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Abstract 
 

Over the last years, natural hazards are increasing leading to a variety of difficult to solve issues. Yet, manmade disaster 
pose even equal or sometimes even more serious threats. Hence, it is important to study such threats, identify and propose 
measurements in order to deal with them. Actually, dealing with the consequences of chemical weapons agents in man-
made disasters is a complex and challenging task that requires a systematic approach and coordination among various 
parties. To this end, agent-based modeling (ABM) is a useful methodology that can be employed to study and simulate the 
behavior of chemical agents, responders, and affected populations in such cases. ABM is a computational modeling tech-
nique that represents individual agents with specific attributes, behaviors, and interactions within a simulated environment. 
This paper aims to identify risks associated with manmade disasters while it proposes the development of an integrated 
framework to mitigate such disasters, with a primary focus on enhancing the capabilities of Civil Protection Personnel and 
the private sector Safety and Security Personnel. More specifically, the paper focuses on the use of chemical weapons 
agents, which are chemicals deliberately employed to cause harm through their toxic properties. 
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1. Introduction 
 
Natural hazards are increasing over the last decades world-
wide. Despite the fact that they cause serious disasters, we 
should not omit the threats posed by manmade disasters. 
 Manmade disasters have a diverse range of risks, varying 
in severity and consequences, leading to a need for compre-
hensive policies and trained responders. The outbreak of the 
COVID-19 pandemic highlighted societies' vulnerability to 
risks and dangers, emphasizing the importance of resilient 
Civil Protection and Safety and Security Personnel in an ever-
evolving world. 
 This paper aims to identify potential risks associated with 
manmade disasters and the challenges they present. It envi-
sions the development of an integrated framework to mitigate 
such disasters, with a main focus on enhancing the capabili-
ties of Civil Protection Personnel and the private sector Safety 
and Security Personnel. Specifically, the paper focuses on the 
use of chemical weapons agents, which are chemicals that can 
cause harm through their toxic properties. 
 Investing in an autonomous and intelligent approach to 
disaster management, the Internet of Things (IoT) seems as a 
transformative extension of IT technology [2]. The IoT con-
nects devices, services, and even humans, allowing them to 
communicate and make informed decisions. While current 
IoT practices often involve sending data to the Cloud for pro-
cessing, the future IoT will employ Intelligent Agents (IAs) 
that can add autonomy, context awareness, and intelligence at 
the device level. With a projected twenty-nine billion con-
nected devices by the year's end, this shift promises to unlock 

new value and opportunities across various industries, includ-
ing civil protection. 
 The proposed decentralized approach advocates combin-
ing devices with intelligent agents to form an Internet of 
Smart Things. Intelligent Agents serve as a promising tech-
nology, offering an alternative to traditional human-object in-
teractions. Their autonomous representation of people, de-
vices, or services enables them to find applications in various 
domains, including crisis management and green growth. 
 This study introduces a rule-based methodology that em-
powers agents to conduct monitoring, issue warnings, and 
make decisions without requiring human intervention. Com-
bining agent technology with the microservice architecture, 
the methodology fosters modular design and facilitates proper 
information exchange among agents and things. This ap-
proach ensures secure and robust transactions, maximizes in-
teroperability, reusability, and automation, ultimately enhanc-
ing overall efficiency. 
 The subsequent sections of this paper delve into the details 
of the proposed rule-based methodology, exploring its poten-
tial to revolutionize disaster management by leveraging the 
power of autonomous and intelligent IoT-enabled Intelligent 
Agents. This methodology aims to pave the way for a safer 
and more resilient future in the face of manmade disasters by 
providing self-governing and adaptable systems. 
 The rest of the paper is organized as follows: In Section 2 
we review the main categories of the chemical weapons 
agents. In Section 3 we discuss intelligent agents and defeasi-
ble logic. The methodology of our approach, including the 
smart control and decision-making is discussed in Section 4. 
Ultimately, we summarize our conclusions on Section 5. 
 
 
2. Chemical Weapons Agents 
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Chemical weapons agents can be categorized based on their 
chemical composition and the effects they produce. These cat-
egories are recognized under the Chemical Weapons Conven-
tion (CWC), an international treaty that prohibits the develop-
ment, production, stockpiling, and use of chemical weapons. 
The categories are as follows: 
 
2.1 Nerve Agents 
These are highly toxic chemicals that disrupt the normal func-
tioning of the nervous system. They inhibit the activity of ac-
etylcholinesterase, an enzyme that regulates the neurotrans-
mitter acetylcholine. As a result, nerve agents cause a range 
of symptoms, including respiratory distress, convulsions, pa-
ralysis, and ultimately, death. Examples include Sarin (GB), 
Soman (GD), Tabun (GA), and VX. 
 
2.2 Blister Agents (Vesicants) 
Blister Agents (Vesicants): These chemicals cause severe 
skin, eye, and respiratory tract irritation upon contact. They 
can cause large, painful blisters on the skin and severe chem-
ical burns. Examples include Sulfur Mustard (HD), Nitrogen 
Mustard (HN), and Lewisite (L). 
 
2.3 Blood Agents 
Blood agents are toxic chemicals that disrupt the body's abil-
ity to utilize oxygen. They typically act by interfering with 
enzymes involved in cellular respiration, leading to suffoca-
tion. Examples include Hydrogen Cyanide (AC) and Cyano-
gen Chloride (CK). 
 
2.4 Choking Agents (Pulmonary Agents) 
Choking agents are volatile chemicals that cause damage to 
the respiratory system. They irritate the lungs and can lead to 
pulmonary edema, which results in severe breathing difficul-
ties and death. Examples include Chlorine (Cl2) and Phos-
gene (CG). 
 
2.5 Incapacitating Agents 
These agents are designed to temporarily disable individuals 
without causing significant harm or lethality. They can induce 
various physiological and psychological effects, such as seda-
tion, confusion, hallucinations, or paralysis. BZ (3-quinuclidi-
nyl benzilate) is an example of an incapacitating agent. 
 
2.6 Riot Control Agents (Tear Gas) 
While not typically considered lethal chemical weapons, riot 
control agents are still categorized under the CWC. They are 
used for law enforcement purposes and cause irritation of the 
eyes, nose, and throat, leading to tears, coughing, and tempo-
rary incapacitation. Common examples include CS (Ortho-
chlorobenzylidene malononitrile) and CN (Chloroacetophe-
none). 
  
 It is essential to note that the use of chemical weapons is 
strictly prohibited under international law due to their indis-
criminate and inhumane nature. The Chemical Weapons Con-
vention aims to eliminate the production and use of these 
weapons and promote their peaceful and safe destruction. 
 
 
3. Intelligent Agents and Defeasible Logic 
 
Intelligent Agents and Defeasible Logic can be combined in 
order to provide a powerful decision-making and reasoning 
system that enables agents to make autonomous and context-

aware decisions based on incomplete and sometimes conflict-
ing information. Below is discussed how intelligent agents 
and defeasible logic can be combined and used: 
 
3.1 Intelligent Agents 
Intelligent agents are entities that can operate autonomously, 
sense their environment, and take actions to achieve their 
goals. They have the ability to reason, learn from past experi-
ences, and communicate with other agents and entities. These 
agents can be designed to represent human or virtual entities, 
services, or devices in a multi-agent system. [1] 
 
3.2 Defeasible Logic 
Defeasible logic is a nonmonotonic reasoning formalism that 
deals with incomplete and conflicting information. It supports 
the representation of rules that can be defeated and derives 
plausible conclusions from the available information. In de-
feasible logic, a knowledge base consists of facts, strict rules, 
defeasible rules, and defeaters. The superiority relationship 
among rules allows for resolving conflicts and determining 
which rules override others. [4] 
 
3.3 Combining Intelligent Agents and Defeasible Logic 
We can enhance their reasoning capabilities in dynamic and 
uncertain environments by incorporating defeasible logic into 
the decision-making process of intelligent agents. The combi-
nation can be achieved by: 
 
3.3.1 Representing Knowledge as a Defeasible Theory 
The knowledge base of each intelligent agent can be repre-
sented as a defeasible theory (D) consisting of facts (F), strict 
rules (R), and defeasible rules (R) relevant to its domain. Each 
agent can maintain its own defeasible theory, representing its 
beliefs, goals, and reasoning rules. 
 
3.3.2 Handling Incomplete and Conflicting Information 
Intelligent agents often operate in environments where infor-
mation is incomplete or contradictory. Defeasible logic al-
lows agents to reason with such information and derive plau-
sible conclusions. Conflicting rules can be managed using the 
superiority relationship to prioritize certain rules over others. 
 
3.3.3 Real-time Assessment and Decision-making 
Intelligent agents equipped with defeasible logic can perform 
real-time assessment of their environment and make informed 
decisions based on the available information. They can react 
to changes in their surroundings, perceive hazards or risks, 
and take proactive measures to achieve their goals or respond 
to external stimuli. 
 
3.3.4 Communication and Collaboration 
Intelligent agents' communication abilities are vital for coor-
dination and collaboration. Defeasible logic enables agents to 
exchange information, share knowledge, and negotiate based 
on their respective defeasible theories. They can resolve con-
flicts, reach agreements, and collectively make decisions to 
achieve common objectives. 
 
3.3.5 Learning and Adaptation 
Intelligent agents can learn from their past experiences using 
machine learning techniques. Defeasible logic can be inte-
grated into the learning process, allowing agents to refine 
their defeasible theories based on new information and update 
their reasoning rules to adapt to changing environments. 
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3.3.6 Multi-Agent Systems as Virtual Social Communi-
ties 
The combination of intelligent agents and defeasible logic can 
create dynamic multi-agent systems that function as virtual 
social communities. Each agent plays a unique role, com-
municating and interacting with others to achieve individual 
and collective goals. The defeasible reasoning capabilities en-
able agents to collaborate effectively, reason about their ac-
tions and the actions of others, and collectively make deci-
sions. 
 
 In summary, by combining intelligent agents and defeasi-
ble logic, we can create a sophisticated decision-making and 
reasoning framework that empowers agents to operate auton-
omously, reason with incomplete and conflicting information, 
communicate, learn, and adapt in dynamic environments. 
This approach is particularly useful in domains where uncer-
tainty and ambiguity are prevalent, allowing agents to make 
context-aware decisions in real-time. 
 
 
4. Smart Control and Decision-Making  
 
As already discussed, a decision-making mechanism for 
chemical weapons agents can be designed using defeasible 
logic. In this context, we can define the characteristics and 
preferences of each chemical agent, along with a set of rules 
to categorize and assess their potential risks [7][8][9][10]. The 
approach for the different categories of chemical weapons 
agents is presented below: 
 
4.1 Characteristics and Preferences 
Our approach models three main types of system entities; 
namely agents that represent human or virtual entities, ser-
vices and devices. All types of entities are represented as 
agents while microservice architecture was used for the im-
plementation of services and devices, achieving the necessary 
functionalities and reducing the common issue of device han-
dling [4][5][6]. For each chemical weapons agent, we define 
a set of characteristics (C) and preferences (P) that represent 
their chemical composition, effects, and potential risks, (𝐶!"& 
𝑃!# | k,m Î [1, N], x ≡ entity).These characteristics and pref-
erences are assigned weight values to indicate their im-
portance at the range [0, 1]; namely  &  | k,m Î [1, 
N], c ≡ characteristic, p ≡ preference. 
 
4.2 Defeasible Rules 
We use defeasible rules to categorize and assess the risks as-
sociated with each chemical agent. Each rule consists of an-
tecedents (conditions) and consequents (conclusions). The 
rules can be of the strict or defeasible type [11][12]. Examples 
of Defeasible Rule for Nerve Agents (A) and Blister Agents 
(B) are presented below: 
 
Rule A1: nerve_agent(X) -> toxic(X), disrupts_nervous_sys-
tem(X). 
Rule B1: blister_agent(X) -> skin_irritation(X), eye_irrita-
tion(X), respiratory_irritation(X). 
 
4.3 Superiority Relationship 
As different chemical agents may have conflicting rules, we 
establish a superiority relationship (>), which will help deter-
mine which rule prevails in case of conflicts. An example of 
Superiority Relationship is Rule A1 > Rule B1, which indi-
cates that the conclusion of Rule A1 is superior to Rule B1 in 
case of conflicts between nerve agents and blister agents. 

4.4 Assess Chemical Agent Cases 
For each chemical agent case, we evaluate its characteristics 
and preferences based on the defined rules. We can determine 
the risk level and potential effects of each agent, by consider-
ing the weight values and superiority relationship [13][14]. 
An example of Defeasible Rule for Assessing Risk Level is 
the following: 
 
Rule R1: case(X) -> high_risk(X) :- nerve_agent(X), toxic(X), 
disrupts_nervous_system(X), weight(toxic(X), ?w1), 
weight(disrupts_nervous_system(X), ?w2), ?w1 + ?w2 >= 
risk_threshold_high. 
 
 An example of Defeasible Rule for Assessing Potential 
Effects is the following: 
 
Rule R2: case(X) -> severe_effects(X) :- blister_agent(X), 
skin_irritation(X), eye_irritation(X), respiratory_irrita-
tion(X), weight(skin_irritation(X), ?w1), weight(eye_irrita-
tion(X), ?w2), weight(respiratory_irritation(X), ?w3), ?w1 + 
?w2 + ?w3 >= effect_threshold_severe. 
 
4.5 Handle Conflicts and Priorities 
If there are conflicts between different rules in assessing a 
chemical agent case, we use the established superiority rela-
tionship to resolve them. The rule with higher priority prevails 
in determining the risk level or potential effects of the agent. 
An example of Defeater Rule for Prioritization is the follow-
ing: 
 
Rule R3: case(X) -> low_risk(X) :- nerve_agent(X), toxic(X), 
disrupts_nervous_system(X), Rule A1 > Rule R1. 
 
 Hence, we can effectively categorize chemical weapons 
agents and assess their potential risks and effects by employ-
ing this defeasible logic-based decision-making mechanism. 
The system will provide informative messages, warnings, or 
suggestions to users based on the evaluations of each agent 
case. The approach can be extended and refined to include 
more complex rules and considerations for a comprehensive 
decision-making process. 
 
 
5. Example Use Case: Chemical Weapons Detection and 
Response 
 
In a major metropolitan city, a terrorist threat involving the 
use of chemical weapons agents is reported. The city's Civil 
Protection and Safety and Security Personnel need to quickly 
assess the situation, detect the presence of chemical agents, 
and respond effectively to ensure the safety and well-being of 
the population. Using the proposed integrated framework of 
intelligent agents and defeasible logic, the city's disaster man-
agement system is equipped with a network of IoT-enabled 
sensors and devices placed strategically throughout the city. 
These sensors can detect various chemical agents and transmit 
real-time data to the intelligent agents. Below is given briefly 
how the system operates in this scenario: 
 
Sensor Data Collection: IoT-enabled sensors detect the pres-
ence of chemical agents in the environment and gather rele-
vant data, such as the type of agent, concentration levels, and 
geographical locations. 
 

!
"#

!
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Agent Representation: Intelligent agents within the system 
represent various entities, including the sensors, local emer-
gency response teams, and relevant government agencies. 
Each agent maintains its defeasible theory, incorporating 
characteristics and preferences associated with specific chem-
ical agents. 
 
Defeasible Rules Application: Defeasible logic is employed 
to categorize and assess the risks posed by the detected chem-
ical agents. For instance, when the sensors identify nerve 
agents, defeasible rules apply that establish a superiority rela-
tionship between nerve agents and other categories, prioritiz-
ing their assessment. 
 
Risk Assessment: The intelligent agents process the sensor 
data and apply the defeasible rules to evaluate the risks asso-
ciated with each detected chemical agent. The system calcu-
lates the risk level and potential effects of each agent, taking 
into account factors such as toxicity, disruption to the nervous 
system, and potential harm to human health. 
 
Decision-making and Response: Based on the risk assessment 
results, the intelligent agents make context-aware decisions 
regarding the appropriate response. For instance, if a nerve 
agent with a high-risk level is detected in a densely populated 
area, the system triggers an emergency alert, notifies the local 
emergency response teams, and initiates evacuation proce-
dures for affected areas. 
 
Communication and Collaboration: The intelligent agents fa-
cilitate communication and collaboration among different en-
tities. They exchange information with the relevant agencies, 
share the risk assessment results, and collectively decide on 
appropriate measures for containment and neutralization. 
 
Real-time Adaptation: The system continuously monitors the 
environment for changes, allowing intelligent agents to adapt 
their responses based on updated information. For instance, if 
the concentration levels of a detected chemical agent increase 
rapidly, the system can redirect response teams to prioritize 
affected areas. 
 
Learning and Improvement: As the system operates and re-
sponds to different scenarios over time, the intelligent agents 
learn from past experiences using machine learning tech-
niques. They refine their defeasible theories and reasoning 
rules to enhance decision-making capabilities in future inci-
dents. 
 
 The disaster management system in the city can effec-
tively detect and respond to potential chemical weapons 
threats by combining intelligent agents and defeasible logic. 
The autonomous and context-aware decision-making capabil-
ities of the intelligent agents, along with real-time data pro-
cessing and collaboration, enable the city's Civil Protection 
and Safety and Security Personnel to act swiftly and effi-
ciently, mitigating the risks and protecting the population 
from harm. 
 Below are some rule examples for the proposed intelligent 
agent-based system for chemical weapons detection and re-
sponse: 
 

5.1 Defeasible Rules for Categorization 
Rule A1: nerve_agent(X) -> toxic(X), disrupts_nervous_sys-
tem(X). 

Rule A2: blister_agent(X) -> skin_irritation(X), eye_irrita-
tion(X), respiratory_irritation(X). 
Rule A3: blood_agent(X) -> disrupts_oxygen_utilization(X). 
Rule A4: choking_agent(X) -> respiratory_damage(X). 
Rule A5: incapacitating_agent(X) -> physiological_ef-
fects(X). 
Rule A6: riot_control_agent(X) -> irritates_senses(X). 
 
5.2 Superiority Relationship for Conflict Resolution 
Rule A1 > Rule A2 
Rule A1 > Rule A3 
Rule A1 > Rule A4 
Rule A1 > Rule A5 
Rule A1 > Rule A6 
Rule A2 > Rule A3 
Rule A2 > Rule A4 
Rule A2 > Rule A5 
Rule A2 > Rule A6 
Rule A3 > Rule A4 
Rule A3 > Rule A5 
Rule A3 > Rule A6 
Rule A4 > Rule A5 
Rule A4 > Rule A6 
Rule A5 > Rule A6 
 
5.3 Defeasible Rules for Risk Assessment 
Rule R1: case(X) -> high_risk(X) :- nerve_agent(X), toxic(X), 
disrupts_nervous_system(X), weight(toxic(X), ?w1), 
weight(disrupts_nervous_system(X), ?w2), ?w1 + ?w2 >= 
risk_threshold_high. 
Rule R2: case(X) -> moderate_risk(X) :- blister_agent(X), 
skin_irritation(X), eye_irritation(X), respiratory_irrita-
tion(X), weight(skin_irritation(X), ?w1), weight(eye_irrita-
tion(X), ?w2), weight(respiratory_irritation(X), ?w3), ?w1 + 
?w2 + ?w3 >= risk_threshold_moderate. 
Rule R3: case(X) -> low_risk(X) :- blood_agent(X), dis-
rupts_oxygen_utilization(X), weight(disrupts_oxygen_utili-
zation(X), ?w1), ?w1 >= risk_threshold_low. 
Rule R4: case(X) -> low_risk(X) :- choking_agent(X), respir-
atory_damage(X), weight(respiratory_damage(X), ?w1), 
?w1 >= risk_threshold_low. 
Rule R5: case(X) -> low_risk(X) :- incapacitating_agent(X), 
physiological_effects(X), weight(physiological_effects(X), 
?w1), ?w1 >= risk_threshold_low. 
Rule R6: case(X) -> low_risk(X) :- riot_control_agent(X), ir-
ritates_senses(X), weight(irritates_senses(X), ?w1), ?w1 >= 
risk_threshold_low. 
 
5.4 Defeater Rule for Prioritization 
Rule R7: case(X) -> low_risk(X) :- nerve_agent(X), toxic(X), 
disrupts_nervous_system(X), Rule A1 > Rule R1. 
 
5.5 Defeasible Rule for Response 
Rule RESP1: case(X) -> initiate_evacuation(X) :- 
high_risk(X). 
Rule RESP2: case(X) -> deploy_hazmat_team(X) :- 
high_risk(X). 
Rule RESP3: case(X) -> notify_health_authorities(X) :- 
high_risk(X). 
Rule RESP4: case(X) -> monitor_concentration_levels(X) :- 
moderate_risk(X). 
 
 In this example, the system evaluates the detected chemi-
cal agent cases (X) using the defeasible rules for categoriza-
tion and risk assessment. The system resolves conflicts be-
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tween different rules using the established superiority rela-
tionship. Depending on the risk level, the system triggers spe-
cific responses, such as initiating evacuation, deploying haz-
mat teams, notifying health authorities, or monitoring concen-
tration levels. Please note that the actual rule definitions, 
weight values, and risk thresholds would be determined based 
on domain-specific knowledge and expert input to ensure the 
system's accuracy and effectiveness in real-world scenarios. 
 
 
6. Impact on Agriculture 
 
So far, it is clear that chemical weapons agents could seriously 
affect communities. Yet, chemical weapons agents can also 
pose significant threats to agricultural systems. Crop damage 
can manifest as leaf scorch, wilting, and discoloration, ulti-
mately leading to significant yield losses, economic losses for 
farmers or even complete crop failure while soil contamina-
tion could turn land unusable for years. Livestock contamina-
tion through contaminated pastures or water sources can re-
sult in health issues, reduced productivity, and increased mor-
tality rates. Furthermore, soil contamination can degrade soil 
fertility and microbial activity, impacting long-term agricul-
tural productivity. As a result, agricultural disruption can af-
fect food security and human health, leading among others to 
shortages and price increases. Hence, in order to address these 
challenges, we incorporate into our methodology agricultural-
specific agents, namely agents that represent farms, livestock, 
and crops. The aim of these agents is to identify agricultural 
vulnerabilities to different chemical agents. Of course, we 
need sensors established in agricultural areas, such as fields, 
in order to receive real-time information on environmental 
conditions and potential contamination levels. To this end, the 
proposed framework considers considering factors such as 
crop type, livestock species, and local environmental condi-
tions. Additionally, the intelligent agents can incorporate 
knowledge, by adding the appropriated rules in their 
knowledge base, agricultural mitigation strategies, such as de-
contamination procedures, crop protection measures, and 
livestock safety protocols. More specifically, intelligent 
agents will be able to monitor environmental conditions, as-
sess the vulnerability of specific crops and livestock to de-
tected agents, and predict potential impacts on agricultural 
production. Moreover, they could also communicate with 
other agents, such as those representing emergency respond-
ers or government agencies, to coordinate responses and min-
imize agricultural losses. 
 A use case depicting the added value of the methodology 
in the agriculture sector is presented below. In this simulation 
scenario, a farmer observes unusual symptoms in his wheat 
crop, namely wilting, discoloration, and stunted growth. The 
farmer suspects a potential chemical exposure. Meanwhile, 
supposing that there is a real-time monitoring based on sen-
sors, the agent-based system detects the issue. More specifi-
cally, the agricultural monitoring agent receives sensor data 
from the farm, including soil moisture levels, temperature, 
and recent weather patterns. The agent firstly analyzes the ob-
served crop symptoms, namely wilting, discoloration, stunted 
growth, and compares them to known effects of various 
chemical agents. Part of the rules related to crop symptoms 
are: 

 
Rule A1: crop_wilting(X) -> potential_chemical_expo-

sure(X) [weight: 0.7] 
Rule A2: crop_discoloration(X) -> potential_chemi-

cal_exposure(X) [weight: 0.8] 

Rule A3: crop_stunted_growth(X) -> potential_chemi-
cal_exposure(X) [weight: 0.6] 

Rule A4: multiple_symptoms(X) -> increase_suspi-
cion(X) [weight: 0.9] 
 
 Next, the agent considers environmental factors such as 
recent weather patterns, proximity to potential contamination 
sources (e.g., industrial sites), and historical data on past 
chemical incidents in the region. Part of the rules related to 
environmental factors are: 

 
Rule B1: drought_conditions(X) -> in-

crease_stress_on_crops(X) [weight: 0.6] 
Rule B2: proximity_to_industrial_site(X) -> poten-

tial_contamination_source(X) [weight: 0.8] 
Rule B3: recent_chemical_incidents(X) -> in-

crease_alert_level(X) [weight: 0.7] 
 
 Following, the crop symptoms and the environmental fac-
tors, the agent system can proceed to risk assessment. For in-
stance, if the risk level is high indicating potential chemical 
exposure (Rule R1), the agent alerts local authorities such as 
the agriculture department or emergency services (Rule A1) 
or make some proposals (Rule A2/Rule A3). 

 
Rule R1: case(X) -> high_risk(X) :- potential_chemi-

cal_exposure(X), increase_suspicion(X), in-
crease_stress_on_crops(X), weight(potential_chemical_ex-
posure(X), ?w1), weight(increase_suspicion(X), ?w2), 
weight(increase_stress_on_crops(X), ?w3), ?w1 + ?w2 + 
?w3 >= 2.0 

Rule R2: case(X) -> moderate_risk(X) :- poten-
tial_chemical_exposure(X), increase_stress_on_crops(X), 
weight(potential_chemical_exposure(X), ?w1), weight(in-
crease_stress_on_crops(X), ?w2), ?w1 + ?w2 >= 1.2 

Rule R3: case(X) -> low_risk(X) :- potential_chemi-
cal_exposure(X), normal_conditions(X) 

Rule A1: high_risk(X) -> alert_authorities(X) 
Rule A2: high_risk(X) -> recommend_soil_testing(X) 
Rule A3: high_risk(X) -> recommend_crop_sam-

pling(X) 
Rule A4: moderate_risk(X) -> increase_monitoring(X) 
Rule A5: low_risk(X) -> continue_monitoring(X) 

 
 Of course, there are superiority relationships for these 
rules: 
 

Rule A1 > Rule A4 
Rule A2 > Rule A4 
Rule A3 > Rule A4 
Rule R1 > Rule R2 
Rule R1 > Rule R3 

 
 At this point, it is worth mentioning that the assigned to 
each rule weights reflect the relative importance or confi-
dence in that particular rule. Hence, higher weights indicate 
greater confidence in the conclusion of the rule. For instance, 
in Rule R1, the combined weight of the contributing factors, 
namely potential_chemical_exposure, increase_suspicion, in-
crease_stress_on_crops must exceed a threshold value, here 
2.0, to classify the risk as high. 

Furthermore, the system can dynamically adjusts rule 
priorities based on several factors. More specifically, the rule 
prioritization is affected by the observed symptoms and their 
severity such as the extent of crop wilting or the number of 
livestock affected. In this context, more severe symptoms will 
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trigger higher priority for those rules that are associated with 
more dangerous chemical agents. Another example, is the en-
vironmental conditions, such as extreme weather events that 
could increase vulnerability and consequently rule priority for 
the rules that deal with environmental stress factors. Another 
factor that could lead to dynamic priority increase is the ex-
istence of previous threats, based on historical data on chem-
ical incidents in the region. Of course, rule priorities are dy-
namically updated not only based on historical data but also 
on real-time sensor data, such as changes air quality. As a re-
sult, the system could be adaptive, proving more accurate risk 
assessments. The system can further refine rule prioritization 
by incorporating machine learning techniques. Hence, this 
dynamic adjustment of rule priorities enhances the ability of 
the system to adapt to changing conditions, improve the accu-
racy of risk assessments, and provide more effective and 
timely responses to chemical threats. 
 
 
7. Scalability Considerations 
 
A critical aspect of our agent-based methodology is undoubt-
edly its scalability, especially for real-world cases where there 
are many interacting agents, a high volume of data and heter-
ogeneous study areas. In this context, one of the issues is the 
computational overhead. It is obvious that the computational 
needs will be increased as the number of agents, sensors, and 
data streams will increase. The answer to this challenge is the 
distributed processing. More specifically, we desing intelli-
gent agent cluster, namely we allow agents that deal with sim-
ilar crops or farming areas to interacting forming a group. 
This approach will allow not only efficient processing by us-
ing task sharing protocols, i.e. contract net, but also it will 
form a local decision-making mechanism reducing i.e. the 
load to central servers or other busy agents. Another approach 
in the same direction, that will be studied in the future it that 
of using edge computing, where edge computing devices such 
as microcontrollers or small servers will perform initial data 
processing reducing the amount of data transmitted to the cen-
tral system or other agents and minimizing network traffic. 
Hence, we aim not only to a distributed approach but also to 
an edge-based one. 
 Another issue is possible communication bottlenecks. In 
order to avoid such cases, we plan to implement data aggre-
gation techniques to reduce the volume of data transmitted 
between agents. For example, instead of transmitting raw sen-
sor readings from each individual sensor, responsible control-
lers/agents will aggregate data from multiple sensors within a 
cluster and transmit only the aggregated values. Additionally, 
a hierarchical communication strategy could be adopted. This 
strategy indicated that agents are categorized on three levels, 
namely lower-, intermediate- and higher-level agents. Lower-
level agents transmit data to intermediate agents, which then 
summarize and forward the information to higher-level 
agents, so, the amount of data transmitted across the network 
is reduced. Moreover, when the amount of data exceeds the 
local server capacity, we plan to transfer the system to a 
cloud-based storage. There are already plenty of services 
available, such as Amazon S3, Google Cloud Storage, that 
could store and manage large volumes of sensor data, histori-
cal records, and model parameters. Of course, the strategy of 
each agent will remain private and if needed encrypted.  
 Finally, we plan to conduct extensive simulations to eval-
uate system performance under different load conditions, var-
ying the number of agents, data volumes, and network traffic. 

This will allow us to monitor system performance and iden-
tify bottlenecks. System parameters, such as communication 
protocols, data aggregation strategies, and resource allocation 
could then be adjusted based on the aforementioned solutions.  
 
 
8. Conclusions and Recommendations 
 
In conclusion, the integration of intelligent agents and defea-
sible logic provides a robust and effective framework for de-
cision-making and reasoning, not only in environmental haz-
ards but also in the complex and critical domain of chemical 
weapons agents. Intelligent agents equipped with autonomy, 
reactivity, and communication abilities can represent diverse 
entities, services, and devices related to chemical agents. 
These agents have the capability to perceive their environ-
ment, gather data from sensors, and learn from historical in-
formation to form knowledge bases as defeasible theories. 
This knowledge includes characteristics and preferences of 
various chemical agents, along with the risks and potential ef-
fects associated with each category. Defeasible logic proves 
invaluable in handling the inherent uncertainties and incom-
plete information present in the analysis of chemical weapons 
agents. Hence, the system can categorize nerve agents, blister 
agents, blood agents, choking agents, incapacitating agents, 
and riot control agents based on their chemical composition 
and effects by employing defeasible rules. The superiority re-
lationship among rules allows agents to prioritize and resolve 
conflicts in their assessments.  
 This integrated approach enables intelligent agents to as-
sess and evaluate the risks and potential effects of different 
chemical agents in real-time. Agents can reason and make 
context-aware decisions by taking into account the weighted 
characteristics and preferences, determining the risk levels of 
each agent and suggesting appropriate responses or actions. 
Moreover, the ability to communicate and collaborate with 
other agents enhances the system's overall effectiveness. 
Agents can share information, negotiate priorities, and collec-
tively analyze situations involving multiple chemical agents. 
This collaborative decision-making mimics the complex in-
teractions present in real-world scenarios, facilitating effec-
tive response strategies and ensuring a comprehensive assess-
ment of the chemical threats. 
 The significance of this approach extends beyond envi-
ronmental monitoring and risk management to address critical 
security and defense challenges. We empower decision-mak-
ers to respond swiftly and efficiently to chemical weapons 
agents' threats by leveraging intelligent agents and defeasible 
logic. The framework assists in making well-informed deci-
sions that protect human lives, minimize environmental im-
pacts, and prevent catastrophic events. As technology pro-
gresses, the integration of intelligent agents and defeasible 
logic holds great promise in advancing the field of artificial 
intelligence and multi-agent systems. With ongoing develop-
ments and refinements, this combined approach will continue 
to play a pivotal role in addressing complex, uncertain, and 
high-stakes situations, safeguarding societies from the risks 
posed by chemical weapons agents. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  

 

 



Kalliopi Kravari and Michail Chalaris/Journal of Engineering Science and Technology Review 18 (1) (2025) 11 - 17 

 2 

______________________________ 
References 

 
[1] K. Kravari and N. Bassiliades, “StoRM: A social agent-based trust 

model for the internet of things adopting microservice architecture,” 
Simulat. Modell. Pract. The., vol. 94, pp. 286–302, Jul. 2019, doi: 
https://doi.org/10.1016/j.simpat.2019.03.008. 

[2] A. Whitmore, A. Agarwal, and L. Da Xu, “The Internet of Things—
A survey of topics and trends,” Inform. Sys. Frontiers, vol. 17, no. 2, 
pp. 261–274, Mar. 2014, doi: https://doi.org/10.1007/s10796-014-
9489-2. 

[3] D. Nute, “Defeasible Logic,” in Web Knowl. Manag. Decis. 
Supp., vol. 2543, O. Bartenstein, U. Geske, M. Hannebauer, and 
O. Yoshie, Eds., in Lecture Notes in Computer Science, vol. 
2543. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, 
pp. 151–169. doi: 10.1007/3-540-36524-9_13. 

[4] I. Lee and K. Lee, “The Internet of Things (IoT): Applications, in-
vestments, and challenges for enterprises,” Busin. Horiz., vol. 58, no. 
4, pp. 431–440, Jul. 2015, doi: 
https://doi.org/10.1016/j.bushor.2015.03.008. 

[5] M. Garriga, “Towards a Taxonomy of Microservices Architec-
tures,” in Softw. Eng. Formal Meth., vol. 10729, A. Cerone and 
M. Roveri, Eds., in Lecture Notes in Computer Science, vol. 
10729, Cham: Springer International Publishing, 2018, pp. 203–
218. doi: 10.1007/978-3-319-74781-1_15. 

[6] R. Gore, C. Lemos, F. L. Shults, and W. J. Wildman, “Forecasting 
Changes in Religiosity and Existential Security with an Agent-Based 
Model,” J. Arti.l Societ. Soc. Simul., vol. 21, no. 1, pp. 1-4, Jan. 2018, 
doi: https://doi.org/10.18564/jasss.3596. 

[7] “Transforming our world: the 2030 Agenda for Sustainable 
Development.” United Nations, Oct. 21, 2015. [Online]. Avail-
able: https://docs.un.org/en/A/RES/70/1 

[8] G Tyler Miller, Sustaining the earth: an integrated approach. Pacific 
Grove, Ca: Brooks/Cole, pp. 211-216, 2004, ISBN: 978-0-534-
40088-0 

[9] M. Alioto, Ed., Enabling the Internet of Things. Cham: Springer 
International Publishing, 2017. doi: 10.1007/978-3-319-51482-6. 

[10] E. Amin, M. Abouelela, and A. Soliman, “The Role of Heterogeneity 
and the Dynamics of Voluntary Contributions to Public Goods: An 
Experimental and Agent-Based Simulation Analysis,” J. Artif. So-
ciet. Soc. Simul., vol. 21, no. 1, Jan. 2018, doi: 
https://doi.org/10.18564/jasss.3585. 

[11] M. J. MAHER, “Propositional defeasible logic has linear complex-
ity,” The. Pract. Logic Program., vol. 1, no. 6, pp. 691–711, Nov. 
2001, doi: https://doi.org/10.1017/s1471068401001168. 

[12] N. Bassiliades, G. Antoniou, and I. Vlahavas, “A Defeasible Logic 
Reasoner for the Semantic Web,” Int. J. Seman. Web Inform. Sys., 
vol. 2, no. 1, pp. 1–41, Jan. 2006, doi: 
https://doi.org/10.4018/jswis.2006010101. 

[13] E. Kontopoulos, N. Bassiliades, and G. Antoniou, “Visualizing Se-
mantic Web proofs of defeasible logic in the DR-DEVICE system,” 
Knowledge-Based Sys., vol. 24, no. 3, pp. 406–419, Apr. 2011, doi: 
https://doi.org/10.1016/j.knosys.2010.12.001. 

[14] Á. Carrera, C. A. Iglesias, J. García-Algarra, and Dušan Kolařík, “A 
real-life application of multi-agent systems for fault diagnosis in the 
provision of an Internet business service,” J. Netw. Comp. Applic., 
vol. 37, pp. 146–154, Jan. 2014, doi: 
https://doi.org/10.1016/j.jnca.2012.11.004 

 

 
 


