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Abstract 
 

The permeability coefficient of gravel soil is closely related to gradation characteristics and plays a key role in 
engineering safety and stability. Among the studies on the correlation between gravel soil gradation characteristics and 
permeability coefficient, traditional empirical formulas and theoretical models are subjected to specific limitations, 
failing to accurately capture the complex nonlinear relations. In this study, considerable test data on gravel soil were 
collected. The model establishment, training, and optimization were performed using a backpropagation (BP) neural 
network. The complex relations between gravel soil gradation characteristics and permeability coefficient were explored. 
Moreover, the influence of each particle size on permeability coefficient was demonstrated. The prediction results of full 
gradation and common gradation were comparatively analyzed. Results show that, the prediction results on permeability 
coefficient by neural network are more accurate. In this study, the sample size is enlarged to 138 groups, which 
significantly improves the prediction accuracy. d60 is the boundary particle size. The permeability coefficient increases 
with the increase in the fine particles with a size of d60 or below, whereas it decreases as the coarse particles with a size 
above d60 increase. The influence degree of different particle gradations on permeability coefficient is heterogeneous. d10 
is a high-sensitivity particle size, which exerts the greatest influence on permeability coefficient, followed by d20 and d40, 
which are medium-sensitivity particle sizes. The relative weights of other particle sizes are small, being low-sensitivity 
particle sizes. The influence of fine particles on permeability coefficient is greater than that of coarse particles, and full 
gradation achieves a better prediction result for permeability coefficient compared with common gradation. p5 is also a 
key factor affecting permeability coefficient. 
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1. Introduction 
 
In recent years, water inrush accidents have occurred 
frequently in water conservancy, hydropower, and road 
engineering projects. For example, in 2015, a major water 
inrush accident occurred in Jiangjiawan Coal Mine in 
Datong City, Shanxi Province, causing 21 casualties and 
major economic losses. In 2021, a water inrush accident 
happened in Shijingshan construction tunnel in Zhuhai City, 
Guangdong Province, which led to the collapse of the vault 
and the death of 14 construction workers. In 2023, water 
seepage occurred in the third bid section of the second phase 
of Bomeng Expressway in Anhui Province during 
foundation excavation, which caused the collapse of the 
earthwork. Traffic, construction, and other projects have set 
increasingly strict requirements for the performance of 
foundation soil. The permeability characteristics of gravel 
soil, which is an important geotechnical material in 
engineering construction, directly affect the stability, 
durability, and safety of engineering structures, possibly 
triggering serious geological disasters. Permeability 
coefficient has been widely used to describe the ability of 
fluid to pass through porous media, which is one of the key 
parameters in seepage analysis and accurately quantifies the 
seepage rate under the unit hydraulic gradient. The larger its 

value, the stronger the ability of soil to allow water to pass 
through and the higher the water permeability. Permeability 
coefficient is easily influenced by other factors, such as 
particle gradation, medium type, particle morphology, 
surface-to-volume ratio, and compactness [1-3]. Among 
them, particle gradation is a comprehensive reflection of 
particle size and particle distribution at all levels, and it is 
the main influencing factor of permeability coefficient. The 
study on particle gradation and permeability coefficient is of 
great realistic significance and plays an important role in 
permeability analysis and antiseepage design in geotechnical 
and hydraulic engineering. 

The relationship between particle gradation 
characteristics and permeability coefficient has been 
extensively studied and discussed, but such studies have 
been mostly based on field tests. Corresponding empirical 
formulas have been put forward, and , , , and  
are taken as key parameters [4-7]. Such formulas have been 
modified and improved by some scholars, e.g., introducing 
the nonuniformity coefficient and curvature coefficient in 
the Terzaghi formula to further improve the scope of 
application and accuracy of study results, which provides the 
means of estimation for exploring the complex relation 
between the two. Given the complex composition of gravel 
soil particles and their irregular shapes, however, the 
gradation characteristics present a highly nonlinear relation 
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with permeability coefficient. Considerable existing 
literature has shown that discreteness exists in the prediction 
of permeability [8]. The calculation as per the empirical 
formulas considering gradation characteristics is tedious. 
The traditional theoretical derivation hardly captures the 
complex relationship between gravel soil gradation 
characteristics and permeability coefficient accurately, 
accompanied with a large prediction error and specific 
limitations in the application of empirical formulas [9]. In 
addition, tailor-made large-scale instruments are usually 
needed in the related tests of the influence of gravel soil 
gradation characteristics on permeability coefficient, 
resulting in relatively high costs of tests, and the accuracy is 
affected by manual operation. Substantial samples are 
required in the statistical analysis of parameters such as 
gradation and permeability coefficient based on test data 
[10]. 

Along with the popularization and application of 
artificial intelligence (AI) algorithms, neural networks, 
presenting outstanding advantages such as nonlinear 
mapping ability and self-adaptation, provide reliable 
technical support for evaluating gravel soil permeability in 
engineering practice. They have been utilized by a few 
scholars to reveal the influence of gradation characteristics 
on permeability coefficient [11-12]. However, the test data 
size is relatively small, and the structure is relatively simple, 
along with the proneness to local optima in the training 
process, resulting in the failure to obtain an optimal model 
prediction result. Although Raza and Sharma [10] applied a 
neural network model to prediction, they focused on porous 
asphalt mixture instead of gravel soil. On the basis of 
existing research, in this study, thorough experimental data 
on the gradation characteristics and permeability coefficient 
of gravel soil were added, and a neural network model with 
three hidden layers was constructed for training and 
prediction to improve prediction accuracy. With the added 
hidden layers, the network could learn more complex feature 
combinations and abstract representations, then more 
accurately fit the highly nonlinear data distribution, and 
improve the accuracy and precision of permeability 
coefficient prediction results through refined data or feature 
extraction. The influence of gradation characteristics on 
permeability coefficient was analyzed and predicted using 
the neural network model based on 138 groups of test data. 
Furthermore, the potential relation laws between gravel soil 
gradation characteristics and permeability coefficient were 
accurately revealed, expecting to provide a valuable 
decision-making basis for engineering practice. 
 
 
2. State of the art 
 
Permeability coefficient reflects the permeability of soil and 
directly affects engineering safety. To facilitate engineering 
application, scholars have introduced empirical formulas for 
permeability coefficient in combination with different soil 
characteristics. The existing empirical formulas for 
permeability coefficient, which are specifically 
representative and have been widely used in theoretical 
research and practical work, were obtained by different 
scholars through experiments. These formulas have been 
improved and optimized by some scholars. For instance, 
taking clayey soil as the study object, Zhou et al. [13] 
corrected the Kozeny–Carman formula and found that the 
prediction result based on new formulas is more accurate. 

Empirical formulas and indoor tests play a dominant 
role in the studies on the relationship between gradation 
characteristics and permeability coefficient. Bao et al. [14] 
explored the permeability of coarse-grained soil and 
incorporated the gradation area into the model, which 
improved the traditional empirical formula. Based on a 
series of experimental tests, the results were reliable. In a 
study based on image techniques and falling head tests, Tang 
and Huang [15] determined that the smaller the particle 
gradation, the lower the permeability coefficient. Zhang et al. 
[16] used discrete and finite element methods to test the 
influence of particle size on permeability coefficient and 
indicated that porosity and pore connectivity also affect 
permeability coefficient, of which the latter exerts a more 
significant influence. Tang et al. [5] conducted laboratory 
tests and model predictions based on the gradation 
characteristics of different particles. They found that the 
gradation characteristics have a significant impact on 
permeability coefficient, and permeability coefficient will 
increase with the decrease in gradation range and particle 
size. Li et al. [17], taking debris-flow fans as the research 
object, emphasized that particle size distribution is an 
important parameter for determining permeability. 
Experimental research demonstrated that the permeability 
coefficient was greater than the initial value when the 
content of fine particles was 10% and 15%; when the 
content was increased to 20%, 25%, and 30%, the 
permeability decreased. Chen et al. [6] investigated the 
influence of particle properties on permeability coefficient 
and established a numerical simulation model based on 
particle discrete element software. They found that the 
Kozeny–Carman equation can well predict the permeability 
coefficient of porous media with different gradations, and 

 can best represent the particle size characteristics of the 
particle system. 

Despite the many empirical formulas for permeability 
coefficient, the parameter types and function forms adopted 
by scholars differ considerably. Because different soil 
samples and measurement methods are used in different tests, 
the calculated results of the same sample under different 
formulas are inconsistent [18]. This inconsistency is 
accompanied with large errors in comparison with the 
measured result, which stresses the necessity for predicting 
permeability coefficient on the basis of AI algorithms [19-
20]. The permeability prediction models established in the 
existing literature mainly rely on porosity or pore 
characteristics [21], while the influence of particle gradation 
characteristics has rarely been taken into account [22]. 
Although some indicators representing particle gradations 
have been considered by a few scholars, only one or several 
particle sizes have been included, failing to systematically 
and comprehensively explain the influence of different 
particle gradation characteristics on permeability coefficient. 
The current empirical formulas are prone to such problems 
as large errors, considerable time consumption, high costs of 
indoor experimental studies, and weak universality. To 
address these problems, this study scientifically predicted 
the complex nonlinear relation between particle gradation 
characteristics and permeability coefficient using neural 
networks, expecting to realize simulation training through 
test samples within a large scope and improve the accuracy 
of prediction results. 

The remainder of this study is organized as follows: In 
Section 3, the prediction process for permeability coefficient 
based on neural network modeling, test sample data, and 
gradation characteristics is briefly introduced. In Section 4, 
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the results are analyzed and discussed, the permeability 
coefficient is predicted on the basis of the characteristic 
parameters of full gradation and common gradation, the 
sensitivity of each particle size is analyzed, and the results 
are compared. In Section 5, the summary and expectations 
are given, conclusions are drawn, the research limitations are 
explained, and future research directions are indicated. 
 
3. Methodology 
 
3.1 Neural network modeling 
Neural network is a multilayer feedforward neural network 
trained by error backpropagation, which is characterized by 
high flexibility, self-learning ability, and nonlinear mapping 
ability. The schematic of the neural network constructed in 
this study to predict permeability coefficient is shown in Fig. 
1. 
 

 
Fig. 1.  Neural network schematic 

 
 
The black color in Fig. 1 indicates nodes or neurons 

randomly deleted via the dropout method, which can prevent 
overfitting. 
 
3.2 Test sample data 
For establishing an accurate and reliable neural network 
prediction model, the relevant literature documents were 
consolidated and summarized through theoretical analysis. 
Gravel soil test data from different sources were widely 
collected, and a total of 138 groups of test samples were 
obtained. These data covered multiple gradation 
characteristic parameter combinations and the corresponding 
measured values of permeability coefficient, with extensive 
coverage and specific representativeness. The maximum 
particle size  varies in the test data of different 
literature, which may lead to great differences in the 
influence of particle size on permeability coefficient. As 
deemed by some scholars, void ratio is a key factor 
influencing permeability coefficient [21], and its coupling 
relationship with gradation determines permeability. Given 
training and predicted data as test data, the void ratio already 
reached a compact state under this gradation, and the 
deviation in the study result caused by the difference in void 
ratio could be neglected. The permeability coefficient was a 
saturated permeability coefficient obtained through tests 
based on Darcy’s law under standard temperature ( ), 
which could effectively avoid the influence of temperature 
difference. The samples were all common irregular gravel 
soil particles with approximate appearance, generating minor 
disturbance on the prediction result. 

In consideration of the dimension differences of different 
indicators, 138 groups of sample data were preprocessed. 
The related data such as particle size and gradation 
characteristic parameters were normalized to make them fall 
into the range of 0–1, preventing the gradient problem in the 

training process induced by the difference in data magnitude, 
to accelerate the model training speed and improve the 
training effect. On this basis, the processed gravel soil 
gradation characteristic parameters were taken as the input 
layer of the neural network model and the corresponding 
permeability coefficient as the output layer. Tansig and 
Purelin were chosen as activation functions. 
 
3.3 Prediction process and sensitivity evaluation 
The preprocessed dataset was divided into training and 
validation sets in accordance with a certain proportion. In 
this study, 95% of the test data were selected for training, i.e., 
131 groups were used to train the neural network model, and 
the combinations of full gradations , , , , , 

, , , , and  with the measured 
permeability coefficients were taken as the training samples. 
The gradation characteristics were taken as the input 
variables, and the permeability coefficients were taken as the 
output variables. Then, training was performed to obtain the 
nonlinear mapping relation between the two. The connection 
weights between neurons were continuously adjusted to 
reach the minimum error between the predicted permeability 
coefficient in the model output layer and the actual value. 
The maximum training step size was set to 1000, and the 
error was smaller than 5%. The remaining seven groups 
were used to verify the accuracy and reliability of the model. 
Specifically, the seven groups of sample gradation 
characteristic parameters in the validation set were input into 
the trained model to obtain the predicted permeability 
coefficient and compare it with the actual permeability 
coefficient. 

In this study, the sensitivity of gradation characteristics 
was analyzed through the mean impact value method with 
reference to the practice of existing studies. This method can 
be used to evaluate the sensitivity of input neurons to output 
neurons. Its symbols represent the related directions, and the 
absolute value stands for the importance of the influence, i.e., 
the degree of the influence of the change in a gradation 
characteristic parameter on permeability coefficient. First, 
the seven groups of sample particle sizes or gradation 
characteristics in the validation set were added or deducted 
by 10% on the basis of the original value to form a new 
incremental sample  or decremental sample . Two 
groups of samples were imported into the neural network 
model for simulation to obtain two groups of predicted 
permeability coefficients  and , and the difference 
between the two was marked as , i.e., . 
Second, the above steps were repeated for the rest of the 
samples to finally obtain ~  corresponding to the 
seven groups of samples in the validation set, and the mean 
value MIV was calculated on this basis. 
 
 
4. Result analysis and discussion 
 
4.1 Full gradations and permeability coefficient 
In this study, the prediction accuracy of the neural network 
was evaluated using the relative error, calculated by the 
following formula (1): 

 

                        (1) 
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In this formula, K is the test value of permeability 
coefficient, Kt denotes the predicted value of permeability 
coefficient, and δ is the error. 

On the basis of the neural network model constructed in 
Chapter 3.1, the curve graph of training errors changing with 
the number of iterations was obtained, as shown in Fig. 2.  
 

 
Fig. 2. Training Curve 
 

The error histogram after neural network training is 
displayed in Fig. 3. The errors were mostly concentrated 
near −0.001, indicating a good fitting effect, and the overall 
model accuracy was acceptable. 

The seven groups randomly selected were used for 
prediction to test the generalization ability of the neural 
network model. The prediction and test results for 
permeability coefficient by full gradations are shown in 
Table 1. The predicted value was close to the test value. The 
maximum relative error was 28.50% from the test number 
T5, and the minimum error was 0 from the test number T7. 
This finding indicated that particle gradation was the key 
factor affecting permeability coefficient, and permeability 
coefficient could be predicted well with full gradations. Over 

85% of the samples in the validation set had errors between 
the predicted and test values below 10%. The average error 
was 7.62%, which was significantly lower than the average 
error of 19.60% obtained by Wang et al. [11]. Additional 
gravel soil permeability test sample data were collected, 
trained, and predicted using the neural network to improve 
the prediction accuracy for permeability coefficient and 
effectively solve such problems as high indoor test costs, 
considerable time consumption, and weak universality. The 
maximum error might be ascribed to the fact that 
permeability coefficient is affected by many factors, 
including void ratio, pore connectivity, bedding architecture, 
compactness, particle shape, and roughness, which would 
influence the study result to some extent. Nevertheless, the 
error was acceptable in engineering projects. 

 

 
Fig. 3.  Error histogram 

 

 
Table 1. Full gradations and prediction results of permeability coefficient 

No. 
Cumulative mass percentage (%) K 

/(cm/s) 
Kt 
/(cm/s) 

δ 
/(%)           

T1 2.50 5.70 9.32 13.83 19.97 25.07 31.76 40.59 49.21 60.00 0.73 0.78 6.85 
T2 10.00 16.70 23.30 30.00 40.00 50.00 60.00 70.00 80.00 90.00 5.63 5.64 0.18 
T3 2.00 6.70 11.50 18.90 36.20 50.00 67.00 102.40 150.00 200.00 0.24 0.25 4.17 
T4 5.00 7.36 9.50 12.99 17.84 26.00 35.84 45.05 52.46 60.00 0.35 0.32 8.57 
T5 6.70 40.00 130.00 292.90 429.60 503.70 577.80 651.90 725.90 800.00 2.00 2.57 28.50 
T6 0.60 2.26 5.32 9.81 12.85 16.26 19.74 23.41 27.43 31.50 0.79 0.75 5.06 
T7 1.10 2.00 5.00 7.50 10.00 20.00 25.00 30.00 35.00 40.00 0.12 0.12 0.00 
Notes: T1–T7 represent the test numbers in the validation set, K is the test value of permeability coefficient, Kt denotes the predicted value of 
permeability coefficient, and δ is the relative error value. The same below. 

 
The sensitivity evaluation results of gradation 

characteristics, obtained through the mean impact value 
method, are listed in Table 2. The MIV values of –  
were 0.11, 0.07, 0.04, 0.06, 0.02, and 0.01, respectively, 
which were positive, meaning that the permeability 
coefficient increased with the increase in particle size. The 
values of –  were –0.04, –0.05, –0.03, and –0.01, 
respectively, which were negative, indicating that the 
permeability coefficient decreased with the increase in 
particle size. The absolute value represents the relative 
importance of the influence of the corresponding particle 
size on permeability coefficient. Therefore,  could be 
considered the boundary particle size, which differed from 
existing studies, in which  was taken as the characteristic 
and boundary particle size [11,23]. In this study, when the 

number of fine particles with a size of  or below 
increased, the pore structure of soil could be optimized to 
some extent, effectively expanding seepage pore channels 
and further elevating the permeability coefficient. 
Meanwhile, large particles might expand the pore volume 
when piled up. The permeability coefficient would increase 
somehow according to the relationship between permeability 
coefficient and void ratio. When the coarse particles with a 
size above  increased, small particles that entered the 
pores combined into large particles, the effective channel 
area for water flow was reduced, the seepage path was 
considerably zigzag, and the permeability coefficient 
declined. 

According to the sensitivity evaluation results of particle 
sizes, the permeability coefficient was directly influenced by 
each particle size, but the degree of influence was greatly 
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different.  had the greatest influence on permeability 
coefficient, being a high-sensitivity particle size. In the study 
of Hatanaka et al. [24],  and  were taken as key 
parameters affecting permeability coefficient. The relative 
weights of  and  were within 0.5–0.7, being medium-
sensitivity particle sizes. The relative weights of other 
particle sizes were lower than 0.5, being low-sensitivity 

particle sizes. The filling effect of fine particles played a 
critical role in permeability coefficient, and its degree of 
influence was much higher than that of coarse particles. 
However, the relative weights of  and  were 0.45 and 
0.36, respectively, indicating that the skeleton effect of 
coarse particles also exerted an important effect on 
permeability coefficient control. 

 
Table 2. MIV and sensitivity of each particle size 

Variable 
Cumulative mass percentage (%) 

          
MIV 0.11 0.07 0.04 0.06 0.02 0.01 −0.04 −0.05 −0.03 −0.01 
Weight 1.00 0.64 0.36 0.55 0.18 0.36 0.27 0.45 0.27 0.09 
Sensitivity High Medium Low Medium Low Low Low Low Low Low 

According to the previous discussion on MIV, it reflects 
the difference in permeability coefficient between the new 
incremental sample and the decremental sample formed by 
adding or subtracting 10% from different gradation 
characteristics. Thus, the influence degree of a particle size 
increase of 20% on permeability coefficient was further 
determined, as shown in Fig. 4. The figure demonstrates the 
degree of influence of specific particle sizes on permeability 
coefficient, which provides an intuitive basis for studying 
the seepage characteristics of porous media such as rock and 
soil. In engineering design, the corresponding particle size of 
materials can be selected on the basis of this figure to meet 
the requirements for the permeability of soil and other 
materials. 

 

 
Fig. 4. Influence degree of a particle size increase of 20% on 
permeability coefficient 
 
4.2 One or multiple gradation characteristics and 
permeability coefficient 
In the study on permeability coefficient, commonly used 
gradation characteristics include , , , and  
[3,6]. These values were taken as representative particle 
sizes to investigate the influence of common gradation 
characteristics on permeability coefficient. On the basis of 
the previously trained neural network model, the test 
samples in the validation set were selected for prediction, 
with the results listed in Table 3. The test values of 
permeability coefficient of most samples were close to the 
predicted values, indicating that the permeability coefficient 
could be predicted through the common gradation 
characteristics in some cases, and the results were accurate. 
However, the relative error of TM5 was high, reaching 
86.00%, and the prediction deviation was large. On the one 

hand, the particle size of coarse-grained soil was relatively 
uniform, the particle size span was small, and the skeleton 
gaps formed between large particles could be filled with fine 
particles, so the permeability coefficient decreased steadily. 
When the content of fine particles completely filled the gaps 
in the skeleton, a structure similar to fine-grained soil would 
be formed if fine particles were continuously added. The 
permeability coefficient would be further reduced. By 
contrast, when the content of fine particles was small, or 
they were unevenly distributed, a large seepage channel was 
formed locally, which led to an increase in permeability 
coefficient. On the other hand, the particle size span in 
gravel soil was very large, and the skeleton formed by large 
particles easily formed a multilevel pore structure, such as 
the skeleton pores formed by medium-sized particles filling 
large particles and the secondary pores between medium-
sized particles filling fine particles. Although the pores of 
large particles were reduced to some extent, some 
connectivity remained, and the filling effect of medium-
sized particles and the filling and plugging effect of fine 
particles acted together on the permeability coefficient. If the 
fine particles had a certain viscosity, an adsorption layer 
would be formed on the pore surface, which would further 
reduce the permeability coefficient. 

The MIV value of  was 0.05, which was lower than 
that (0.07) of , whereas the prediction results of full 
gradations showed that the MIV value of  was much 
greater than that of . The contradiction was possibly due 
to the poor accuracy of single or multiple gradation 
characteristics in predicting permeability coefficient. 
Meanwhile, the model training and prediction results relied 
on the support from the permeability test data of a large 
sample size. The MIV value of  was −0.08, indicating 
that with the increase in , the permeability coefficient 
would gradually decline. That is, they showed a negative 
correlation, which accorded with the current research 
conclusions drawn by scholars. This finding, to some extent, 
manifested that the prediction of permeability coefficient 
through the neural network is reliable and that the prediction 
result is of specific universality. 

 
Table 3. Common gradations and prediction results of permeability coefficient 

Variable 
Cumulative mass percentage (%) K 

/(cm/s) 
Kt 
/(cm/s) 

δ 
/(%)      

TM1 2.50 5.70 9.32 25.07 17.80 0.73 0.81 10.96 
TM2 10.00 16.70 23.30 50.00 8.30 5.63 5.28 6.22 
TM3 2.00 6.70 11.50 50.00 16.00 0.24 0.27 12.50 
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TM4 5.00 7.36 9.50 26.00 10.00 0.35 0.41 17.14 
TM5 6.70 40.00 130.00 503.70 9.00 2.00 3.72 86.00 
TM6 0.60 2.26 5.32 16.26 28.90 0.79 0.83 5.06 
TM7 1.10 2.00 5.00 20.00 30.00 0.12 0.13 8.33 
MIV 0.05 0.07 0.05 0.06 −0.08 — — — 
Notes: TM1–TM7 represent the test numbers in the validation set;  is the cumulative mass content percentage, corresponding to a particle size of 5 
mm. 
 
4.3 Comparison of prediction results between full and 
common gradations 
Comparison of the prediction results between full and 
common gradations showed that the former achieved a better 
prediction effect. The maximum, minimum, and mean errors 
of permeability coefficient predicted using full gradations 
were 28.50%, 0%, and 7.62%, respectively, but the error 
obtained by single or multiple gradation characteristics was 
relatively large. Although the error of most test samples was 
acceptable, the error of individual test samples reached 
86.00%, indicating that predicting permeability coefficient 
using full gradations is more reliable and accurate. 
According to the MIV values of different particle sizes in 
Table 3, the MIV value of  was the maximum, revealing 
its great influence on permeability coefficient, followed by 

 whose MIV value was 0.06.  influenced the 
permeability coefficient in the same way as  did, failing 
to embody the different influences of key particle sizes, and 
the prediction result was not accurate. 

The reasons are as follows: First, the integrity of 
gradation information affects permeability coefficient. 
Single or several gradation parameters can only reflect the 
characteristics of specific particle sizes or some particle 
sizes in soil particles and fail to fully reflect the distribution 
and filling effect of other particle sizes. Limited gradation 
information may lead to distorted prediction results. Second, 
the pore structure of soil is also a key factor affecting 
permeability coefficient [25]. It has a certain complexity, 
which is determined by particle gradation. Single or multiple 
commonly used gradation parameters cannot accurately 
describe the size, shape, connectivity, and distribution of 
pores. Hence, the influence of different particle sizes on 
permeability coefficient, such as the skeleton function of 
gravel and the filling and plugging function of sand, should 
be fully considered in prediction. Third, full gradation takes 
the information of all particles into the model and considers 
the interaction between particles, which can gain more 
accurate prediction results. However, single or several 
gradation parameters cannot fully consider the arrangement 
and contact mode of particles with different sizes, as well as 
the effects on water flow. Consequently, the results obtained 
cannot accurately reflect the permeability characteristics. 
 
 
5. Conclusions 
 
Given 138 groups of gravel soil permeability test sample 
data, the relationship between gravel soil gradation 
characteristics and permeability coefficient was studied 
using a neural network. Then, training and simulation were 

performed on the basis of full and common gradations, and 
the prediction results of permeability coefficient were 
comparatively analyzed. The following conclusions were 
drawn: 

(1) The traditional empirical formulas for predicting 
permeability coefficient exhibit limitations. By contrast, the 
neural network-based prediction result is favorably accurate 
and reliable, conforming to the needs of roughly estimating 
permeability coefficient in general engineering projects. 

(2) Particle gradation is the key factor affecting 
permeability coefficient, and  is the boundary particle 
size. When the number of fine particles with a size of  or 
below increases, the permeability coefficient increases. 
When the number of coarse particles with a size above  
increases, the permeability coefficient declines. Different 
particle sizes exert diverse influences on permeability 
coefficient, where  has the greatest impact on 
permeability coefficient, being a high-sensitivity particle 
size, followed by  and , being medium-sensitivity 
particle sizes. The impact of other particle sizes on 
permeability coefficient is weak, being low-sensitivity 
particle sizes. 

(3) Compared with single or multiple gradation 
characteristics, full gradation can better predict the 
permeability coefficient. The influence of fine particles on 
permeability coefficient is greater than that of coarse 
particles, and the filling and plugging effects of fine particles 
and the skeleton effect of coarse particles act together on the 
permeability coefficient.  is also a key factor affecting 
permeability coefficient. 

In this study, the influences of full and multiple 
gradation characteristics on permeability coefficient are 
investigated on the basis of a neural network, while the 
effects of porosity, pore size and distribution, and roughness 
are not considered. In the follow-up study, these factors will 
be included into a unified analytical framework to obtain 
more universal and comprehensive research conclusions. 
Test sample data within a larger scope will be trained for 
prediction to further improve the prediction accuracy for 
permeability coefficient. Furthermore, an indoor 
experimental study will be performed to verify the 
effectiveness of model prediction from multiple angles. 

 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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