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Abstract 
 

Reactive Power Optimization (RPO) is a major problem in Electric Distribution Power Systems (EDPS) since it reflects in 
the competent transfer of real power to the consumers, frees up the feeder capacity, enrichment in node voltage profile, 
power factor improvement and reduction in power/energy losses. The most extensively adopted method for RPO is the 
Shunt Capacitors (SCs) installed at optimal locations in the EDPSs. This work considers optimal placement and sizing of 
capacitors in radial EDPS to achieve maximum Financial Gain (FG) by reducing real (KWh) and reactive energy loss 
(KVARh) with capacitor investment cost using Dingo Optimizer (DO) subject to fulfillment of equality and inequality 
constraints. Normally, researchers adopt a Sensitivity-based Index (SBI) to identify the optimal node for RPO. However, 
in this work, the proposed optimization technique will do both optimal placement and sizing of capacitors. The efficacy of 
the projected technique has been validated using three EDPS, such as the 62-bus system (extracted from the Indian 118-
bus test system), the Indian 85-bus, and the real Portuguese 94-bus EDPS. The outcomes of DO have been compared with 
other optimization techniques available in the literature. Simulated results reveal that DO effectively minimizes energy loss 
and reactive energy loss with considerable improvement in cost saving. The proposed DO technique achieved substantial 
drops in PLT and QLT of around 35% in a 62-node EDPS with an FG of $74886.78/year, 51-54.5% in the case of an Indian 
85-node EDPS with an FG of $91323.88/year, and 23-29% in a Portuguese 94-bus EDPS with an FG of $59237.53/year. 
 
Keywords: Dingo Optimizer Electric Distribution Power System, Financial gain, Reactive power optimization, shunt capacitor. 
____________________________________________________________________________________________ 

 
1. Introduction 
 
The Electric Distribution Power System (EDPS) serves as a 
vital link between bulk power transmission systems and end 
users, playing a critical role in ensuring the reliability and 
efficiency of power delivery. The inherent challenge in EDPS 
lies in the significant I²R losses and bus voltage drops caused 
by reactive power flows, especially under heavy load 
conditions. These issues contribute to increased Apparent 
Energy losses (KWh and KVARh), reduced system 
efficiency, and financial burdens. Addressing these 
challenges requires strategically focusing on Reactive Power 
Optimization (RPO) to minimize losses, improve the bus 
voltage profile, and enhance Financial Gain (FG) while 
balancing investment costs. Among the available approaches, 
optimizing the allocation and sizing of capacitors across 
EDPS nodes has emerged as a cost-effective and practical 
solution. 
 The literature has extensively explored various 
methodologies for reactive power compensation. Sensitivity-
based techniques, such as Load Sensitivity Factors (LSF) and 
Power Loss Sensitivity Index (PLSI), have been employed to 
identify critical buses for reactive power compensation. 
Advanced optimization algorithms, including the 
Hybridization of Permutated Oppositional Differential 
Evolution–Sine Cosine Algorithm (HPODESCA) [1], Mine 
Blast Algorithm [2], and Salp Swarm Algorithm (SSA) [3], 

have demonstrated effectiveness in reducing energy losses 
and capacitor investment costs. These approaches are often 
coupled with multi-objective optimization frameworks, 
addressing conflicting goals like minimizing power loss, 
enhancing voltage stability, and optimizing capacitor costs. 
Studies have further incorporated evolutionary and nature-
inspired algorithms, such as the Polar Bear Optimization 
Algorithm (PBOA) [4], Improved Atom Search Optimization 
(IASO) [5-6], and Multi-Verse Optimizer (MVO) [7], to 
improve the precision of solutions and adapt to varying load 
conditions. 
 Recent advancements include hybrid and modified 
optimization techniques such as Quasi-Oppositional Sine 
Cosine Algorithm (QOSCA) [8], Modified Stochastic Fractal 
Search Optimization (MSFSO) [9], and the Grasshopper 
Optimization Algorithm (GOA) [10] have refined RPO by 
integrating the sensitivity analyses and multi-objective 
strategies. Additionally, frameworks combining fuzzy 
decision-making techniques and Pareto optimization, as 
discussed in [11] and [12], have enabled efficient selection of 
capacitor placement and sizing strategies under diverse 
operating scenarios. Despite these advances, achieving a 
holistic solution that balances power loss reduction, voltage 
stability, and cost minimization across various load profiles 
remains an ongoing challenge. 
 Energy loss reduction, SC investment cost minimization, 
voltage stability enhancement maximization as objectives, 
and allocation and sizing of SCs using LSF in three optimal 
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locations have been proposed in [13]. LSF is used to identify 
the most critical buses for reactive power compensation, and 
Modified Teaching-Learning-Based Optimization (MTLBO) 
will be used to do appropriate sizing. IEEE 33 and a real 94-
bus Portuguese EDPS have been considered to validate the 
effectiveness of the proposed methodology. To compare the 
results obtained by MTLBO, GA, PSO, and TLBO have been 
taken. 
 Ref. [14] examines the joint minimization of real power 
loss and capacitor investment costs as a single objective. It 
analyzes optimal SC allocation and sizing across three load 
variations using the Antlion Optimization Algorithm (AOA). 
This study does not incorporate sensitivity-based indices to 
identify the most sensitive buses for compensation. Modified 
12-bus, 33-bus, and 94-bus Portuguese EDPS have been taken 
for validation. Cost-based real and reactive power loss 
reduction with capacitor purchase cost as objective optimal 
placement and sizing of capacitors using OPF-based 
Backward Forward Sweep (BFS) and Crow search algorithm 
(CSA) has been discussed in [15]. 11 kV, IEEE 33 bus EPDS 
has been taken for evaluation of the proposed methodology. 
In this study, pay-back period calculation has been considered 
for economic evaluation. Beluga Whale Optimization 
algorithm (BWOA) as an optimization tool, optimal 
allocation and sizing of capacitors in EDPS with the objective 
to minimize real power loss, bus voltage profile enhancement, 
and cost determination using loss sensitivity factor has been 
presented in [16].To obtain a maximum financial gain, this 
work [17] focused on maximizing the real and reactive power 
loss reduction and capacitor investment cost minimization 
using DO as an optimization technique, optimal siting and 
sizing of capacitors in EDPS has been developed. This paper 
did not utilize any sensitivity-based method to determine the 
most appropriate nodes for reactive power injection. 
 This study introduces a novel Nature-Inspired Optimizer 
(NIO), the Dingo Optimizer (DO) [18], which emulates the 
cooperative hunting behavior of Canis familiarised Dingoes. 
The DO method addresses key limitations of existing 
techniques by providing robust global and local search 
capabilities, enabling precise identification of optimal 
compensation nodes. The proposed approach maximizes FG 
by minimizing real and reactive energy losses alongside 
capacitor investment costs under varying load conditions 
(50%, 75%, and 100%). Validation is conducted on three 
benchmark systems: a 62-bus system derived from the Indian 
118-bus network, an 85-bus Indian EDPS, and a 94-bus 
Portuguese EDPS. Comparative analyses against state-of-the-
art methods highlight the superior performance of the DO 
approach in achieving significant energy loss reductions, 
enhanced voltage stability, and higher FG. These results 
underscore its potential as a reliable and efficient RPO 
solution for modern EDPS challenges.  
 
Purpose and Contribution: Based on the aspects mentioned 
above, the contributions of this work encompass: (i) 
Suggesting the best and most robust NIO called DO to solve 
the economic-based objective function considering three 
different load variations. (ii) Cost-based assessment of real 
and reactive energy loss reduction with capacitor purchase 
cost and (iii) For the first time, optimal placement and sizing 
of capacitors considering 62-bus system (extracted from 
Indian 118 bus test system) taken into account three load 
variations. 
 
2. Problem Definition 

This research aims to maximize FG by optimizing the 
placement and sizes of SCs in three radial EDPSs while 
meeting system constraints. Before discussing the objective 
function, this study examines the EDPSPF used in this 
research. 
 
2.1. Electric Distribution Power System Power Flow — 
EDPSPF 
To evaluate the EDPS's efficiency under normal operating 
conditions, regular Power Flow (PF) analysis has been 
conducted. This assessment helps to identify the need for 
additional power supply during seasonal periods and 
requirements for RPO and ensures bus voltage profiles remain 
within acceptable limits. Traditional matrix-based load flow 
methods like Gauss-Seidel, Newton-Raphson, and Fast-
Decoupled are ineffective for solving EDPS issues due to 
their high R/X ratio and radial topology [19,20]. This paper 
employs an efficient, robust, and adaptable EDPSPF method 
developed in 2003 [21]. This method utilizes recursive 
functions and a linked-list data structure, specifically 
addressing reactive power optimization problems. The total 
real and reactive power loss of the entire radial EDPS, 
encompassing all branches, including laterals and sub-
laterals, can be expressed as follows: 
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where PLT and QLT are the sum of real and reactive power 
losses of all the branches of the EDPS. Pa+1 and Qa+1 represent 
the real and reactive power flow of the (a+1)th branch in kW 
and kVAR, respectively. Ra and Xa are the resistance and 
inductance of the branch connecting 'a' and 'a+1' in Ω.' tnb' 
indicates the total number of branches in the EDPS.

 
 
2.2 Objective Function 
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 Inequality constraints 
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𝑉JEFG ≤  𝑉J ≤ 𝑉JEHI      (7) 
 
where CPL and CQL refer to cost factors related to real and 
reactive power from the Main Energy Source (MES).  BC, 
ACO, QTD NLV, and NQN indicates base case, load variations 
after capacitor optimization, total reactive power demand, 
number of load variations and number of compensation nodes 
respectively. Ccap, CO&M, Cins and Vk indicates capacitor 
purchase cost, installation, operation and maintenance cost of 
capacitor and bus voltage at ‘k’th bus. 
 
 
3. Proposed Optimization Method (DO) [17] 
 
The Dingo Optimizer (DO) is an innovative approach for 
global optimization inspired by the hunting behaviours of 
dingoes. These behaviours encompass methods such as 
persecution, group tactics, and scavenging. The most 
dominant male or female member leads the pack within a 
dingo pack. They are responsible for decision-making, 
selecting sleeping spots, and leading hunts. In the hierarchy 
of a dingo pack, beta members serve as intermediaries 
between the alpha leader and the remaining pack. If the alpha 
dingo passes away, the beta takes on its role. Other pack 
members follow the guidance of both alphas and betas. 
Dingoes employ sophisticated communication methods, 
sharing information within the pack, participating in greeting 
rituals and establishing dominance. Their hunting strategy 
encompasses distinct phases: chasing and approaching, 
encircling and harassing, leading up to the ultimate attack.
 The DO operates through two key phases: exploration and 
exploitation. Exploration, akin to the encircling phase, aims 
to broadly navigate the problem space, whereas exploitation, 
similar to the attack phase, converges towards the best 
solution in later algorithmic iterations. In this algorithm, one 
search agent represents the targeted prey, while others adjust 
their strategies to approach the prey while exploring the 
search space comprehensively. 
 
3.1. Mathematical Models. 
The Dingo's search for prey is translated into a mathematical 
exploration within the solution space in DO. Like Dingo's 
random exploration to locate potential prey, the algorithm 
employs stochastic processes to explore various areas in 
search of an optimal solution. This phase involves updating 
potential solutions using random variations or perturbations. 
 
3.1.1. Encircling 

Dingoes possess remarkable hunting skills and are adept at 
locating prey. Once the location is traced, the pack, led by the 
alpha, surrounds the prey. To simulate the Dingo's social 
structure, the prevailing strategy involves the best agent 
aiming for the prey, similar to an optimal approach, given the 
unknown quest area. Meanwhile, other members continue 
refining their techniques for potential future approaches. 
During the encircling phase, dingoes move based on specific 
equations (8)-(12) in their pursuit of optimization. 
 
𝐷KCCCC⃗ = E𝐴. 𝑃C⃗?(𝑥) − 𝑃C⃗ (𝑖)E                    (8) 
 
𝑃C⃗ (𝑖 + 1) = 𝑃C⃗?(𝑖) − 𝐵C⃗ . 𝐷CC⃗ (𝑑)                (9) 
 
𝐴 = 2. 𝑎,CCCC⃗                  (10) 
 
𝐵C⃗ = 2𝑏C⃗ . 𝑎3CCCC⃗ − 𝑏C⃗                         (11) 
 

𝑏C⃗ = 3 − Q𝐼 ∗ : 4
L012

>S                                                (12) 

 
 Where 𝐷CC⃗ Krepresents the dingoes distance from the prey, 
𝑃C⃗?implies the position vector for prey, 𝑃C⃗ is the vector 
indicating the Dingo's position, �⃗� and 𝐵C⃗ are coefficient 
vectors, �⃗�,and �⃗�3 represent random variables within the range 
of [0,1]. I represent the iteration 𝐼EHIas the maximum iteration 
count. Equations (1) and (2) enable dingoes to navigate within 
the quest area around the prey by changing their locations 
randomly. These equations can also be applied to explore a 
search space with N dimensions, allowing the Dingo to move 
within hypercubes around the best-known result obtained thus 
far.  
 In the provided formulas, vector D signifies the distance 
vector, and vector P represents the position vector. The 
subscript d pertains to the dingoes, while the subscript' p' 
refers to the prey, denoting the best search agent among them. 
The vectors 𝐴and 𝐵C⃗ play a crucial role in guiding dingoes 
toward a specific portion of the solution space around the 
prey. Notably, 𝐵C⃗ determines whether the prey is moving away 
from or being pursued by the dingoes. Values less than -1 
indicate the former, while values above 1 denote the latter.  
 
3.1.2. Hunting 
During the hunting phase, it's commonly assumed in these 
biologically inspired algorithms that the pack members 
possess a strong intuition about the prey's location. The alpha 
dingo typically leads the hunting endeavours, yet there are 
occasions when beta and other pack members may join in the 
hunting process. In this phase, the alpha and beta, 
representing the two best solutions within the dingo pack, 
guide the movements of other dingoes. Equations (13)-(21) 
outline the equations governing their positional updates. 
 
𝐷MCCCC⃗ = E𝐴,CCCC⃗ . 𝑃C⃗M − 𝑃C⃗ E                      (13) 
 
𝐷NCCCC⃗ = E𝐴3CCCC⃗ . 𝑃C⃗N − 𝑃C⃗ E                                              (14) 
 
𝐷#CCCC⃗ = E𝐴4CCCC⃗ . 𝑃C⃗# − 𝑃C⃗ E                                           (15) 
 
𝑃,CCC⃗ = E𝑃C⃗M − 𝐵C⃗ . 𝐷CC⃗ ME                                               (16) 
 
𝑃3CCC⃗ = E𝑃C⃗N − 𝐵C⃗ . 𝐷CC⃗ NE                                               (17) 
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𝑃4CCC⃗ = E𝑃C⃗# − 𝐵C⃗ . 𝐷CC⃗ #E                                             (18) 
 
 The following formula is used to determine each Dingo's 
intensity: 
 
𝐼M = log : ,

O38(,C8,PP)
+ 1>               (19) 

 
𝐼N = log W ,

O48(,C8,PP)
+ 1X          (20) 

 
𝐼# = log : ,

O58(,C8,PP)
+ 1>                     (21) 

 
3.1.3 Attacking the Prey 
If the positions remain unchanged, signaling the end of the 
hunt, the dingoes transition into the attack phase aimed at the 
prey. During this phase, the value 𝑏C⃗  undergoes linear 
reduction across iterations. The parameter 𝐷MCCCC⃗  spans within the 
range of [-3b, 3b]. Consequently, as iterations progress, this 
range gradually contracts, causing the dingoes to halt their 
movement gradually. The suggested encircling method 
contributes to exploration to a certain degree. However, to 
enhance exploration further, DO necessitates additional 
operators. DO supports its quest agents in adjusting their 
positions by factoring in the locations of α, β, other pack 
members, and the targeted prey. Despite utilizing these 
operators, DO retains the capability to deactivate local 
solutions. 
 
3.1.4 Searching 
Dingoes rely on their pack's movements for hunting, 
consistently advancing to pursue and confront prey. Using 𝐴 
and 𝐵C⃗  for random values, values below -1 indicate prey 
moving away, while those above 1 show the pack closing in. 
These aids DO in globally scanning targets. Another crucial 
DO element is𝐴generating random numbers in [0, 3] for prey 
weights. It operates stochastically, giving precedence to 
vector values ≤1 over ≥1 to navigate equation (1)'s gap 
influence. This enhances effective search and avoids local 
optima. Depending on a dingo's location, it randomly 
determines prey values essential for meeting or exceeding 
requirements. 𝐴	offers stochastic exploration values from 
initial to final iterations, preventing local optima. DO 
conclude upon fulfilling termination criteria. 
 
3.2 Implementation of DO for capacitor allocation 
problem 
The application of the Dingo Optimizer (DO) is employed to 
ascertain the optimal allocation and capacity of capacitors in 
three EDPSs. The primary aim is to maximize FG while 
concurrently improving the bus voltages. The DO algorithm 
encompasses the subsequent steps: 
 
Step 1: Initialize the boundary limits for variables, 
encompassing the optimal capacitor allocation location and 
size. Define the maximum number of iterations and 
population size. Generate initial solution vectors that adhere 
to all specified constraints from (4) to (7). 
Step 2: Compute the network parameters, including PLT, QLT, 
and voltages at all nodes, for each solution vector (SVs) 
generated using the EDPSPF method described according to 
ref. [20]. 
Step 3: Set the value of 𝑏C⃗ ,	𝐴and 𝐵C⃗   

Step 4: Modify the DO with respect to boundary conditions 
(upper and lower). Compute the given fitness function 
optimal value using (3) and find𝐷M, 𝐷Nand𝐷# using (13), (14) 
and (15). 
Step 5:  For every Dingo in the population, update its distance 
from the prey using (8) and (9). 
Step 6: Recalculate the fitness and intensities of dingoes and 
retain these values for storage. 
Step 7: The iteration process stops if the stopping criteria are 
met. The final value of the objective function (FG in $) with 
the capacitor variable values will be displayed. Otherwise, 
steps 2 to 7 will be repeated till the maximum value of the 
objective function is obtained. Art. 3.4 discusses the pseudo-
code for the proposed capacitor optimization problem using 
DO .   
 
3.3 Pseudo Code for DO 
The pseudo-code for the DO showcases its approach to 
solving optimization problems, with a key emphasis on the 
stopping criteria based on the maximum number of iterations. 
Algorithm delineates the steps involved in the DO Algorithm 
process: 
1. Generate initial search agents 
 2. Set𝑏C⃗ , 𝐴 and 𝐵C⃗  values 
 3. While termination conditions are not met do 
 4. Estimate fitness and intensity cost of each dingos  
 5. 𝐷M=Dingo with finest search 
 6. 𝐷N=Dingo with second finest search 
 7. 𝐷#=Dingoes search result afterwards 
 8. Iteration 1 
 9. Repeat  
10. For i=1 to 𝐷B) do 
11. Update the latest search agent status 
12. End for 
13. Evaluate the fitness cost and intensity of dingoes 
14. Record the value of 𝐹M, 𝐹N and 𝐹# 
15. Record the value of 𝑏C⃗ , 𝐴 and 𝐵C⃗  
16. It= It+1 
17. Check if It ≥ stopping criteria 
18. Output  
19. End while  
 
 
4. Case Study Details, Simulation Results and Discussions 
 
To substantiate the effectiveness of the developed NIO (DO) 
in optimizing the FGOF (discussed in section 2), three test 
EDPSs have been taken, and simulations have been 
performed for three different load variations (75%, 100% and 
125% for 62-bus, 85-bus, and 94-bus Portuguese EDPS. The 
details of the three EDPSs and the simulation results are 
discussed from Art. 4.1 to 4.3. 
Node 1 has been taken as a substation bus for all the EDPS. 
All nodes, except node no. 1, are considered as load nodes. 
The voltage for the substation bus has been fixed at 1 p.u. 
Reactive power compensation has been expected to be 
applied from node 2 through the end node of the radial EDPS. 
The algorithm proposed utilizing EDPSPF has been 
implemented and executed using the MATLAB software, 
operating on an i5 Intel processor paired with 8 GB RAM. 
The solution vector size is set to 800, and the number of 
iterations is defined as 100. Specifically, for every node for 
RPO, two variables are designated: the optimal node and its 
corresponding optimal capacity. 
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 The cost of real power energy under three load variations 
is taken as $0.06 / KWh. According to ref. [22], the cost of 
reactive energy loss (KVARh) is one-third of the cost of the 
real power energy. The purchase cost of the capacitor has 
been taken as $5 / kVAr, and the cost pertaining to installation 
and maintenance has been considered as $620 / node [23]. Out 
of the total duration in a year, 2000, 5260, and 1500 hours are 
considered for Low Load Variation (LLV), Medium Load 
Variation (MLV), and Heavy Load Variation (HLV), 
respectively. For all the EDPSs, the base MVA has been taken 
as 100 MVA. The base KV for 62-bus and 85-bus are taken 
as 11 KV, whereas for 94-bus Portuguese EDPS, it is 15 KV. 
To investigate the supremacy of the proposed method in 
suppressing PLT, QLT, and capacitor investment costs, all the 
EDPSs have undergone simulations to identify the effect of 
FGs for different compensation nodes. To ascertain the 
impact of RPO, siting, and sizing of SCs at four optimal 
locations have been carried out in all three EDPSs.  Capacitor 
investment costs related to heavy load variation has only been 
considered for cost evaluation. The values of λ1, λ2, and λ3 
have been taken as 0.6, 0.25 and 0.15 respectively. 
 
4.1 Simulation, Results & Discussions – 62-bus test system 
The first radial EDPS considered here is a 62-bus system 
which is extracted from an Indian three-feeder 118-bus EDPS 
[22]. The operating voltage of this DS is 11 KV. It has 62 
buses, and 61 main branches. The radial EDPS's total 
connected loads under three load variations are (7710.862+j 
5973.682) KVA, (10281.15 +j 7964.91) KVA, and 
(12851.436+j 9956.136) KVA respectively. Figure 1 shows 
the single-line diagram of the 62-bus test system (shown with 
tie-switches). The details of total apparent power losses under 
Initial Condition (IC) considering three load variations are 
(216.11871 +j 206.9412) KVA, (396.417 + j 380.2056) KVA 
and (640.487 + j 615.3782) KVA respectively. The minimum 
bus voltage recorded are 0.9335 p.u. 0.909497 and 0.88433 
p.u respectively. The power losses (PLT, QLT) cost under IC 
are $208687.365 and $66736.623, respectively. The line and 
bus data have been taken from [24].  
 Table 1 shows that by optimal allocation and sizing of 
capacitors in the 62-bus test system, the real and reactive 
power loss have reduced between 34% and 37%, considering 
three load variations with the reactive power penetration 
between 40% and 45%. The minimum bus voltage has 
enhanced by 0.0276 p.u., 0.038903 p.u. and 0.04847 p.u. By 

comparing the results obtained under MLL (100%) with [18], 
it is evidenced that, there is not much difference in real power 
loss reduction. From Table 1, it is evident that the annual FG 
of $74886.778 has been yielded by reactive power 
compensation at four optimal locations. Figure 2 shows the 
bus voltages before and after optimization considering three 
load variations.  
 

 
 

 
Fig. 1. 62-Bus test system - IC 

 

 
Fig. 2. Bus Voltage Profile - 62-Bus test system 

 
Table 1. Performance of DO – 62 Bus test system – All three load variations 

Parameters Cap. @ 75% (L L L) Cap. @ 100% (M L L) Cap. @ 125% (H L L) 
PLoss (IC) /PLoss (AC) (KW) 142.4133 / 216.1187 257.0495 / 396.4173 414.2526 / 640.4869 

% PLoss reduction 34.10413 35.15684 35.32224 
QLoss (IC) /QLoss (AC) (KVAR) 134.1693 / 206.9412 241.9675 / 380.2056 389.7713 / 615.3782 

% QLoss reduction 35.1655 36.3588 36.6615 

Capacitor details (KVAr) 

505 (42) 
1227 (50) 
409 (54) 
427 (58) 

690 (42) 
1879 (50) 
414 (54) 
510 (58) 

758 (42) 
2241 (50) 
522 (54) 
488 (58) 

% Cap. Penetration 43 44.855 40.2662 
Vmin (p.u) 0.9611 0.9484 0.9328 

T × Δ PLoss Cost ($) 8844.648 43984.48 20361.087 
T × Δ QLoss Cost ($) 2910.876 14542.48 6768.207 
Cap. Inv. Cost ($) 22525 

F G ($) 74886.778 
 
4.2 Simulation, Results & Discussions – Indian 85-bus test 
system 
The next EDPS taken for assessment is an Indian 85-bus 
system with 85 buses and 84 distribution branches. The total 
apparent power demand of this EDPS under three load 

variations (75%,100%,125%) are (1927.71+j1966.792), 
(2569.3+j 2621.4) and (3211.6+j 3276.7) KVA respectively. 
The apparent power loss under IC for this test system are 
(166.7716 +j 104.8384), (316.1157+j 198.5849), and 
(529.4835 +j 332.4714) KVA respectively. The minimum bus 



N. M. G. Kumar, G. Srinivasan, L. Hubert Tony Raj and M. Lavanya/ 
Journal of Engineering Science and Technology Review 18 (1) (2025) 146 - 156 

 151 

voltages under IC are 0.9068, 0.8714, and 0.833 p.u. 
respectively. The total real and reactive power losses cost 
under IC are $167468.222 and $35058.82 respectively. The 

data related to the Indian 85-bus EDPS can be viewed in [4,5]. 
The single-line diagram pertaining to this test system can be 
seen in Fig. 3.  

 
Table 2. Performance of DO – 85 Bus test system – All three load variations 

Parameters Cap. @ 75% (L L L)  Cap. @ 100%  (M L L)  Cap. @ 125% (H L L)  
PLoss (IC) / PLoss (AC) (KW) 80.8737 / 166.7716 148.7284 / 316.1157 242.2035 / 529.8835 

% PLoss reduction 51.50643 52.95128 54.29118 
QLoss (IC) / QLoss (AC) (KVAr) 50.2314 / 104.8384 92.39158 / 198.585 150.5824 / 332.4714 

% QLoss reduction 52.087 53.475 54.7082 

Capacitor details (KVAr) 

314 (12) 
462 (26) 
337 (48) 

473 (67) 

485 (12) 
639 (26) 
464 (48) 

585 (67) 

753 (12) 
698 (26) 
614 (48) 

742 (67) 
% Cap. Penetration 80.639 82.8946 85.655 

Vmin (p.u) 0.9411 0.921 0.9007 
T × Δ PLoss Cost ($) 10307.748 52827.432 25891.2 
T × Δ QLoss Cost ($) 2184.28 11171.548 5456.67 
Cap. Inv. Cost ($) 16515      

F G ($) 91323.878 
 

 
Fig. 3. Indian 85-Bus test system – IC 
 
 
 Table 2 reveals the performance of reactive power 
optimization in the Indian 85-bus test system. Siting and 

sizing of SCs at four optimal locations yields a PTL and QTL 
loss reduction between 51% and 55% with reactive power 
penetration between 80.5% and 86%. The minimum bus 
voltage has enhanced by 0.0343 p.u., 0.0496 p.u. and 0.0677 
p.u. as illustrated in Figure 4. The FG obtained after SC 
integration is found to be $91323.878. 
 

 
Fig. 4. Bus Voltage Profile – Indian 85-Bus test system 

   
 

Table 3. Performance Comparison of DO – 85 Bus test system – 75% load variations 
Parameters PODESCA 

[1] 
FPAES 

[5] MBA [2] COA [3] PBOA [4] D O Sc Minimization Tc Minimization Zc Minimization 
PLoss (IC) /PLoss (AC) 

(KW) 
85.0098 / 

166.76 
83.04 / 
166.76 

91.0728 / 
166.5635 

83.032 / 
166.5635 

80.23588 / 
166.9566 

80.60228 / 
166.9566 

81.8544 / 
166.9566 

80.8737 / 
166.7716 

% PLoss reduction 49.0227 50.204 45.3225 50.15 51.9421 51.723 50.97265 51.50643 
QLoss (IC) /QLoss (AC) 

(KVAR) 
52.4542 / 

104.83 -------- 55.2957 / 
104.7 -------- 50.00819 / 

104.9464 
50.319915 / 

104.9464 
51.001 / 
104.9464 

50.2314 / 
104.8384 

% QLoss reduction 49.963 -------- 47.18653 -------- 52.34883 52.0518 51.403 52.0868 

Capacitor details 
(KVAr) 

350 (12) 
550 (30) 

500 (60) 

700   (8) 
400 (34) 
400 (48) 
200 (85) 

800 (8) 
300 (27) 
400 (58) 
300 (63) 

300 (12) 
300 (31) 
300 (48) 

450 (68) 

368 (11) 
327 (30) 
301 (47) 
362 (62) 

227 (67) 

352 (11) 
362 (30) 
263 (47) 
248 (62) 

262 (67) 

340 (11) 
358 (30) 
339 (47) 
201 (62) 

192 (67) 

314 (12) 
462 (26) 
337 (48) 

473 (67) 

% Cap. 
penetration 71.1889 86.4352 91.5196 68.64 80.588 75.60535 72.707 80.639 

ΔPLoss  Cost ($) 9810.024 10046.4 9058.884 10023.78 10406.4864 10362.5184 10212.264 10307.748 
ΔQLoss  Cost ($) 2095.032 -------- 1976.172 -------- 2197.5284 2185.06 2157.816 2184.28 

Cap. Inv. Cost ($) 8860 10980 11480 9230 11025 10535 10250 10410 
F G ($) 3045.056 - 933.6 -444.944 793.78 1579.0148 2012.5784 2120.08 2082.028 

Vmin (p.u.) 0.9355 -------- 0.931 0.9386 0.942652 0.940644 0.94121 0.9411 
 
 Table 3 to Table 6 exposes the comparison of the results 
obtained by the proposed methodology with the other recent 
methods available in the literature. From Table 3, it is 
apparent that under 75% load variations, the real and reactive 
power loss reduction by DO is better except SC and TC [4]. 

However, the difference is minuscule. The reactive power 
penetration by DO is more than [1,3,4] except [2,5]. The net 
FG obtained by the proposed methodology under 75% load 
variations seems to be better than [2,3,5] except [1,4(ZC)]. 
From Table 3, it is noted that [1] dealt with the capacitor 
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allocation problem at three optimal locations and [4] focused 
reactive power optimization at five optimal locations. This 
could be the reason for obtaining variations in FG. Table 4 
and 5 discloses the performances of the other methods under 
nominal load variations. Ref. [6] discusses the capacitor 
allocation problem using six optimization algorithms as 
shown in Table 4. By comparing the results obtained by the 

proposed optimization method with PSO, SCA, GWO, SSA, 
ASO and IASO, it is apparent that the performance of DO in 
achieving both real, reactive power loss reduction and 
reactive power penetration is better than [6]. However, it is to 
be noted that the Vmin enhancement recorded is less compared 
to other methods. The minimum and maximum FG achieved 
by DO is found to be $173.64 and $4111.153, respectively.  

 
Table 4. Performance Comparison of DO – 85 Bus test system – 100% load variations 

Parameters PSO [6] SCA [6] GWO [6] SSA [6] ASO [6] IASO [6] D O 
PLoss (IC) / PLoss (AC) 
(KW) 

150.4049 / 
316.12 

154.9155 / 
316.12 

150.5231 / 
316.12 

153.4659 / 
316.12 

149.869 / 
316.12 

148.8261 / 
316.12 

148.7284 / 
316.1157 

% PLoss reduction 52.42158 50.99473 52.38419 51.45329 52.59173 52.92101 52.95128 
QLoss (IC) / QLoss (AC) 
(KVAr) 

93.52263 / 
198.6 

95.15148 / 
198.6 

93.71773 / 
198.6 

94.32939 / 
198.6 

93.09997 / 
198.6 

92.39788 / 
198.6 

92.39158 / 
198.585 

% QLoss reduction 52.90905 52.08888 52.81081 52.50282 53.12187 53.47539 53.475 

Capacitor details 
(KVAr) 

780 (10) 
738 (32) 
143 (54) 
615 (67) 

263 (11) 
906 (28) 
447 (33) 

675 (64) 

1074 (9) 
470 (34) 
234 (49) 

608 (64) 

541 (5) 
695 (34) 
995 (60) 

425 (85) 

538 (10) 
608 (27) 
505 (48) 

548 (68) 

422 (12) 
608 (26) 
562 (35) 

610 (67) 

485 (12) 
639 (26) 
464 (48) 

585 (67) 
% Cap. Penetration 86.824 87.396 91.02 101.32 83.8865 84 82.8946 
ΔPLoss Cost ($) 52299.686 50876.14 52262.382 51333.634 52468.816 52797.955 52827.432 
ΔQLoss  Cost ($) 11054.14 10882.78 11033.615 10969.27 11098.6 11172.463 11171.548 
Cap. Inv. Cost ($) 13860 13935 14410 15760 13475 13490 13345 
F G ($) 49493.826 47823.92 48885.997 46542.904 50092.416 50480.418 50653.98 
Vmin (p.u) 0.923913 0.922138  0.924772  0.921218  0.923194  0.921858 0.9217 (54) 

 
 Table 5 reveals the performance comparison between the 
proposed method with [4,5,7-10] under nominal load 
variations. From Table 5 it is apparent that the real power loss 
reduction achieved by DO is better than [5,7,8,10]. The 

reactive power loss reduction is found to be better than [8]. 
Regarding Vmin enhancement, the performance of DO is better 
than [4,5,7,8,9]. However, the % reactive power penetration 
optimized by DO is found to be more than [4,5,7,8].  

 
Table 5. Performance Comparison of DO – 85 Bus test system – 100% load variations 

Parameters 
 

MVO [7] SCA [8] QOSCA 
[8] 

PBOA    
[4] 

MSFS [9] GOA [10] GWO [10] FPA [5] FPAES [5] D O 

PLoss (IC) 
/PLoss (AC) 
(KW) 

148.316 / 
316.1172 

150.556 / 
316.135 

149.182 / 
316.135 

148.1129 / 
316.1157 

148.7077 / 
316.12 

148.9274 / 
315.714 

149.2728 / 
315.714 

149.25 / 
315.7 

149.11 / 
315.7 

148.7284 / 
316.1157 

% PLoss 
reduction 

53.08 52.38 52.81 53.146 52.9585 52.8284 52.72 52.724 52.7685 52.923 

QLoss (IC) /QLoss 

(AC) (KVAr) 
92.3913 / 
198.6019 

93.262 / 
198.613 

92.654 / 
198.613 

92.3405 / 
198.601 

-------- -------- -------- -------- -------- 92.39158 / 
198.585 

% QLoss 
reduction 

53.48 53.043 53.349 53.5045 -------- -------- -------- -------- -------- 53.475 

Capacitor 
details 
(KVAr) 

400 (30) 
400 (48) 
500 (57) 
450 (68) 
300 (81) 

650 (28) 
400 (51) 
500 (60) 
200(66) 
350(80) 

700 (28) 
300 (54) 
500 (60) 
250 (69) 
350 (80) 

492 (11) 
456 (30) 
357 (47) 
350 (62) 
375 (67) 

758.24 (8) 
345.21(12) 
660.1 (34) 
534.37(67) 

450 (12) 
600 (26) 
600 (34) 

600 (67) 

900  (9) 
450 (29) 
450 (48) 

450 (68) 

1000 (9) 
400 (33) 
300 (50) 

400 (68) 

700 (26) 
300 (48) 
600 (67) 

300 (80) 

485 (12) 
639 (26) 
464 (48) 

  585 (67) 

% Cap. 
Penetration 

78.20248 80.11 80.11 77.44 87.66 85.832 85.832 80.11 72.48035 82.8946 

ΔPLoss Cost 
($) 

52958.059 52256.732 52690.367 53021.684 52835.322 52637.851 52522.531 52531.62 52575.804 52827.432 

ΔQLoss Cost 
($) 

11173.355 11082.925 11146.887 11178.605 -------- -------- -------- -------- -------- 11171.548 

Cap. Inv. 
Cost ($) 

13350 13600 13600 13250 13969.6 13730 13730 12980 11980 13345 

F G ($) 50781.414 49739.657 50237.254 50950.289 38.865.722 38907.851 38792.531 39551.62 40595.804 50653.98 
Vmin (p.u) 0.9198 0.92 0.921 0.9211 -------- 0.92182 0.9235 0.91 0.91 0.9217 (54) 

 
 Finally, the FG achieved by the proposed method is better 
than [5,6,8,9,10]. PBOA [4] and MVO [7] achieve more FG 
than DO which is found to be below $300. The reason for 
higher FG [4,7] may be due to the reduction in capacitor 
investment cost. By referring to Table 6 and by comparing 
PBOA [4] under 125% loading conditions, the performance of 

DO in terms of PTL and QTL reduction, bus voltage 
enhancement, and net FG achieved after RPO is found to be 
less than PBOA [4]. However, it is to be noted that the total 
number of buses for RPO considered in [4] is more than the 
present work.     

 
Table 6. Performance Comparison of DO – 85 Bus test system – 125% load variations 

Parameters P B O A [4] D O 
Sc Minimization Tc Minimization Zc Minimization 

PLoss (IC) / PLoss (AC) (KW) 240.0562 / 530.1294 240.835 / 530.1294 241.026 / 530.1294 242.2035 / 529.8835 
% PLoss reduction 54.7174 54.5705 54.5345 54.29118 

QLoss (IC) / QLoss (AC) (KVAr) 149.4865 / 332.8492 150.1912 / 332.8492 150.0648 / 332.8492 150.5824 / 332.4714 
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% QLoss reduction 55.0888 54.877 54.9151 54.7082 
Capacitor details (KVAr) 600 (11) 

597 (30) 
486 (47) 
591 (62) 
413 (67) 

662 (11) 
562 (30) 
525 (47) 
496 (62) 
370 (67) 

614 (11) 
562 (30) 
561 (47) 
440 (62) 
393 (67) 

753 (12) 
698 (26) 
614 (48) 
742 (67) 

% Cap. Penetration 82 79.806 78.43257 85.655 
ΔPLoss  Cost ($) 26106.588 26036.496 26019.306 25891.2 
ΔQLoss  Cost ($) 5500.881 5479.74 5483.532 5456.67 
Cap. Inv. Cost ($) 16535 16175 15950 16515 
F G ($) 15072.469 15341.236 15552.838 14832.87 
Vmin (p.u) 0.90075 0.9 0.901041 0.9007 

 
Table 7. Performance Comparison of DO – 85 Bus test system – Total Hours / Year 

Method Load ΔPLoss (KW) ΔPLoss    Cost ($) ΔQLoss 
(KVAr) 

ΔQLoss  Cost ($) Cap. Inv. 
Cost ($) 

F G / Year ($) 

PBOA 
[4] 

Sc Minimization 75% 86.7207 89634.738 54.9382 18901.578 16535 92001.316 
100% 168.3196 106.494 
125% 290.0732 183.3627 

Tc Minimization 75% 86.3543 89420.696 54.62648 18843.404 16175 92089.1 
100% 168.0028 106.2605 
125% 289.2944 182.658 

Zc Minimization 75% 85.1022 88441.025 53.9454 18629.193 15950 91120.218 
100% 165.4292 104.4472 
125% 289.1034 182.7844 

D O 75% 85.8979 89026.38 54.607 18812.496 16515 91323.876 
100% 167.3873 106.1934 
125% 287.68 181.889 

 
 Table 7 exposes the performance of DO with PBOA [4] 
under three loading variations. Though the net FG achieved by 
[4] is better than DO, it is obvious that the number of buses for 

RPO is five. Alternatively, the net FG difference between DO 
and [4] is found to be below $800 per year. 

 
4.3 Simulation, Results & Discussions – 94-bus Portuguese EDPS 
 
Table 8. Performance of DO – 94 Bus test system – All three load variations 

Parameters Cap. @ 75% (L L L)  Cap. @ 100%  (M L L)  Cap. @ 125% (H L L)  
PLoss (IC) / PLoss (AC) (KW) 145.4694 ./ 190.4548 268.2693 / 362.8579   437.6239 / 614.0112 

% PLoss reduction 23.62 26.0681 28.72705 
QLoss (IC) / QLoss (AC) (KVAr) 201.8147 / 265.0281  371.7975 / 504.042 605.6983 / 851.085 

% QLoss reduction 23.8516 26.2368 28.83222 
Capacitor details (KVAr) 527 (19) 

198 (25) 
454 (52) 

371 (58) 

679 (19) 
281 (25) 
692 (52) 

501 (58) 

743 (19) 
382 (25) 
801 (52) 

716 (58) 
% Cap. Penetration 88.931 92.646 90.951 

Vmin (p.u) 0.932 0.9077 0.8784 
T × Δ PLoss Cost ($) 5398.248 29852.1622 15874.857 
T × Δ QLoss Cost ($) 2528.536 13912.1214 7361.601 
Cap. Inv. Cost ($) 15690 

F G ($) 59237.5256 
 
 The third EDPS taken for evaluation is a real 94-bus EDPS 
with 94 nodes, 93 branches, and 22 laterals and sub-laterals. 
The base KV is set at 15 KV, while the base MVA is 
established at 100 MVA. The line and load data for this 
practical EDPS can be accessed in [13]. The total apparent 
power demand under three load variations is (3597.75 + j 
1742.925) KVA, (4797+j 2323.9) KVA, and (5996.25+j 
2904.875) KVA respectively. The total apparent power loss for 
75%, 100%, and 125% load variations are (190.4548 + 
j265.0281) KVA, (362.858 + j 504.042) KVA and (614.0112 
+ j 851.085) KVA respectively. Under three load variations, 
the minimum bus voltages recorded are 0.89094, 0.84854, and 
0.80154 per unit (p.u.), respectively. Additionally, the total 
power losses (combining PLT, QLT ) under IC, are $192633.537 
and $89158.8924, respectively. The Single-line diagram 
depicting this test system is portrayed in Figure 5. The 
performance of D O in RPO considering Portuguese 94-bus 
EDPS is reflected in Table 8 and illustrated in Figure 6. The 
PTL and QTL reduction are found to be between 23.5% and 29% 
with reactive power penetration of around 90%. The minimum 

voltage enhanced under three load variations are 0.04106 p.u., 
0.05916 p.u., and 0.07686 p.u. respectively. Finally, the net FG 
accomplished by D O is $59237.526   

 
Fig. 5. Portuguese 94 Bus test system – IC 

!
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 Table 9 present the comparison of performance of DO in 
achieving reduction in PTL and QTL, Vmin enhancement and net 
FG under nominal load variations. From Table 8 it is observed 
that the performance of DO is better than NSGA II, MOWCA 
and MOGWO [4]. It is to be noted that the difference in 
reduction in PTL and QTL are found to be below 2%. Similarly, 
the reactive power penetration difference between D O and 
[4] is around 7%. The minimum bus voltage enhancement is 
found to be less than [4]. The net FG achieved by D O is found 
to be better than [4]. Table 10 also discusses the comparison 
of the outcomes of D O under 100% load variations with 
[12,13,14]. By comparing D O with [12], it is outward that the 
difference in PTL reduction is found to be minuscule.    

 

 
Fig. 6. Bus Voltage Profile – Portuguese 94-Bus test system 

 
 
Table 9. Performance Comparison of DO – 94 Bus test system – 100% load variations 

Parameters NSGA II [11] MOWCA  [11] MOGWO [11] D O Fixed Switched Fixed Switched Fixed Switched 
PLoss (IC) / PLoss (AC) (KW) 269.8589 / 

362.86 
271.0450 / 

362.86 
274.8324 / 

362.86  
276.441 / 

362.86  
272.4593 / 

362.86  
273.865 / 362.86  268.2693 / 

362.8579 
% PLoss reduction 25.6296 25.3027 24.2589 23.8156 24.9129 24.5255 26.0681 

QLoss (IC) /QLoss (AC) (KW) 373.2646 / 
504.04 

373.9985 / 
504.04 

378.0763 / 
504.04 

380.3276 / 
504.04 

375.9245 / 
504.04 376.628 / 504.04 371.7975 / 

504.042 
% QLoss reduction 25.9457 25.8001 24.9911 24.5445 25.418 25.2785 26.2368 

Capacitor details 
(KVAr) 

421 (11) 
621 (20) 
324 (23) 

 893 (54)  
61 (83)  

300 (11) 
500 (18) 
850 (54)  
550 (83) 

100 (90)  

701 (54) 
584 (83) 
600 (16) 

 437 (23)    

1200 (20)  
300 (25) 

800 (54)  

1000 (18) 369 
(24) 

949 (54)  

500 (15) 1050 
(20) 

750 (54)  

679 (19) 
281 (25) 
692 (52) 

501 (58) 

% Cap Penetration 99.8322 98.9716 99.92 98.9715 99.746 98.97 92.646 
ΔPLoss Cost ($)  29351.15 28976.814 27781.51 27273.836 28530.461 28086.822 29852.162 
ΔQLoss Cost ($) 13757.572 13680.366 13251.38 13014.55 13477.751 13403.7424 13912.12 

Cap. Inv. Cost ($) 14700 14600 14090 13360 13450 13360 13245 
F G ($) 28408.722 28057.18 26942.89 26928.386 28558.212 28130.564 30519.28 

Vmin (p.u) 0.915 (92) 0.915 (92) 0.92 0.9216 0.9168 0.9168 0.9085 (92) 
 
    
Table 10. Performance Comparison of DO – 94 Bus test system – 100% load variations 

Parameters MOWCA [12] GA [13] PSO [13]  TLBO [13]  MTLBO [13] AOA [14] D O Fixed Switched 
PLoss (IC) / 
PLoss (AC) 

(KW) 

270.4281 / 
362.86 

269.5503 / 
362.86 

279.1 
/362.858 

301.5 / 
362.858 

278.98 
/362.858 269.91/362.858 268.386 

/362.8578 
 268.2693 / 
362.8579 

% PLoss 
reduction 25.47316 25.71515 23  16.91 23.1 25.63 26.035 26.0681 

Capacitor 
details (KVAr) 

50 (10) 
521 (15) 
610 (20) 
318 (23) 
642 (57) 
50 (22) 

132 (56) 

300 (11) 
450 (18) 
100 (21) 
350 (83) 
300 (24) 
750 (57) 
50 (53) 

450 (65) 
450 (73) 
600 (84) 

250 (87) 

650 (58) 
450 (73) 
450 (84) 

300 (90) 

800 (59) 
450 (72) 
500 (83) 

300 (90) 

850 (58) 
400 (72) 
500 (84) 

250 (89) 

750 (10) 
750 (20) 

900 (58) 

679 (19) 
281 (25) 
692 (52) 

501 (58) 

% Cap 
Penetration 99.9613 98.9716 75.3045 79.60756 88.2138 86.0622 103.275 92.646 

ΔELoss  Cost 
($) 29171.51 29448.64 26434.025 19364.585 26471.897 29334.389 29815.3 29852.1622 

Cap. Inv. Cost 
($) 15955 15840 11230 11730 12730 12480 14480 13245 

F G ($) 13216.51 13608.64 15204.025 7634.585 13741.897 16854.389 15335.3 16607.16 
Vmin (p.u) 0.9174 (92) 0.9168 (92) 0.9094  0.9124 0.9039 0.9065 0.9065 0.9085 (92) 

 
 Reactive power penetration by [12] seems to be more than 
D O. The net FG difference between D O and [12] is $3390.65 
(fixed) and $2998.52 (variable). By comparing [13] with D O, 
the PTL reduction is found to be far better than GA, PSO, and 
TLBO. However, the difference is small compared to 
MTLBO [13]. The Vmin enhancement by D O is better than 
[13] except PSO. The net profit realized by DO is better than 
all the methods discussed in [13]. Finally, PTL reduction by 
AOA almost equalizes DO. However, it is to be noted that the 
reactive power penetration is more than 100% and the number 

of compensation buses is three [14]. The net FG difference 
between D O and [14] is below $1300.     
 
 
5. Conclusions 
 
This work emphasizes mainly the RPO in EDPS using a new, 
durable, and robust NIO called Dingo Optimizer (DO) to 
identify the optimal variations in penetration of SCs to 
achieve maximum PTL and QTL loss minimization with a 
reduction in capacitor investment cost thereby more FGs 
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while ensuring that all equality and inequality constraints are 
met. The major advantage of DO is the efficient handling of 
discrete, complicated, non-linear, and large-dimensional 
optimization problems. Three renowned radial DNs such as 
62-node, Indian 85-node, and Portuguese 94-bus EDPS have 
been utilized to demonstrate the usefulness of DO. The 
following are the observations: 
 

(i) In general, all the reactive power optimization-based 
research work in EDPS considers reduction in PTL with 
capacitor investment cost. However, this paper 
considers the minimization of both PTL and QTL with 
capacitor investment costs. 

(ii) No SBI has been adopted in this work to select the 
optimal nodes for RPO. DO have to identify the most 
potential nodes and appropriate reactive power capacity 
of the capacitor.   

(ii) Considering 62-node EDPS, around 35% of PTL and QTL 
reductions have been noticed considering all three load 
variations with an FG of $74886.78/year is evidenced.      

(iii) Regarding the Indian 85-node EDPS, the reduction in 
PTL and QTL is found to be between 51% and 54.5%, 
with a reactive power penetration of around 83%. Thus, 
the FG achieved per annum is $91323.88.  

(iv) Finally, in Portuguese 94-bus EPDS, the reductions in 
both the losses are found to be between 23% and 29%, 

with the reactive power penetration of around 90% is 
noted. The FG considering all three load variations is 
$59237.526    

(v) Considering the Indian 85-node and Portuguese 94-bus 
EDPS, the performances have been compared with the 
recent techniques presented in the literature. The 
difference in PTL and QTL reduction achieved by DO is 
found to be better and significant. 

 
 The simulation results and previous discussions affirm 
that DO consistently outperforms other methods by achieving 
reductions in both power losses and net FGs. Therefore, based 
on its consistent performance, DO is strongly recommended 
as an efficient technique for resolving RPO challenges. 
 The system will be extended to analyze the impact of DG 
(Distributed Generation) like solar and Wind. Other 
optimization techniques will also be tested to increase the 
convergence rate and improve accuracy. In the future, 
scalability tests will be implemented to test the performance 
of DO over larger EDPS networks. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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