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Abstract 
 

Traditional deep learning methods have been widely used in automatic feature extraction and sleep discrimination. 
However, these methods need excessive computing resources in time and space, which severely limits their direct 
deployment and application in resource-constrained edge devices. In order to significantly reduce the size and complexity 
of the model, this study proposed an innovative sleep discrimination method-based graph retrieval-augmented generation 
(GraphRAG) using multi-strategy adaptive reinforcement reward learning and multilevel distillation pruning (i.e., 
RDLG). First, sleep-related data were constructed into a graph structure with GraphRAG technology based on prior 
knowledge or automatic learning between different data signals. Second, the adaptive strategy of reinforcement reward 
learning was used to approximate the true value. Third, the importance of model nodes or edges was determined, and a 
multilevel distillation pruning operation was performed on the sleep model. Lastly, detailed experimental tests were 
conducted on the polysomnography data set to verify the effectiveness of the RDLG model. Results demonstrate that, (1) 
the model shows significant performance advantages in sleep discrimination tasks. For the prediction results of the 
experiment for the group aged 20–50, the accuracy of this model is about 0.8, which is higher than that of other models at 
0.6. (2) This model can effectively reduce complexity. The parameter of the model is in the order of 103, which is much 
lower than those of other models. (3) The model’s adaptive multi-strategy reinforcement reward learning converges faster. 
This study is of practical significance for improving the accuracy of sleep recognition, greatly reducing model size, 
computational complexity, and resource consumption, and promoting the widespread application of sleep recognition 
technology on edge devices. 
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1. Introduction 
 
As a common health problem worldwide, sleep disorders 
cover a wide range of fields, including insomnia, 
hypersomnia, and sleep apnea syndrome. These disorders 
not only severely affect patients’ quality of life but may also 
trigger a range of other health problems, such as 
cardiovascular disease, reduced immune function, and 
memory loss. Therefore, accurate diagnosis of sleep 
disorders is particularly critical. With the advancement of 
medical technology and bioinformatics, more studies have 
been focusing on how to use advanced algorithms and 
technologies to improve the diagnostic accuracy of sleep 
disorders. Traditional sleep identification methods are 
mainly based on polysomnography (PSG) data and use 
artificial feature extraction and classifiers (e.g., decision 
trees and SVM) to identify sleep states. Silva et al. [1] 
developed a model based on recurrent neural network (RNN) 
to extract sleep-related features by combining data from 
accelerometers and photoplethysmography sensors, 
achieving real-time monitoring of healthy people and sleep 
apnea patients. 

However, with the development of sleep disorder 
identification technology, sleep models have been evolving 
toward multimodality and low complexity, and the accuracy 

and computational efficiency have increased. While the 
performance in accurate discrimination of sleep models is 
improving, their computing resource consumption is also 
increasing. Deep learning methods are often used in the 
design process. Their large number of parameters and graph 
structure data design factors make the model highly complex, 
which brings huge challenges to the study of sleep 
discrimination models. 

Scholars have conducted numerous studies of sleep 
discrimination methods [2-4]. However, problems such as 
high model complexity and low robustness remain. 
Therefore, how to achieve accurate feature extraction and 
model optimization, improve the interpretability and 
generalization ability of the model while reducing the 
burden on computing resources, and achieve efficient and 
robust sleep discrimination is a key issue that needs to be 
solved urgently. 

Therefore, this study proposed an innovative sleep 
discrimination method-based graph retrieval-augmented 
generation (GraphRAG) using multi-strategy adaptive 
reinforcement reward learning and multilevel distillation 
pruning (i.e., RDLG). This method aims to improve the 
accuracy and efficiency of sleep discrimination tasks. 
Multilevel distillation pruning technology is used to reduce 
model redundancy and improve generalization capabilities 
by constructing the RDLG model structure, combined with 
the multi-strategy adaptive reinforcement reward learning 
mechanism to optimize the model decision-making process. 
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2. State of the art  
 
Traditional sleep discrimination methods are mainly based 
on PSG data, which use deep learning to extract artificial 
features and identify sleep states. However, the excessive 
model parameters and complex training processes cause 
challenges in sleep model prediction. Signal preprocessing 
and feature extraction are key steps in traditional sleep 
discrimination methods. The half-wave method piecewise 
linear data reduction technique proposed by Yash [5] 
reduced signal complexity by simplifying the 
electroencephalogram (EEG) signal into a piecewise linear 
form while retaining key features of sleep stages. However, 
this method lost some subtle but important signal features, 
especially when processing high-frequency or low-
amplitude signals, which led to incomplete feature 
information. In addition, this method had shortcomings in 
processing graph-structured data and was difficult to be 
directly applied to resource-constrained edge devices. Erdem 
Tuncer et al. presented a wavelet transform and feature 
extraction algorithm. In the feature extraction stage, dynamic 
time warping and medi an frequency features were 
obtained from electrocardiogram (ECG) data through 
wavelet transform. This method could effectively extract the 
frequency and time characteristics of the signal, but the basis 
function and parameter selection of the wavelet transform 
were complex. Moreover, the feature extraction process was 
time consuming, affecting the real-time performance of the 
algorithm. Xiao Shuyuan presented an improved K-means 
clustering algorithm [7]. This algorithm aimed to solve the 
problem that the original K-means clustering algorithm was 
sensitive to the initial cluster center and outliers. It combined 
the density idea to optimize the selection of the initial center 
and updated the center through the “3σ rule.” This method 
performed well in feature extraction and clustering stages 
and could effectively improve the accuracy and robustness 
of sleep staging. However, K-means clustering had strong 
assumptions about the data distribution shape and could not 
work well for nonspherical distributed data. The 
convergence speed and results of the algorithm also 
depended on the choice of initial parameters. Liu Zhiyong [8] 
designed a sequence connectivity analysis feature parameter 
extraction algorithm. Feature parameters such as the slope of 
the connectivity distribution and the mean value of the 
connectivity distance were extracted, and the least squares 
method was used for training and learning. From the 
perspective of signal connectivity, this algorithm provided a 
new viewpoint for feature extraction of EEG signals and was 
suitable for feature analysis of complex signals. However, 
this algorithm extracted considerable feature parameters, 
which led to feature redundancy and increased 
computational complexity, and the least squares method 
could not be flexible enough when processing nonlinear data, 
affecting the generalization ability of the model. 

In recent years, with the advancement of artificial 
intelligence technology, scholars have tried to identify sleep 
on the basis of deep learning algorithms. Garcia-Vicente 
developed the Sleep ECG-Net interpretable deep learning 
method [9], which combined CNN and RNN to train ECG 
signals to directly assess obstructive sleep apnea (OSA) 
severity in high-risk children. Although this method could 
handle time series data, the interpretability of deep learning 
models was still a challenge, the training of the model 
required a large amount of annotated data, and the training 
process could be time consuming. Jiménez-García et al. [10] 
constructed a CNN-based deep learning architecture. AF and 

 signals were analyzed using CNN to assess the 
severity of OSA in children. This algorithm simplified the 
diagnosis process through deep learning and improved the 
accuracy and efficiency of diagnosis. However, CNN had 
strict requirements on the size and format of input data, the 
model’s generalization ability was limited by data diversity, 
and its adaptability to small-sample data sets was poor. Shao 
Hengyi [11] presented an unsupervised domain adaptation 
algorithm that integrated class rebalancing and semi-
supervised learning. A deep learning automatic sleep staging 
algorithm based on electroencephalography introduced a 
balanced loss function to alleviate the data imbalance 
problem. This algorithm improved the performance of the 
model on imbalanced data sets through semi-supervised 
learning and class-rebalancing strategies. However, the 
performance of semi-supervised learning was highly 
dependent on the quality of a small amount of annotated data, 
and the class-rebalancing strategy could not work well on 
some extreme imbalanced data sets. Tian Yunzhi [12] 
established a stochastic deep residual network (TL-
SDResNet) based on transfer learning, which used single-
channel EEG signals, transfer learning, and stochastic deep 
residual networks for sleep staging, combined with 
Butterworth filtering and continuous wavelet transform for 
preprocessing. This algorithm improved the generalization 
ability of the model through transfer learning, but the 
performance of transfer learning depended on the similarity 
between the source and target domains. The training process 
of the random deep residual network was also relatively 
complex and could lead to overfitting. Jin Zheng designed a 
hybrid attention sequential network [13], which replaced the 
traditional CNN with RNN. The intra-segment temporal 
attention and channel attention mechanisms were combined 
to achieve the fusion of intra-segment and channel 
correlation features of the signal. This method could 
effectively extract the temporal features of PSG, but it had 
high complexity, long training and inference time, and 
limited interpretability of the attention mechanism, making it 
difficult to intuitively understand the decision-making 
process of the model. Silva proposed an RNN-based model 
[1], which extracted sleep-input features from accelerometer 
and photoplethysmography sensor data. The model was used 
for comparative monitoring of healthy people and sleep 
apnea people to predict sleep stages in intervals. Although 
this model could handle time series data, the training process 
of RNNs was complicated and prone to overfitting. 

In addition, scholars have adopted algorithms based on 
machine learning. Zeinab et al. [14] suggested the MLP 
algorithm, which used a multilayer perception neural 
network combined with a back propagation algorithm to 
classify sleep apnea. This method improved the accuracy of 
the network based on optimization algorithms, but it was 
prone to falling into local optima and sensitive to the 
selection of hyper parameters and required high 
computational costs. Uddin et al. developed an airflow (AF) 
signal peak amplitude encoding algorithm [15]. Apnea 
events were detected by encoding each sample of the peak 
amplitude of the AF signal. This algorithm used a simple 
signal processing method to achieve efficient event detection, 
but it relied on the peak amplitude of the signal and was 
sensitive to noise interference. Furthermore, the encoding 
process might lose some important timing information, 
affecting the diagnosis accuracy. Ye established an XGBoost 
diagnostic model [16]. The OSA diagnostic model 
established based on the XGBoost algorithm verified the 
performance of the model through various classification 
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ability evaluation indicators. This method took advantage of 
the efficiency and scalability of XGBoost to provide a 
reliable machine learning solution for OSA diagnosis. 
However, XGBoost had high requirements for data 
preprocessing and was sensitive to outliers, which could 
affect the robustness of the model. Sheta established an 
efficient classification framework [17]. The performance of 
various machine learning classifiers was evaluated using 
feature selection schemes based on metaheuristic algorithms 
and fixed and adaptive learning methods to identify the most 
suitable classifier for the collected data. This method 
improved the accuracy of the model by optimizing feature 
selection and classifier performance, but it had high 
computational complexity and required excessive data 
preprocessing. Wang Qi proposed a semi-supervised sleep 
staging algorithm [18]. On the basis of EEG signals, an 
improved convolutional encoder–decoder and a GAN were 
used to construct a shallow feature extraction network. With 
the hard swish activation function, model convergence was 
accelerated, and a weighted cross-entropy loss function was 
used to improve classification accuracy. This algorithm 
provided an efficient and accurate solution for sleep staging 
through semi-supervised learning and the improved network 
architecture. However, the performance of semi-supervised 
learning was highly dependent on the quality of a small 
amount of annotated data, and the weighted cross-entropy 
loss function could not work well on some extremely 
imbalanced data sets. 

The above studies have made significant progress in the 
field of sleep discrimination, but the existing methods still 
have shortcomings in many aspects. First, although 
algorithms based on signal preprocessing and feature 
extraction can effectively reduce the amount of data, they 
are prone to losing key signal features and have limitations 
in processing graph-structured data and resource-limited 
edge devices. Second, although algorithms based on deep 
learning improve the accuracy and efficiency of diagnosis, 
the model has poor interpretability, complex training process, 
and high demand for annotated data, making it difficult to 
adapt to small-sample data sets. In addition, although 
machine learning-based algorithms optimize classification 
performance, they are prone to falling into local optima, 
sensitive to hyper parameters, and not robust enough to 
noise and outliers. The proposed GraphRAG-based sleep 
discrimination method using multi-strategy adaptive 
reinforcement reward learning and multilevel distillation 
pruning effectively solves the shortcomings of existing 
methods by optimizing feature extraction, model training, 
and model structure. This method not only improves the 
interpretability and generalization ability of the model but 
also reduces the spatiotemporal overhead of computing 
resources, making it highly applicable to resource-
constrained edge devices. Moreover, through graph structure 
data processing optimization, the RDLG model can 
efficiently handle complex data and improve the adaptability 
and robustness of the model. These improvements provide 
new ideas and methods for accurate diagnosis of sleep 
disorders. 

The remainder of this study is structured as follows. 
Section 3 presents the GraphRAG sleep discrimination 
method based on multi-strategy adaptive reinforcement 
reward learning and multilevel distillation pruning (i.e., 
RDLG). Section 4 validates the effectiveness of RDLG 
technology and conducts detailed experimental tests on 
different models and data sets. Section 5 summarizes this 
study. RDLG shows obvious advantages in performance 

optimization and recognition accuracy. It can significantly 
reduce model complexity and the amount of calculation 
parameters while ensuring high recognition accuracy. 
 
 
3. Methodology  
 
3.1 Model architecture 
(1) RDLG graph construction 
Sleep-related data are constructed into a graph structure 
 

                                         (1) 
 

Where the node set contains multiple types of nodes, such 
as EEG signal nodes, ECG signal nodes, electromyogram 
(EMG) signal nodes, and nodes representing sleep stages in 
different frequency bands. The edge set represents the 
relationships between nodes. These relationships can be 
automatically learned on the basis of prior knowledge, such 
as the correlation between physiological signals and the 
connection between different signals and sleep stages, or 
data-driven methods. 

 
(2) Multi-strategy adaptive reinforcement reward learning 
module 

State space: State space , , represents the 
internal state of the model at a certain moment in the process 
of identifying the sleep state. It includes the current feature 
representation of the graph structure data and processed 
node information. 

Action space: Action space contains the operations 
that the model can take on the graph, such as selecting the 
next node to be processed, adjusting the connection weights 
between nodes, and updating node characteristics. 

Reward function: The reward function  is defined 
in accordance with the effect of the model's action on the 
sleep discrimination result in the state. If the action can 
improve the accuracy of sleep discrimination (e.g., make the 
sleep stage predicted closer to the true value), a positive 
reward will be given; otherwise, a negative reward will be 
given. A simple form of the reward function is given below: 
 

      (2) 

 
           

Where and are the values of positive and negative 
rewards, respectively. and are the 
sleep discrimination accuracy before and after executing the 
action , respectively. 
 
(3) Adaptive strategy 

The adaptive strategy selects actions  on the basis of 
the current state . This strategy adopts a multi-strategy 
hybrid approach, such as combining a value function-based 
strategy and a policy gradient-based strategy. The value 
function-based strategy selects actions on the basis of the 
state-value function and aims to maximize long-term 
rewards. The gradient-based strategy directly optimizes the 
policy function . During the training process, the 
adaptive strategy is continuously adjusted to adapt to 
different sleep data distributions. Value function update: The 
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update formula of the value function adopts the time 
difference learning method, i.e., 

 
              (3) 

 
Where is the learning rate, is the discount factor, and 

is the next state after executing the action . 
 
(4) Multilevel distillation pruning module 

Teacher–student model structure: A teacher model and a 
student model are constructed. The teacher model is a 
relatively complex RDLG model with high accuracy but 
possible redundancy. The student model is a simplified 
RDLG model designed to improve performance and reduce 
model complexity by distilling the knowledge of the teacher 
model. 

Distillation loss function: The distillation loss function is 
defined as 

 
            (4) 

 
Where is the KL divergence,  is the 
probability distribution of the teacher model’s input -
predicted output , and is the probability distribution 
of the student model for input . Pruning operation: Pruning 
operations are performed during the distillation process. In 
accordance with the importance of nodes or edges to the 
sleep discrimination results, the nodes or edges with low 
importance are removed. The measurement of importance 
can be based on methods such as gradient information or 
information gain. For example, for node , its 
importance can be measured by calculating the gradient 
of the node features relative to the change in the 
discriminant loss, i.e.,  
 

                                  (5) 

 
Where is the sleep discrimination loss, and is 
the feature vector of node . 

 
3.2 Model training 
(1) Pretrained teacher model 
The teacher model is pretrained on a large-scale sleep data 
set. The supervised learning method is used during the 
pretraining process to minimize the cross-entropy loss 
between the predicted and real sleep stages, i.e.,  
 

                        (6) 

 
Where is the number of samples, is the real sleep stage 
label of the th sample, and is the sleep stage probability 
distribution of the th sample predicted by the teacher model. 
 
(2) Distillation pruning student model training 

After the teacher model pretraining, the student model is 
trained. The loss function of the student model consists of 
two parts: supervised learning loss and distillation loss. The 
supervised learning loss aims to enable the student model to 

learn real labels directly, and the distillation loss enables the 
student model to learn the knowledge of the teacher model. 
The total loss function is  

 
                      (7) 

 
Where is the weight coefficient that balances the 
supervised learning loss and the distillation loss. During the 
training process, pruning operations are performed on the 
basis of the importance of nodes or edges to reduce model 
complexity. 

 
 

4. Result Analysis and Discussion 
 

4.1 Experimental data 
The publicly available PSG data set, containing sleep data 
from subjects of different ages, genders, and health 
conditions, is used. The data include various physiological 
signals, such as EEG, ECG, and EMG signals, as well as 
corresponding expert-labeled sleep stages (awake, light sleep, 
deep sleep, rapid eye movement sleep, etc.). 

Data preprocessing: Preprocessing operations, such as 
filtering and denoising, are performed on physiological 
signals. For example, a band-pass filter is used on the EEG 
signal to remove low- and high-frequency noise, and all 
physiological signals are normalized so that the value range 
is between [0,1] to improve the training effect of the model. 

 
4.2 Experimental setup 
For the RDLG model, the number of layers of the graph 
neural network is set to 3, and the hidden dimension of the 
nodes in each layer is 128. The learning rate in 
reinforcement learning is α=0.001, and the discount factor is 
γ=0.9. The weight coefficient is β=0.5 in the distillation 
process. In the pruning operation, the importance threshold 
is set to 0.1, i.e., nodes or edges with an importance lower 
than 0.1 are pruned. For comparison models, the traditional 
sleep discrimination model based on SVM, the simple GNN 
model (without reinforcement learning and distillation 
pruning), and the LSTM model based on deep learning are 
selected. 
 
4.3 Experimental results 
Fig. 1 shows the overall sleep discrimination accuracy of 
different age groups. The abscissa represents the three age 
groups of 20–30 years old, 31–40 years old, and 41–50 years 
old, and the ordinate is the accuracy rate. The accuracy of 
the RDLG model in the 20–30 age group is about 0.8, and 
the accuracy in the 31–40 and 41–50 age groups is also close 
to 0.8. The accuracy of the SVM, GNN, and LSTM models 
in all age groups is lower than that of the RDLG model, 
mostly around 0.6. That is, the RDLG model has good 
adaptability to the sleep state discrimination of people of 
different age groups. It can effectively extract the 
characteristics of sleep data of different age groups for 
accurate judgment and is less affected by age factors. 

Fig. 2 shows the overall sleep discrimination accuracy 
for different genders, where the abscissa indicates the male 
and female gender, and the ordinate is the accuracy. The 
RDLG model has an accuracy of around 0.8 in men and 
women, and that of the SVM, GNN, and LSTM models is 
around 0.6. This finding demonstrates that the RDLG model 
has stable performance in different-gender sleep 
discrimination, i.e., gender differences have minimal effect 
on its performance. 
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Fig. 1. Overall sleep discrimination accuracy rates for different age 
groups 

 
Fig. 2. Overall sleep discrimination accuracy rates for different genders 
 

Fig.3 shows the accuracy of different models under 
different data set sizes, where the abscissa denotes the small 
data set (100 samples), the medium data set (500 samples), 
and the large data set (1000 samples), and the ordinate is the 
accuracy. The accuracy of the RDLG model is about 0.6 on 
small data sets, about 0.8 on medium data sets, and about 0.8 
on large data sets. The accuracy of SVM, GNN, and LSTM 
models is about 0.4 on small data sets and about 0.6 on 
medium data sets, and the improvement is smaller on large 
data sets. This result reflects the strong adaptability of the 
RDLG model to data of different sizes. As the data set 
increases, its advantages strengthen. It can use more data to 
learn more abundant features, thereby improving the 
discrimination accuracy, whereas other models have a 
relatively weak response to the increase in data volume. 

Fig. 4 compares the parameter amounts of different 
models, indicating level for SVM, level for GNN, 

 level for LSTM, and level for RDLG. Although the 
proposed RDLG model has a high accuracy, the number of 
parameters is equivalent to that of the SVM model and much 
lower than that of the simple GNN and LSTM models. This 
finding shows that the multilevel distillation pruning 
technology effectively reduces the model redundancy and 
complexity. 

Fig.5 shows the convergence speed of the reinforcement 
learning strategy in the RDLG model. The abscissa 
represents the three strategy types, namely, value function-
based strategy, policy gradient-based strategy, and multi-
strategy hybrid approach, and the ordinate is the 
convergence number. The convergence number of the multi-

strategy hybrid approach is lowest, reaching about 40, the 
convergence number of the value function-based strategy is 
about 80, and the convergence number of the strategy 
gradient-based strategy is about 100. This result shows that 
the multi-strategy hybrid approach can enable the model to 
find a better decision-making strategy faster, speed up the 
convergence of the training process, and improve the 
training efficiency of the model. 

 
Fig. 3. Accuracy rates of different models under varying data set sizes 

 
Fig. 4. Comparison of parameters of different models 
 

 

 
Fig. 5. Convergence speed of the reinforcement learning strategy in the 
RDLG model 
 

In Fig. 6, the abscissa is the number of graph neural 
network layers (1.00–3.00), and the ordinate is the accuracy. 
When the graph neural network has three layers, the model 
accuracy is about 0.84. Within a certain range, as the number 

!"# !"#
!"# !"#



Wei Zhao and Rongsheng Zhao/Journal of Engineering Science and Technology Review 18 (1) (2025) 227 - 234 

 232 

of layers increases, the accuracy shows an upward trend. 
However, after a certain number of layers, overfitting or 
performance degradation may occur. Thus, the number of 
graph neural network layers has a significant effect on model 
performance. The three-layer setting can better balance 
model complexity and performance under the current 
experimental conditions and provide a reference for 
determining the optimal number of graph neural network 
layers in the model. 

 
Fig. 6. Performance of graph neural networks with different layers in 
the RDLG model 
 

In Fig. 7, the abscissa is the reward value (−4–4), and the 
ordinate is the frequency or frequency correlation. Reward 
values are distributed within a certain range, either positive 
or negative. For example, reward values are mainly spread in 
the range 1–3. The increase in positive rewards means that 
the model actions are more conducive to improving the 
accuracy of sleep discrimination. Through the distribution of 
reward values, we can understand the effect of the model’s 
actions on the sleep discrimination results during the training 
process and evaluate the effectiveness of the reinforcement 
learning strategy and the learning status of the model. 

 

 
Fig. 7. Reward value distribution of the reinforcement learning module 
in the RDLG model 
 

In Fig. 8, the abscissa is the state before and after 
pruning, and the ordinate is the number of model parameters. 
The number of model parameters before pruning is about 
2000, which then decreases to about 1400 after pruning. 
That is, the multilevel distillation pruning technology 
effectively reduces the complexity of the model and 
redundant information in the model. Based on other charts, 

while the complexity is reduced, the accuracy of the model 
is not significantly negatively affected; instead, it improves, 
indicating that this technology enhances not only the 
efficiency of model operation but also the generalization 
ability of the model. 

 

 
Fig. 8. Complexity of the RDLG model before and after pruning by the 
distillation pruning module 
 

In Fig. 9, the abscissa is the learning rate (0.001, 0.005, 
0.01), and the ordinate is the accuracy. When the learning 
rate is 0.001, the model accuracy is about 0.85; when the 
learning rate is 0.005, the accuracy is about 0.86; when the 
learning rate is 0.01, the accuracy is about 0.84. Accordingly, 
hyper parameters exert considerable effect on model 
performance. Different learning rate settings lead to changes 
in model accuracy. Reasonable selection of hyper 
parameters can optimize the effect of the model, providing 
an experimental basis for further adjusting model hyper 
parameters and improving model performance. 

 
Fig. 9. Accuracy rate of the RDLG model under different hyper 
parameter combinations 
 

As shown in Fig. 10, the RDLG model has a high 
accuracy, and only two samples are misclassified (category 0 
is predicted as category 1, and category 1 is predicted as 
category 0). This result indicates that the RDLG model 
performs better in handling this classification task, with high 
precision and recall. 

The accuracy of other models is relatively low, with 
four samples being misclassified (categories 0 and 1 are mis-
predicted twice each). That is, other models perform worse 
than the RDLG model in this classification task and have 
higher error rates. 
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The superiority of the RDLG model is due to the multi-
strategy adaptive reinforcement reward learning and 
multilevel distillation pruning technology it adopts, which 
helps the model better learn the characteristics of the data, 
thereby improving classification performance. 

 
Fig. 10. Comparison of model performance 
 

Fig. 11 shows the correlation between physiological 
indicators such as heart rate and EEG θ frequency band. The 
correlation between the EEG θ frequency band and a certain 
indicator 1 may reach about 0.6, whereas the correlation 
between heart rate and some indicators is weak, about 0.3. 
Through the correlation matrix, we can understand the 
correlation degree of different physiological indicators in the 
light sleep stage, which provides a basis for selecting 
appropriate physiological characteristics for sleep 
discrimination models and helps understand the relationship 
between sleep physiological mechanisms and model 
discrimination basis, thereby optimizing the model’s ability 
to discriminate light sleep stages. 

 
Fig. 11. Correlation matrix of physiological indicators in the light sleep 
stage 
 
 

5. Conclusions 
 

To explore compression and optimization methods for sleep 
recognition models and significantly reduce the size and 
complexity of the models, this study combined model 
improvement comparison and experimental research while 
retaining the core performance of the original model. The 
GraphRAG-based sleep discrimination method using multi-
strategy adaptive reinforcement reward learning and 
multilevel distillation pruning was analyzed. The following 
conclusions could be drawn:  

(1) The RDLG model shows significant performance 
advantages in sleep discrimination tasks. It is superior to 
traditional methods and other deep learning models in terms 
of accuracy. The RDLG model has an accuracy of about 0.8 
in the 20–30 age group, and the accuracy in the 31–40 and 
41–50 age groups is also close to 0.8. The SVM, GNN, and 
LSTM models have an accuracy of about 0.6, lower than 
that of the RDLG model in all age groups. 

(2) The RDLG model can maintain or enhance the 
recognition accuracy while reducing the number of 
parameters, effectively reduce the complexity of the model, 
and improve the generalization ability. In terms of parameter 
amount, given level for SVM, level for GNN,  

level for LSTM, and level for RDLG, the RDLG model 
is equivalent to the SVM model, far lower than the simple 
GNN and LSTM models. 

(3) The adaptive multi-strategy reinforcement reward 
learning of the RDLG model indicates high convergence 
speed and training efficiency. 

RDLG shows obvious advantages in performance 
optimization, recognition accuracy, computing time, and 
memory usage. While ensuring low model complexity and 
parameter volume, it can significantly reduce the time and 
space cost of calculation, which makes it highly competitive 
in sleep discrimination systems and suitable for running in 
resource-constrained environments. It also improves the 
overall efficiency and performance of the system. Moreover, 
the adaptive multi-strategy reinforcement and reward 
learning hybrid method speeds up the convergence speed of 
the training process and provides a reference for further 
improving the training efficiency of the model. Future study 
can further optimize the reinforcement learning strategy and 
parameters of the model, explore more effective distillation 
pruning methods, and apply the model to more sleep-related 
fields, such as early warning of sleep disorders and 
personalized sleep management. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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