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Abstract  
 

Energy competitiveness is a quantitative indicator used to assess the comprehensive strength and development potential 
of a country or region in the energy sector. Currently, most existing research on China’s energy development has focused 
on single-dimensional aspects such as energy intensity and resilience. Meanwhile, few studies have comprehensively 
analysed the development foundation and trends of China’s energy sector from a competitiveness perspective. In the 
study, energy competitiveness is defined in terms of four aspects: resource endowments, industrial structure, related 
industry development, and demand conditions. The objective entropy weight method is employed to quantitatively 
measure China’s energy competitiveness from 1980 to 2020. An in-depth analysis of its development process and 
influencing factors is subsequently conducted. Results show that, (1) China’s energy competitiveness exhibits an overall 
upward trend. According to its distribution characteristics, it is categorized into three historical stages: the “slow growth 
period,” the “plateau period,” and the “rapid expansion period”; (2) In the development of China’s energy 
competitiveness, factors such as technological progress, residents’ traditional lifestyles, energy production, and residents’ 
new forms of consumption exert relatively large marginal impacts; (3) The importance of each key influencing factor 
varies across different stages, which results in distinct temporal variation patterns and nonlinear response relationships. 
The proposed measurement model of China’s energy competitiveness is feasible. The obtained conclusions provide a 
significant reference for effectively promoting sustainable energy development in the country. 
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1. Introduction 
 
Energy is a fundamental material basis for human existence 
and development. At present, the global energy landscape is 
profoundly and unprecedentedly changing [1]. The rapid 
advancement of science and technology has enabled the 
development of new energy technologies and increased the 
proportion of clean energy, such as solar, wind, hydropower, 
and nuclear energy [2]. Fossil fuel reserves are steadily 
declining, while extraction costs continue to rise. The 
international energy market remains highly volatile, while 
geopolitical factors exert an increasing influence on energy 
supply and prices. Consequently, countries are actively 
seeking effective strategies to strengthen their energy 
competitiveness [3]. China, as the world’s largest developing 
nation, holds a pivotal position in the global energy 
landscape. In recent years, China’s rapid economic growth 
has led to a sustained increase in energy demand, which 
makes it the world’s largest energy consumer [4]. The 
International Energy Agency [5] reported that China’s 
installed renewable energy capacity rose from 35% in 2015 
to 48% in 2023. However, China’s energy resource 
endowment is characterized by an abundance of coal, a 
scarcity of oil, and limited natural gas reserves. The country 
has highly relied on imported oil and natural gas for a long 
time. In 2024, China’s dependence on imported oil has 
already exceeded 70%. This situation renders China’s 
energy system continues to grapple with the “impossible 

triangle” challenge [6]. And the country’s energy supply 
highly susceptible to fluctuations in the international market, 
which creates significant challenges for its energy security. 

In this context, conducting a comprehensive analysis of 
China’s energy competitiveness and identifying its key 
constraints are crucial for strengthening the country’s energy 
competitive advantage and advancing sustainable energy 
development. Unfortunately, existing research primarily 
focuses on single-dimensional and single-factor analyses of 
energy efficiency and security [7-9]. This single-dimensional 
analytical framework cannot consider the complexity of the 
energy system and does not adequately capture the 
mechanisms driving the formation of a country or region’s 
energy system competitive advantage. 

Fortunately, competitiveness theory offers new insights 
for a comprehensive understanding of the advantages and 
disadvantages of a country or region in the energy sector. 
Competitiveness theory provides a structured framework for 
researching China’s energy development, which facilitates a 
transition from a single-dimensional economic efficiency 
analysis to a comprehensive multidimensional system 
evaluation by systematically examining the endogenous 
drivers of industrial competitiveness. Compared with 
traditional single-dimensional analyses, energy 
competitiveness theory exhibits distinct advantages through 
its emphasis on factor integration and dynamic adaptability 
[10]. Currently, several scholars have conducted exploratory 
research on corporate energy competitiveness, which 
confirms that the quantitative evaluation of competitiveness 
in the energy sector is feasible and important. Sadorsky [11] 
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used a dynamic panel model and demonstrated that a 1 
percentage point increase in corporate energy 
competitiveness in industries with high energy consumption 
causally leads to a 0.3–0.5 percentage point increase in total 
factor productivity. This relationship is significantly 
moderated by institutional quality. However, few studies 
have focused on the competitiveness of the energy industry, 
and no scholar has examined the macro and micro factors 
that play a critical role in shaping China’s energy 
competitiveness. Thus, this study endeavors to construct a 
comprehensive evaluation model of China’s energy 
competitiveness based on competitiveness theory. It employs 
the objective entropy weight method to address the 
following research questions: 

(1) What is the current status of China’s energy 
competitiveness, and what stages has its development and 
evolution undergone? 

(2) What are the primary constraints on China’s energy 
competitiveness? 

(3) How do different factors influence China’s energy 
competitiveness across various stages of development? 

The study primarily contributes in the following aspects. 
First, the entropy weight method was employed to construct 
a comprehensive evaluation model of China’s energy 
competitiveness. This model enables a quantitative analysis 
of its competitive advantages and disadvantages while 
addressing the limitations of overly narrow research 
perspectives. Second, the random forest model was 
introduced and optimized to identify key factors influencing 
China’s energy competitiveness. The nonlinear marginal 
impacts of various factors at different development stages 
were analyzed, which provides a quantitative basis for policy 
formulation. 

The rest of the study is structured as follows. Section 2 
elaborates the research design. Section 3 details the model 
construction process. Section 4 provides an in-depth analysis 
of China’s energy competitiveness measurement results, 
with systematic explanation of its overall status, key 
influencing factors, and the marginal effects of different 
factors. Section 5 concludes with a summary and the key 
research findings. 
 
 
2. Literature review 
 
Previous studies on energy development levels have mostly 
focused on a single-factor perspective. For example, many 
studies have measured regional or national energy 
development levels using a single indicator, such as energy 
intensity, per capita energy consumption, or the proportion 
of renewable energy [12-13]. Although this type of research 
can simplify the analysis process and quickly identify 
shortcomings in specific dimensions, it is difficult to fully 
describe the complex correlations and dynamic evolution of 
multiple factors within the energy system [14]. For example, 
early literature often evaluated energy endowment 
advantages based on the linear logic of “resources-
production-consumption”, but ignored the role of 
technological innovation in reconstructing resource 
utilization efficiency. Alternatively, it measured the level of 
energy decarbonization solely by total carbon emissions, 
without fully considering the impact of offsetting 
mechanisms such as carbon sink capacity and carbon trading 
market maturity. The traditional evaluation system, which is 
centered on “energy intensity”, is increasingly considered 
insufficient to account for the complex impact of emerging 

technologies, geopolitics, and climate policies in shaping 
competitiveness. Therefore, developing an integrated 
analytical framework is urgently needed [15]. At the 
thematic level, the concept of energy competitiveness, which 
emphasizes the coordinated optimization of multiple energy 
development objectives, has gradually gained widespread 
attention from scholars. Competitiveness theory provides a 
multidimensional analytical framework for energy system 
research by systematically deconstructing the dynamic 
relationships among factor endowments, industrial structure, 
and the institutional environment of economic entities [16]. 
In 1990, Porter proposed a competitiveness framework that 
marked a shift from absolute advantage and comparative 
advantage to competitive advantage. Competitiveness theory 
emphasizes that the economic prosperity or decline of a 
country or region depends on its ability to establish a 
competitive advantage. The key to achieving industrial 
competitiveness depends on the integration of four 
fundamental factors: resource endowments, industrial 
structure, related industry development, and demand 
conditions. Energy competitiveness, as an indicator of a 
country or region’s overall strength in the energy sector, 
involves various dimensions, including energy resource 
endowment and energy utilization efficiency. At the 
methodological level, with the rise of systems theory, 
scholars have gradually shifted from single-factor analysis 
methods, such as data envelopment analysis (DEA), to 
constructing multidimensional indicator systems to better 
capture the complexity of energy development. McClelland 
was the first to combine DEA with the directional distance 
function to quantify the impact of environmental constraints 
on the energy efficiency of coal-fired power plants in the 
United States [17]. Although Ang’s Laspeyres index 
decomposition method effectively identifies the driving 
factors of industrial energy efficiency, it reduces the energy 
system to a closed technical-economic model [18]. Thus, 
this method fails to account for exogenous shocks in energy 
security and other critical dimensions. Gnansounou’s energy 
vulnerability index integrates 11 technical and economic 
indicators. It reveals a time-lag deviation of 3 to 5 years in 
its response to changes in renewable energy penetration, as 
indicated by sensitivity analysis [19]. The International 
Energy Agency quantified the distribution of the global 
population without electricity through the Multidimensional 
Poverty Index [20]. However, this approach reduces energy 
infrastructure investment to a linear cost function and fails to 
consider the role of community participation and socio-
cultural factors. While the “Beyond Connections” 
framework proposed by Batidzirai et al. [21] incorporated 
service quality indicators, it failed to establish a quantitative 
correlation model with energy efficiency improvements. 

In general, the comprehensive evaluation method not 
only overcomes the fragmentation issues of the single-factor 
perspective through system integration, dynamic feedback, 
and heterogeneous deconstruction but also serves as a core 
analytical tool for addressing the energy “impossible 
triangle” (safety, economy, and low carbon). Furthermore, it 
provides a scientific benchmark for strategic path selection 
in the global carbon neutrality process [22]. In 
comprehensive evaluation modeling, methods such as 
principal component analysis (PCA), the entropy method, 
and the analytic hierarchy process (AHP) are widely used for 
indicator dimension reduction and weight allocation [19]. 
PCA extracts the main factors of competitiveness by 
maximizing variance, as seen in the EU energy triangle 
model [23]. The AHP relies on expert scoring and is easy to 
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implement, but it is prone to introducing cognitive biases. 
Pohekar [24] constructed an AHP framework with 12 core 
indicators, such as energy cost, carbon emission intensity, 
job creation potential, and technological maturity. The 
weights were determined, and the comprehensive score was 
calculated using expert questionnaires. The entropy weight 
method is based on data characteristics, objectively assigns 
weights using information entropy, avoids subjective bias, 
and enables the automatic weighting of multidimensional 
data. Lin and Wesseh [25] selected 12 indicators from the 
dimensions of energy consumption, economic output, and 
environmental pressure and determined their objective 
weights using the entropy weight method. Budzianowski and 
Postawa [26] effectively combined the entropy weight 
method with grey correlation analysis and selected 18 
indicators from four subsystems: energy supply, economic 
cost, environmental constraints, and technological resilience. 
He then constructed a comprehensive evaluation system for 
national energy security and identified key risk factors. In 
comparison, the entropy weight method is more objective, 
effectively handles the problem of multi-index collinearity, 
and is suitable for evaluating complex systems. 

Therefore, considering the limitations of previous studies, 
the objective entropy weight method is employed to 
quantitatively assess China’s energy competitiveness from 
1980 to 2020. In addition, the random forest algorithm is 
utilized to conduct an in-depth analysis of its development 
process and key influencing factors. 
 
 
3.  Methodology 
 
3.1 Analysis of the connotation of energy competitiveness 
Competitiveness is a multidimensional dynamic concept that 
refers to the ability of an individual, organization, industry, 
or country to effectively allocate resources, continuously 
innovate, and respond to challenges in a specific 
environment. This dynamic concept allows them to gain 
advantages in competition and achieve long-term sustainable 
development. Competitiveness theory emphasizes that 
innovation is the core driving force for improving 
competitiveness. The input of innovation factors can be 
measured by expenditure on research and experimental 
development in the energy industry. Research and 
experimental development expenditures are the material 
basis for innovation in the energy field, and sufficient funds 
can promote the transformation of energy technology [27]. 

Industrial structure is an important indicator of 
competitiveness. Energy intensity, as a key indicator to 
measure the rationality of industrial structure, reflects the 

coupling relationship between energy and economic 
development. Lower energy intensity suggests that economic 
development is less dependent on energy, and more 
economic output can be obtained with less energy inputs. 
This lower dependency on energy enhances the overall 
competitiveness of the economy and thus strengthens the 
supporting role of energy in economic development and its 
own competitiveness [28]. 

The development of related industries has an important 
supporting and driving role in the competitiveness of core 
industries. The proportion of installed capacity for clean 
energy power generation is an important indicator reflecting 
the development of related industries. An increase in the 
proportion of installed capacity for clean energy power 
generation signifies the growth of the clean energy industry 
itself. It also facilitates the development of related industries, 
including energy storage, smart grids, and energy services 
[29]. 

Demand condition is an important factor influencing 
competitiveness. External dependence of energy is a direct 
indicator of demand conditions. Lower external dependence 
of energy indicates that a country or region can fulfill most 
of its energy needs using its own energy resources. This 
ability to meet energy needs reflects a fundamental 
requirement and a key aspect of energy competitiveness [30]. 

Therefore, enhancing China’s energy competitiveness 
must be based on the country’s energy resource endowments. 
Notably, ensuring energy security and meeting the needs of 
economic and social development are fundamental 
prerequisites. The focus should be on clean and low-carbon 
transition, which is driven by technological innovation. The 
aim is to meet the people’s energy needs for a better life and 
promote the construction of a clean and beautiful world. 
 
3.2 Research methods 
(1) Comprehensive evaluation model. In this study, the 
entropy weight method is used to comprehensively evaluate 
China’s energy competitiveness level during the period of 
1980–2020. The entropy weight method, as an approach for 
analyzing objectively weighted data commonly used in 
economics, overcomes the problem of subjectivity of 
artificial weighting. It has better objectivity and accuracy to 
explain the obtained results than the subjective weighting 
method [31-32]. 

According to the “14th Five-Year Plan” for energy and 
existing research [33-36], the comprehensive score of 
China’s energy competitiveness level from 1980 to 2020 
was calculated using the entropy weight method based on 
the indicator system shown in Table 1. The specific 
calculation steps are as follows. 

 
Table 1. Composition of China’s energy competitiveness indicators 

Primary indicator Secondary indicator Unit Characterization 
Innovation element R&D expenditure 100 million yuan Positive effect 

Industrial structure Energy intensity tons of SCE/10,000 
yuan Negative effect 

Development of 
related industries 

Proportion of installed capacity for clean energy power 
generation % Positive effect 

Demand condition External dependence of energy % Negative effect 
 

In the first step, the indicators are standardized using the 
extreme value method to address the variability of the 
different indicators. According to the different 
characteristics of the indicators, the positive and negative 
indicators are treated using Formula (1): 

 

                (1) 

 
In the second step, the entropy value Ej is calculated as: 
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                         (2) 
 

In the third step, the difference coefficient Dj is 
calculated as: 
 

                                                               (3) 
 

In the fourth step, the weights of each indicator are 
calculated as: 
 

                                                       (4) 

 
The fifth step involves calculating the comprehensive 

score of China’s energy competitiveness. After the entropy 
weighting method is applied to calculate the comprehensive 
weights of each indicator, the comprehensive score for each 
year is calculated using Formula (5): 
 

                                                       (5) 
 
where Gj denotes the composite energy competitiveness 
score in year j; Wi denotes the combined weight of the ith 
indicator; Yij denotes the value of the ith indicator in year j; 
i=1,2,…,n; j=1,2,…,m. 

(2) Random forest model. Random forest is a (parallel) 
integration algorithm composed of decision trees. It belongs 
to the Bagging type. By combining multiple weak classifiers, 
the final result is voted or averaged. As a result, the results 
of the overall model have high accuracy and generalization 
performance. It is widely used in various business scenarios 
because of its good stability [37]. Compared with a single 
decision tree, random forest can effectively reduce the risk 
of overfitting and improve the stability and generalization 
performance of the model. In addition, random forest can 
handle missing data with high adaptability and robustness, 
which makes it a powerful machine learning model. In this 
study, the random forest method is used to identify the key 
influencing factors. 

(3) Forecast error. Suitable indicators need to be used to 
measure the prediction errors of random forests for assessing 
their prediction accuracy. Mean squared error (MSE) is a 
commonly used assessment indicator to measure the 

difference between predicted and actual values. It is the 
square of the average of all prediction errors, which has 
good mathematical properties and is easy to interpret. In 
random forests, MSE can be used as an effective evaluation 
indicator for comparing the prediction accuracy under 
different parameter configurations. By cross-validating and 
tuning the random forest, its prediction accuracy can be 
further improved, and the performance of MSE indicator can 
be optimized. Therefore, the MSE indicator is used in this 
study to assess the accuracy of the random forest model: 
 

                       (6) 
 
where observedi is the true value, predicted is the predicted 
value, and N is the number of samples. The MSE indicator 
can be used to evaluate the accuracy of the prediction model. 
A smaller MSE value means higher accuracy of the model. 
 
3.3 Data sources 
The research scope defined by this study is China’s energy 
competitiveness and related impact factor indicator data 
from 1980 to 2020. These data comprise important economic 
data, social data, energy data, and environmental 
development data from China in the past 40 years, with a 
total of 69 detailed indicators. The relevant data come from 
various sources, such as China Statistical Yearbook, China 
Industrial Statistical Yearbook, China Energy Statistical 
Yearbook, China Trade Union Statistical Yearbook, and 
China High-Tech Industry Statistical Yearbook. Public data 
of the National Bureau of Statistics and the IEA database for 
corresponding years are also used. Missing values in some 
data are interpolated. 

In terms of the selection of potential influencing factors, 
this study refers to the existing research [38-40] and 
considers data availability and relevance. A total of 69 
indicators are selected to comprehensively describe the 
influencing factors of China’s energy competitiveness from 
1980 to 2020 (Table 2). According to the relevance of the 
indicators and their specific meanings, these factors are 
categorized into nine categories: energy consumption, 
energy production, fossil energy prices, non-fossil energy 
power generation, residents’ traditional lifestyles, size of 
industries with high energy consumption, technological 
progress, residents’ new forms of consumption, and share of 
the service sector. 

 
Table 2. Indicator system of factors influencing energy competitiveness 

Category Factor indicators 

Composition and proportion of energy consumption 

Proportion of raw coal consumption 
Proportion of crude oil consumption 
Proportion of natural gas consumption 
Proportion of hydropower consumption 
Proportion of nuclear power consumption 

Fossil energy prices 
Producer price index for coal industry 
Producer price index for petroleum and natural gas 
industry 

Proportion of non-fossil energy power generation 

Proportion of thermal power generation 
Proportion of hydropower generation 
Proportion of nuclear power generation 
Proportion of wind power generation 
Proportion of solar power generation 

Proportion of service industry 

Proportion of financial industry 
Proportion of information transmission, computer 
services, and software industry 
Proportion of education industry 
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Proportion of health, social security, and social welfare 
industry 
Proportion of culture, sports, and entertainment industry 
Proportion of scientific research, technical services, and 
geological exploration industry 

 Residents’ traditional lifestyles 

Per capita disposable income of urban residents 
Per capita disposable income of rural residents 
Number of civilian vehicles owned 
Total supply of artificial gas in urban areas 
Population using artificial gas in urban areas 
Total supply of natural gas in urban areas 
Population using natural gas in urban areas 
Total supply of liquefied petroleum gas in urban areas 
Population using liquefied petroleum gas in urban areas 
Number of private cars per 100 urban households 
Number of motorcycles per 100 urban households 
Number of motorcycles per 100 rural households 
Number of refrigerators per 100 urban households 
Number of refrigerators per 100 rural households 
Number of television sets per 100 urban households 
Number of television sets per 100 rural households 
Number of washing machines per 100 urban households 
Number of washing machines per 100 rural households 

Scale and proportion of industries with high energy consumption 

Industrial scale of soda ash 
Industrial scale of caustic soda 
Industrial scale of ethylene 
Industrial scale of synthetic ammonia 
Industrial scale of cement 
Industrial scale of flat glass 
Industrial scale of crude steel 
Industrial scale of finished steel 
Proportion of construction industry 
Proportion of transport, storage, and postal services 

Technological progress 

Overall labor productivity 
Processing and conversion efficiency of power 
generation and station heating 
Processing and conversion efficiency of coking 
Processing and conversion efficiency of oil refining 
Standard coal consumption for power generation 
Standard coal consumption for power supply 
Line loss rate of power plants 
Comprehensive energy consumption per unit in the 
crude steel industry 
Comprehensive energy consumption per unit in the 
cement industry 
Comprehensive energy consumption per unit in the 
ethylene industry 
Comprehensive energy consumption per unit in the 
synthetic ammonia industry 
Proportion of science and technology appropriation in 
total fiscal expenditure 

Residents’ new forms of consumption 

Internet broadband subscribers 
High-speed railway operating mileage 
Railway operating mileage 
E-commerce transaction volume 
New energy vehicle sales 
Mobile phone penetration rate 

Composition and proportion of energy production 

Proportion of raw coal production 
Proportion of crude oil production 
Proportion of natural gas production 
Proportion of hydropower production 
Proportion of nuclear power production 

 
4. Model Establishment 
 

4.1 Model selection 
The variables in the dataset collected for this study have no 
linear relationship. Thus, a regression model is chosen for 
the prediction model. By comparing the MSE indicator of 
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model accuracy, the regression algorithm with the smallest 
MSE is used to establish a predictive model. Different 
regression algorithms are suitable for different types of data, 
and appropriate algorithms can be applied for prediction 
based on the characteristics and needs of the data. The 
dataset in this study contains a large number of features. The 
relationships among these features are complex and cannot 
be easily described by a simple linear model. Therefore, this 
study uses three methods widely used in nonlinear 
relationship analysis, namely, random forest regression, 
support vector machine, and decision tree regression 
algorithm. The performance of the three methods is 
compared (Table 3). 
 
Table 3. Three types of common regression models 
Algorithm Features 

Decision tree 
regression 

By recursively partitioning the dataset, a 
decision tree is built, which is suitable for 
continuous and discrete data. The decision 
tree algorithm can automatically perform 
feature selection but is prone to overfitting. 

Support vector 
regression 

Regression is performed by finding the 
optimal hyperplane, which is suitable for 
high-dimensional and nonlinear data. This 
algorithm can effectively handle small 
sample problems but requires longer 
training time for large sample data. 

Random forest 
regression 

An ensemble learning method that builds 
multiple decision trees for regression is 
established, which is suitable for continuous 
and discrete data. The random forest 
algorithm can reduce the risk of overfitting 
but needs careful parameter tuning. 

 
In this study, the dataset is first divided into a training set 

and a test set. The training set is used for model training, 
while the test set is utilized to evaluate the predictive 
performance of the model. In the process of model 
performance evaluation, MSE is adopted as a measure to 
assess the prediction accuracy of the model. A lower MSE 
value indicates that the deviation between the prediction 
result and the actual value of the model is smaller, which 
suggests that the prediction accuracy of the model is higher. 

The results show that the random forest regression 
algorithm has the smallest MSE value, which is 0.00047 
(Fig. 1). By contrast, the MSE indicators of support vector 
machine and decision tree regression are 0.00052 and 0.0059, 
respectively. Therefore, this study selects the random forest 
regression algorithm with the smallest MSE for model 
prediction. 

 

 
Fig. 1. Comparison of prediction performance of random forest, support 
vector machine, and decision tree models 

4.2 Parameter tuning 
Random forest models are widely used in machine learning 
due to their excellent fitting capabilities. However, higher 
model complexity leads to an imbalance in the bias–variance 
trade-off, as evidenced by lower model bias accompanied by 
higher estimated variance. The complexity of a model needs 
to be constrained by a systematic hyperparameter 
optimization strategy to improve its generalization 
performance. This study adopts a hybrid method based on 
cross-validation-based grid search (GridSearchCV) and 
manual parameter optimization. This method focuses on two 
core hyperparameters in the random forest algorithm—
“mtry” (number of candidate features during node splitting) 
and “ntree” (number of decision trees) are tuned. 

The tuning process adopts a grid search strategy to 
achieve parameter tuning by iteratively adjusting the “ntree” 
value and evaluating the performance of the model on the 
test set based on selected performance indicators (e.g., mean 
square error or R²). The results are shown in Fig. 2 and Fig. 
3. 
 

 
Fig. 2. Optimization of the number of mtry 

 
Fig. 3. Modeling error rate for different ntree 
 
4.3 Particle update rules 
Random forest regression modeling is an effective 
forecasting method, but its predictive performance is 
significantly affected by the influencing factors. This study 
proposes an optimal influence factor selection method based 
on cross-validation curve analysis to improve the prediction 
accuracy of random forest regression models. Cross-
validation evaluates model performance by dividing the 
training and validation sets multiple times and plotting 
cross-validation curves to visualize the relationship between 
model error and the number of influence factors used for 
fitting. By analyzing the cross-validation curves, this study 
determines that 14–20 significant influences need to be 
retained to obtain optimal regression results. As the number 



Zhencui Li, Jintao Lu, Yuan Gao, Hua Bai and Yujia Liu/Journal of Engineering Science and Technology Review 18 (1) (2025) 242 – 255 

 248 

of influencing factors increases, the model error shows a 
tendency of decreasing and then stabilizing or even 
increasing. Therefore, based on the trend of the curve, a 
range of the number of influencing factors is chosen to 
minimize the errors (Fig. 4). 

 

 
Fig. 4. Number of significant variables identified by cross-validation 

 
 

5. Results analysis 
 

5.1 China’s energy competitiveness in general 
In this study, the entropy weight method is used to measure 
China’s energy competitiveness level from 1980 to 2020, 
and the results are shown in Fig. 5. The results show that 
China’s energy competitiveness level exhibits a continuous 
upward trend. The level increases from 0.0779 in 1980 to 
0.9229 in 2020, which is a rise of 1084.72%. Further 
analysis reveals that the development of China’s energy 
competitiveness level can be divided into three phases: the 
slow-growth period of 1980–1999, the plateau period of 
2000–2007, and the rapid expansion period of 2008–2020. 
Analyzing the influencing factors of energy competitiveness 
level in each period is important in exploring the path of 
energy competitiveness enhancement with Chinese 
characteristics. 
 
 

 
Fig. 5. Energy competitiveness level in China from 1980 to 2020 
 
5.2 Identification of key influential factors for China’s 
energy competitiveness 
In this study, the dataset is divided into a training set and a 
test set to support the construction of the model and the 
subsequent parameter optimization. This process is 
conducted by normalizing the data of potential influencing 
factors within the year. Then, the influencing factors are split 
into a training set and a testing set. The variable importance 
index based on the Gini coefficient (IncMSE) and the node 
purity (IncNodePurity) is used to determine the degree of 

contribution of the influencing factors to the energy 
competitiveness indexes of the year and rank them. A larger 
value for both indicates greater importance to the energy 
competitiveness variables. Furthermore, the partial 
dependence plots of the variables are plotted using the 
partialPlot function to visualize the marginal effect of each 
influencing factor on the model output. 

From the output results shown in Fig. 6 and Fig.7, the 
variable importance index (IncMSE) and node purity 
(IncNodePurity) are similarly sorted. The influencing factors 
with high importance ranking for the variable importance 
index (IncMSE) are shown in Fig. 8. Among them, the 
standard coal consumption of power generation, the line loss 
rate of power plants, the number of private cars per 100 
urban households, the standard coal consumption of power 
supply, the proportion of crude oil production, the 
processing and conversion efficiency of power generation 
and station heating, the total supply of natural gas in urban 
areas, and the number of Internet broadband subscribers are 
classified into categories such as technological progress, 
residents’ traditional lifestyles, energy consumption, 
residents’ new forms of consumption, and energy production. 
Their importance in energy competitiveness indicators 
exceeds 5%. This finding suggests that the abovementioned 
indicators have played a significant role in improving energy 
competitiveness over the past 40 years of development. 
Therefore, these key factors should receive special attention 
in future energy development strategies compared with other 
indicators of lesser importance. Targeted implementation of 
policies such as promoting energy technology innovation 
and improving energy efficiency can be considered to more 
effectively promote the improvement in energy efficiency 
levels, build a modern energy system, promote high-quality 
energy development in the new era, and thus achieve 
modern transformation in the energy field. Further analysis 
reveals differences in the impact of consumption and income 
indicators of urban and rural residents on energy 
competitiveness. Notably, the impact of urban residents’ 
energy consumption in traditional lifestyles on energy 
competitiveness is significantly higher than that of rural 
residents. The differences in energy consumption patterns 
between urban and rural areas may be related to the 
significant variations in economic levels, cultural levels, and 
lifestyles between urban and rural residents. Therefore, in 
the process of deepening the construction of new 
urbanization, the government should consider the differences 
in the impact of urban and rural residents’ income and 
consumption on energy intensity. Targeted relevant energy 
conservation and emission reduction policies should be 
formulated and implemented based on this aspect. 

 
Fig. 6. Ranking of energy competitiveness impact factors from 1980 to 
2020 (IncMSE) 
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Fig. 7. Ranking of energy competitiveness impact factors from 1980 to 
2020 (IncNodePurity) 
 
5.3 Analysis of the marginal role of key factors 

 
5.3.1 Marginal impact of key factors 
The impact of standard coal consumption for power 
generation on energy competitiveness shows a stepwise 
decreasing trend. On the contrary, the level of energy 
competitiveness jumps in a stepwise manner as the standard 
coal consumption for power generation is gradually reduced 
(Fig. 8a). The impact of the processing and conversion 
efficiency of power generation and station heating on energy 
competitiveness shows a stepwise increase and stabilizes 
around 44% (Fig. 8b). This result suggests a threshold effect 
of technological progress on energy competitiveness. 
Moreover, technological innovation and upgrading to some 
extent will promote the reduction in pollution and energy 
emissions for a certain period of time. As a result, the 
gradual increase in the level of energy competitiveness will 
be promoted. 

The impact of the number of private cars per hundred 
households in urban areas on energy competitiveness 
initially shows a rapid increase, followed by a gradual 
slowdown. It reaches an inflection point at approximately 22 
cars per hundred households. Beyond this point, the degree 
of influence slowly rises (Fig. 8c). According to the “Blue 
Book of Automotive Society” released by the Institute of the 
Chinese Academy of Social Sciences, the number of private 
cars per hundred households in China exceeded 20 in 2012, 
which signifies that China has officially entered the era of an 
automobile society. Furthermore, this figure continues to rise 
steadily. Automobiles, as a big-ticket item, have a massive 
consumption scale. Thus, they not only directly drive 
demands for the automotive manufacturing industry but also 
stimulate consumption in related sectors such as steel, which 
raises concerns on energy consumption. Therefore, as 
incomes rise, residents’ demands and expectations for 
consumption will continue to increase. In implementing a 
strategy that prioritizes conservation, the promotion and 
education of resource-efficient consumption patterns among 
the public should be strengthened. With regard to 
automobile consumption, efforts should be made to actively 
guide private consumers in adopting the low-carbon travel 
concept associated with new energy vehicles. At the same 
time, developing alternative fuel vehicles and next-
generation automotive energy propulsion systems is greatly 
important for achieving China’s energy conservation 
priorities and the sustainable development of the automotive 
industry. 

The impact of the proportion of natural gas production 
on energy competitiveness slightly declines first and then 

flattens up, followed by a rapid increase. After the 
proportion of natural gas production reaches 6.5%, the 
impact still presents an upward trend, but the growth rate 
slows down (Fig. 8d). This result indicates that the 
development of renewable energy still encounters numerous 
challenges within the current energy production structure. 
Natural gas, as a low-carbon energy source among fossil 
fuels, is playing an increasingly important role in ensuring 
China’s energy supply and security, as well as optimizing 
the energy structure. Therefore, the existing issues in the 
development and utilization of clean resources such as 
natural gas in China need to be addressed. The sustained 
positive contribution of natural gas and other clean energy 
sources to energy competitiveness can be effectively realized 
by thoroughly analyzing and resolving these problems. 

The impact of Internet broadband subscribers on energy 
competitiveness is increasing, and their number has 
stabilized at around 730 million households (Fig. 8e). The 
impact of high-speed railway operating mileage on energy 
competitiveness also exhibits an upward trend, which 
stabilizes after reaching 7,621 km (Fig. 8f). This trend 
indicates that, since entering the era of electrification, on the 
one hand, the widespread adoption and effective application 
of the Internet have facilitated deep integration with various 
industries, which enables more efficient utilization of social 
public resources and energy. On the other hand, the 
electrification of high-speed railways, which is characterized 
by “converting oil to electricity,” helps optimize the energy 
consumption structure of the railway system. This 
optimization drives energy conservation and emission 
reduction efforts. 

The impact of the proportion of natural gas consumption 
on energy competitiveness initially remains at a low and 
stable level. However, the impact level increases rapidly 
after the threshold of 3% is reached. Finally, after the 
proportion reaches 4.2%, it shows a steady upward trend 
(Fig. 8g). Compared with the global energy structure, 
China’s energy consumption structure is severely 
imbalanced. Specifically, coal remains the dominant source, 
while various natural gas consumption indicators stay at 
relatively low levels. Therefore, increasing the proportion of 
natural gas, nuclear power, and other renewable energy in 
energy consumption is necessary to adjust the energy 
consumption structure. This adjustment is vital for reducing 
coal consumption and carbon dioxide emissions, which 
achieves the low-carbon development goals of energy. 

The impact of the proportion of construction industry on 
energy competitiveness initially remains at a low and stable 
level. When the threshold of 6.3% is exceeded, the degree of 
impact increases rapidly. Eventually, a stable trend emerges 
after the proportion reaches 7% (Fig. 8h). The reason is that 
China’s construction industry has promoted industrial 
upgrading and low-carbon development in recent years. The 
electrification process of the construction industry is fast, 
among which electricity consumption gradually replaces 
coal consumption. The data provided by the National Bureau 
of Statistics of China and the International Renewable 
Energy Agency showed that, from 1994 to 2018, the 
proportion of coal consumption in the energy consumption 
structure of the construction industry decreased by 26.6%, 
while the proportion of electricity consumption increased by 
13.6%. This change is the most remarkable among all types 
of energy consumption. The transformation and upgrading 
process of the construction industry provides important 
reference and inspiration for other industries with high 
energy consumption. Achieving the green transformation of 
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industries with high energy consumption, which are 
represented by the construction industry, not only can 
provide economic benefits to the industry itself but also can 
offer extensive benefits to consumers and society. Thus, this 
green transformation contributes to the realization of the 
dual-carbon goals. 

The impact of the proportion of wind power generation 
on energy competitiveness has been continuously rising. 
After the proportion reaches 2.66%, the degree of its impact 
shows a slowly increasing trend (Fig. 8i). This finding 
indicates that the significance of the effects of wind energy, 
as an important energy source for energy conservation and 
environmental protection, still needs to be further enhanced. 

Wind power is an alternative energy source with unlimited 
resources and relatively low costs, and its generation holds 
an important position in the field of renewable energy 
utilization. Wind power is currently the most technologically 
mature power-generation method with the best conditions 
for large-scale development among renewable new energy 
sources. Promoting energy substitution in an orderly manner 
and comprehensively constructing non-fossil energy projects, 
such as wind power, photovoltaic power, hydropower, and 
nuclear power, are important measures for adjusting the 
energy structure and achieving sustainable development. 
 

 
Fig. 8. Partial dependence plots 
 

 
5.3.2 Analysis of the phased evolution of key factors 
According to existing research, the situation of China’s 
energy-related carbon dioxide emissions has undergone 
three periods. The first is the climbing period from 1980 to 
2001, during the early stage of reform and opening-up, when 
the growth of China’s energy consumption was relatively 
stable. The second is the rapid-rise period from 2002 to 2011, 
after China’s accession to the WTO. During this time, while 
pursuing rapid economic development, China’s energy 
consumption growth entered a stage of sharp increase. The 
third is the control period from 2012 to the present. Since 
entering the new era, the growth rate of China’s energy 
consumption has significantly slowed down because of the 
active implementation of the energy revolution. Combining 
the three time periods with significant changes in the data 
characteristics of energy competitiveness (1980–1999, 
2000–2011, and 2012–2020), this study uses the random 
forest model to analyse sub-samples for identifying the key 
influencing factors in different periods. The specific method 
proceeds as follows. Key influencing factors are selected 
according to a certain proportion. Taking data characteristics 
and policy changes as the dividing dimensions, the 
importance of the major categories to which the key 
influencing factors belong for the energy competitiveness of 
each year is explored. The evolution law of energy 
competitiveness is revealed by conducting a horizontal 

comparison of the importance of each major category and 
the number of indicators. 

Tables 4–6 present the ranking results of the importance 
of impact factors across three distinct stages based on the 
IncMSE method. The top five influencing factors in the 
importance ranking from 1980 to 1999 were the producer 
price index for petroleum and natural gas industry, the 
standard coal consumption of power supply, industrial scale 
of ethylene, industrial scale of caustic soda, and the 
population using liquefied petroleum gas in urban areas 
(Table 4). During this period, the categories of fossil energy 
prices, technological progress, and the scale and proportion 
of industries with high energy consumption significantly 
impacted China’s energy competitiveness. Specifically, 
during the energy consumption climb phase, fossil energy 
prices emerged as a core influencing factor driving the 
substitution of renewable energy for fossil fuels and 
enhancing energy competitiveness. The high prices of fossil 
energy formed a sharp contrast with the relatively low costs 
of renewable energy, which enhanced the market 
competitiveness of the latter and played a critical role in 
optimizing the energy structure. Under the traditional 
extensive economic growth model, the overcapacity in 
industries with high energy consumption has led to 
significant energy consumption and environmental pollution. 
In this context, the low-carbon transformation of industries 
with high energy consumption and the improvement in 
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energy utilization efficiency are crucial for energy 
conservation, emission reduction, and energy 
competitiveness enhancement. 
 
Table 4. Ranking of impact factors from 1980 to 1999 

Influencing factors 1980-1999 
Producer price index for petroleum and 
natural gas industry 1 

Standard coal consumption for power supply 2 
Ethylene 3 
Caustic soda 4 
Population using liquefied petroleum gas in 
urban areas 5 

Synthetic ammonia 6 
Population using artificial gas in urban areas 7 
Processing and conversion efficiency of 
power generation and station heating 8 

Overall labor productivity 9 
Total supply of liquefied petroleum gas in 
urban areas 10 

Per capita disposable income of urban 
residents 11 

Crude steel 12 
Comprehensive energy consumption per unit 
in the crude steel industry 13 

Number of refrigerators per 100 rural 
households 14 

Proportion of hydropower generation 15 
Number of civilian vehicles owned 16 
Per capita disposable income of rural 
residents 17 

Line loss rate of power plants 18 
Proportion of raw coal consumption 19 
Proportion of scientific research, technical 
services, and geological exploration industry 20 

Number of motorcycles per 100 rural 
households 21 

Number of television sets per 100 rural 
households 22 

 
From 2000 to 2011, the top five influencing factors in 

importance changed to the industrial scale of soda ash, the 
number of television sets per 100 rural households, the 
number of refrigerators per 100 rural households, proportion 
of construction industry, and the number of motorcycles per 
100 rural households (Table 5). During this phase, the 
accelerated pace of industrialization and urbanization further 
intensified the impact of industries with high energy 
consumption on energy competitiveness. Traditional energy 
consumption by residents also became a significant factor 
affecting energy competitiveness. The primary contradiction 
of this historical period is the conflict between the rising 
living standards driven by rapid economic development and 
the goals of energy conservation and emission reduction. 
 
Table 5. Ranking of impact factors from 2000 to 2011 

Influencing factors 2000-2011 Rank 
change 

Soda ash 1 - 
Number of television sets per 
100 rural households 2 22→2 

Number of refrigerators per 
100 rural households 3 14→3 

Proportion of construction 
industry 4 - 

Number of motorcycles per 
100 rural households 5 21→5 

Population using artificial 6 7→6 

gas in urban areas 
Proportion of financial 
industry 7 - 

Population using natural gas 
in urban areas 8 - 

Finished steel 9 - 
Mobile phone penetration 
rate 10 - 

Proportion of transport, 
storage, and postal services 11 - 

Proportion of wind power 
generation 12 - 

Standard coal consumption 
for power supply 13 2→13 

Per capita disposable income 
of rural residents 14 17→14 

Proportion of natural gas 
consumption 15 - 

Ethylene 16 3→16 
Standard coal consumption 
for power generation 17 - 

Number of private cars per 
100 urban households 18 - 

Cement 19 - 
Flat glass 20 - 
Railway operating mileage 21 - 
Line loss rate of power plants 22 18→22 

 
From 2012 to 2020, the top five influencing factors in 

the importance ranking shifted to the population using 
artificial gas in urban areas, the comprehensive energy 
consumption per unit in the ethylene industry, the total 
supply of natural gas in urban areas, the proportion of 
scientific research, technical services, and geological 
exploration industries, and the comprehensive energy 
consumption per unit in the crude steel industry (Table 6). 
During this period, the role of technological progress in 
enhancing energy competitiveness became increasingly 
prominent, while traditional energy consumption by 
residents continued to exert its influence. Meanwhile, the 
adjustment of the energy structure significantly progressed. 
The rapid development of strategic emerging industries with 
low energy consumption, such as scientific research, 
technical services, and geological exploration, effectively 
facilitated energy conservation and consumption reduction. 
In the process of industrial restructuring, the development of 
the tertiary sector, including modern services and high-tech 
industries, emerged as one of the pivotal factors in 
enhancing energy competitiveness in the new era. 
 
Table 6. Ranking of impact factors from 2012 to 2020 

Influencing factors 2012-
2020 

Rank 
change 

Population using artificial gas 
in urban areas 1 7→6→1 

Comprehensive energy 
consumption per unit in the 
ethylene industry 

2 - 

Total supply of natural gas in 
urban areas 3 - 

Proportion of scientific 
research, technical services, 
and geological exploration 
industry 

4 20→-→4 

Comprehensive energy 
consumption per unit in the 
crude steel industry 

5 13→-→5 

Population using natural gas 6 -→8→6 
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in urban areas 
Line loss rate of power plants 7 18→22→7 
Internet broadband 
subscribers 8 - 

Proportion of crude oil 
consumption 9 - 

Proportion of wind power 
generation 10 -→12→10 

Per capita disposable income 
of urban residents 11 11→-→11 

Total supply of liquefied 
petroleum gas in urban areas 12 10→-→12 

Number of private cars per 
100 urban households 13 -→18→13 

Number of refrigerators per 
100 rural households 14 14→3→14 

Caustic soda 15 4→-→15 
Synthetic ammonia 16 6→-→16 
Proportion of construction 
industry 17 -→4→17 

Processing and conversion 
efficiency of power 
generation and station heating 

18 8→-→18 

Standard coal consumption 
for power supply 19 2→13→19 

High-speed railway operating 
mileage 20 - 

New energy vehicle sales 21 - 
Proportion of thermal power 
generation 22 - 

 
Overall, between 1980 and 2020, in the context of 

residents’ traditional lifestyles, the influence weight of the 
population using artificial gas in urban areas rose from the 
7th position to the top, while the population using natural 
gas in urban areas, previously not identified as a key 
influencing factor, surged to the 6th position. In addition, the 
total supply of natural gas in urban areas emerged as a newly 
significant third key influencing factor. Urban gas, as a 
critical component of the city’s energy structure and 
infrastructure, supplies high-quality gaseous fuel for 
industrial, commercial, and residential use. Thus, it plays a 
pivotal role in enhancing the city’s energy competitiveness. 
Improving the level of urban gasification can enhance the 
quality of life of urban residents, the urban environment, and 
energy utilization efficiency. 

In terms of technological progress, the comprehensive 
energy consumption per unit in the ethylene industry 
emerged as the second most critical influencing factor. 
Meanwhile, the comprehensive energy consumption per unit 
in the crude steel industry rose from the 13th to the 5th 
position, and the line loss rate of power plants increased 
from the 18th to the 7th position. Conversely, the processing 
and conversion efficiency of power generation and station 
heating dropped from the 8th to the 18th position, and the 
standard coal consumption for power supply declined from 
the 2nd to the 19th position. Therefore, energy efficiency 
indicators such as unit comprehensive energy consumption 
in multiple industrial industries occupy a relatively 
important position in affecting energy competitiveness. With 
the vigorous development of new technologies and processes 
in the national power industry, the standard coal 
consumption for power supply has been decreasing annually, 
which led to a diminished impact on energy competitiveness. 
Therefore, accelerating the specialized breakthroughs in 
energy technology within key sectors, promoting the 
transformation of industries with high energy consumption 

from extensive development to high-quality development, 
and intensifying technological research and development 
efforts are needed to achieve low-carbon or even 
decarbonized industrial chains. These efforts will advance 
the transition of industrial structures with high energy 
consumption toward low-carbon value chains. 

With regard to service industry proportion, the weight of 
the proportion of scientific research, technical services, and 
geological exploration industries rose from the 20th position 
to the 4th, which indicates that the service sector has begun 
to significantly influence the process of energy 
competitiveness. On the one hand, comprehensive energy 
services with energy technology services as one of the 
contents has become an important development direction of 
the modern energy industry and plays an important media 
role in China’s energy economy transformation. On the other 
hand, the service industry, as an important part of the low-
carbon economy, has low energy resource consumption and 
low environmental pollution, which plays an important role 
in reducing energy intensity. 

Regarding residents’ new forms of consumption, the 
number of internet broadband subscribers increased to 8th, 
the number of high-speed rail business mileage rose to 20th, 
and the number of new energy vehicle sales improved to 
21st. The reason is that the popularization and application of 
5G technology have facilitated the rapid development of 
application scenarios such as the Internet of Things, artificial 
intelligence, and new-energy vehicles. An increasing 
number of industries will also enter the electric-energy era. 
The proportion of electric energy in total energy 
consumption will continue to grow, and the impact of 
residents’ new forms of consumption will keep rising. This 
increase highlights the importance of paying attention to the 
influence of residents’ new forms of consumption on energy 
competitiveness in the new era. 

Concerning the energy composition, the consumption of 
crude oil is the newly added influencing factor and ranked 
9th. The proportion of wind power generation fluctuated 
around the 10th place in the second and third stages. As a 
newly added influencing factor, the proportion of thermal 
power generation ranked 22nd. This result indicates that the 
technological progress in balancing fossil energy and the 
development of renewable low-carbon energy such as wind 
power are the key points that need to be focused on in the 
future. On the one hand, the demand for crude oil and raw 
coal in China, as the world’s largest developing country, will 
continue to increase quickly with its rapid economic 
development. However, the pressure on the secure supply of 
crude oil will increase with the current high-demand energy 
consumption situation due to the less-favorable resource 
endowment of petroleum compared with that of natural gas 
in the country. On the other hand, although China has 
progressed in terms of renewable energy utilization 
technologies in recent years, issues such as large-scale 
construction challenges, unbalanced development, and an 
irrational energy consumption structure still exist. 
Nevertheless, these problems insignificantly impact energy 
competitiveness. 

Pertaining to industries with high energy consumption, 
the ranking of the industrial scale of caustic soda dropped 
from 4th to 15th, that of the industrial scale of synthetic 
ammonia decreased from 6th to 16th, and the proportion 
ranking of the construction industry declined from 4th to 
17th. This finding indicates that China has achieved 
remarkable results in the low-carbon development of 
industries with high energy consumption in recent years. 
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Supporting advanced production capacity while phasing out 
or upgrading outdated capacity is needed to leverage high-
quality energy development and facilitate the modernization 
of China. Other factors, including the per capita disposable 
income of urban residents, the number of private cars per 
100 urban households, the total supply of liquefied 
petroleum gas in urban areas, and the number of 
refrigerators per 100 rural households, exhibited fluctuations. 
However, they experienced minimal changes in their overall 
importance. 
 
 
6. Conclusion 
 
6.1 Main findings 
The objective entropy weight method is employed to 
quantitatively assess China’s energy competitiveness from 
1980 to 2020 based on the conceptual definition of China’s 
energy competitiveness. In addition, the random forest 
algorithm is utilized to conduct an in-depth analysis of its 
development process and key influencing factors. The 
following conclusions are drawn. (1) China’s energy 
competitiveness exhibits an overall upward trend. According 
to its distribution characteristics, it is categorized into three 
historical stages: the “slow growth period,” the “plateau 
period,” and the “rapid expansion period.” (2) In the 
development of China’s energy competitiveness, factors 
such as technological progress, residents’ traditional 
lifestyles, energy production, and residents’ new forms of 
consumption exert relatively large marginal impacts. (3) The 
importance of each key influencing factor varies across 
different stages, which results in distinct temporal variation 
patterns and nonlinear response relationships. 
 
6.2 Managerial implications 
This study offers the following managerial insights for 
enhancing energy competitiveness: 

Fossil energy consumption should be strictly regulated, 
and the high-quality development of clean energy needs to 
be promoted. First, we should prioritize the high-quality 
development of clean energy sources, such as natural gas. 
We should also actively promote the strategic adjustment 
and optimization of industrial, energy, and transportation 
structures to facilitate the clean and low-carbon 
transformation in industries such as construction, 
transportation, and others. Second, we should focus on 
controlling fossil energy consumption and gradually 
transition to a dual-control system that addresses total 
carbon emissions and intensity. Third, we should accelerate 
the research, development, and application of energy-saving 
and emission-reduction technologies; advocate for green 
consumption; and promote the adoption of green and low-
carbon production practices and lifestyles. These measures 
are essential for reconciling economic development and 
carbon reduction goals, systematically advancing efforts to 
peak carbon emissions, and effectively implementing the 
carbon neutrality action plan. 

Technological progress and green transformation should 
be promoted while addressing residents’ emerging 
consumption needs. First, we should consider the structural 
changes in the effect of technological progress on energy 
competitiveness, as well as its threshold effects. 
Technological progress and innovation tend to favor clean 

energy over fossil energy, and the economic and 
environmental benefits derived from advancements in clean 
energy technologies are greater. Therefore, the government 
should actively promote the transition from traditional 
industries and economic development models to emerging 
industries and green, low-carbon development models. At 
the same time, given that China’s energy consumption 
structure remains dominated by fossil fuels and its electricity 
generation relies primarily on thermal power, policies such 
as “electricity substitution” and “clean energy substitution” 
should continue to be implemented in the long term to 
facilitate the transition of the energy consumption structure. 
This transition will help achieve a diversified and 
coordinated transformation of the energy system and 
establish a supply framework in which multiple energy 
sources complement each other. Second, the “factorial 
energy reduction effect” associated with the green 
transformation of industries with high energy intensity and 
its implications for energy competitiveness need to be 
considered. The transformation and upgrading of industries 
with high energy intensity not only generate economic 
benefits for the industries themselves but also create broad 
benefits for consumers and society. Thus, they contribute to 
the achievement of dual carbon goals. Third, the impact of 
residents’ new forms of consumption on energy 
competitiveness should not be neglected. The growing 
demand for emerging consumption serves as an intrinsic 
driver for regional technological innovation, energy 
efficiency, and cost reduction. Fourth, the role of non-fossil 
energy in enhancing future energy competitiveness should 
be given due consideration. The proportion of non-fossil 
energy in China’s energy consumption structure has 
remained low in recent years. Efforts should be made to 
accelerate the optimization of the energy structure, reduce 
dependence on fossil fuels, and vigorously develop 
renewable energy sources for advancing the goal of 
ecological civilization. 
 
6.3 Research limitations and future directions 
Although this study considers various factors as thoroughly 
as possible, certain unavoidable limitations persist due to the 
lack of research resources and level. First, this study 
identifies the key factors influencing China’s energy 
competitiveness, but it may fail to fully consider the 
interactions among these factors. Future research could 
develop a more dynamic model to better capture these 
interactions. Second, the entropy weight method used in this 
study is objective. However, it may not fully capture the 
complexities and uncertainties involved in measuring energy 
competitiveness. Subsequent investigations could explore 
more advanced models and methods, such as machine 
learning algorithms, to enhance the accuracy and reliability 
of energy competitiveness assessment. 
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