimination task and the current development status in the 
field. However, with the advancement of information 
technology and the continuous deepening of studies, the 
potential application of deep learning methods in the field of 
tobacco maturity discrimination cannot be ignored, and it 
may usher in a wider range of applications and 
developments in the future. 

 
Table 4. Comparison of classification methods 

Methods Applicable features Characteristics 
Statistical 

recognition 
Low-dimensional, structured, and highly 
interpretable features 

High computational efficiency, strong interpretability, and high 
requirements for features 

Machine learning Structured and unstructured features Strong flexibility, requiring feature engineering and diverse models 
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Deep learning High-dimensional, unstructured, and 
complex features 

End-to-end learning; complex features require high data volume and 
consume significant computational resources 

 
5. Conclusions and Future Directions 
 
5.1 Conclusions 
The review summarizes the studies on tobacco leaf maturity 
discrimination based on machine vision, providing a 
comprehensive overview from the aspects of feature 
engineering and classification methods. In terms of feature 
selection, multispectral image features exhibit the advantage 
of being less susceptible to human factors and external 
environmental influences compared to color and texture 
features, though they require costly equipment to acquire the 
necessary data. In terms of classification methods, machine 
learning approaches, unlike statistical methods, do not 
require prior knowledge and have gained widespread 
application in the field of tobacco leaf maturity classification, 
demonstrating superior performance in handling nonlinear 
and medium-scale batch classification tasks. As an emerging 
approach, deep learning methods eliminate the need for 
feature engineering, enabling the completion of maturity 
discrimination tasks with a single deep learning model. 
However, to achieve optimal performance, large-scale 
sample datasets are required in deep learning, which is a 
challenge that currently remains unmet. In conclusion, 
machine vision technology shows broad application 
prospects and research potential in the field of tobacco leaf 
maturity discrimination, yet further research and 
technological innovations are essential to enhance the 
accuracy and practicality of tobacco leaf maturity 
identification systems. 
 
5.2 Future directions 
In summary, future studies on tobacco leaf maturity 
discrimination can focus on two key areas. 

First, a comprehensive tobacco leaf sample dataset needs 
to be developed. Currently, the majority of studies utilize 
samples sourced from a single variety, specific harvest year, 
and limited in quantity. Both traditional machine learning 
and deep learning methods often suffer from insufficient 
sample sizes. Establishing a large-scale and diverse tobacco 
leaf sample database is crucial for enhancing model 
robustness, reducing overfitting, and widening the scope of 
practical applications. 

Second, integrating multi-domain feature fusion inputs is 
critical. Beyond visual features, data related to tobacco 
growth—such as cultivation practices, transplanting 
schedules, topping timings, and fertilization records—should 
be incorporated as supplemental feature data. These 
variables exhibit a strong correlation with tobacco leaf 
maturity and can significantly enhance the accuracy and 
practical application of machine vision technology in 
assessing tobacco leaf maturity. 
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