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Abstract 
 

Globally, vision impairment poses significant challenges, especially for those who are blind, leading to their daily 
struggles. Our proposed system proposes an innovative system that combines computer vision and Internet of Things 
technologies to empower visually impaired people during navigation, with the goal of increasing their mobility and 
independence. Conventional camera-based solutions frequently fail to accurately recognize objects and obstacles, as well 
as achieve precise distance measurements. In response, our proposed work introduces a smart blind stick assistance system 
that aims to address these limitations. Using the COCO dataset supplemented with 80 standard objects and an additional 
15, our system employs YOLOv5 for real-time object detection, allowing accurate identification of obstacles in the 
environment. Most importantly, real-time scene descriptions are delivered audibly with multilingual support, allowing 
users to understand spatial concepts more effectively. The implementation includes a seamless integration of the Raspberry 
Pi and Chainer library for efficient neural network inference, as well as text-to-speech synthesis to provide spoken 
feedback. Additionally, we have integrated an ultrasonic sensor for precise distance measurement, enhancing the system's 
ability to detect obstacles and provide accurate navigation assistance. During our tests, the system achieved 95% object 
detection accuracy (92-98% confidence interval, n=10) using an augmented COCO dataset and provides real-time, 
multilingual scene descriptions (average processing time 50ms ± 10ms; ultrasonic sensor latency 2ms ± 0.5ms). This novel 
approach represents a significant advancement in object recognition and accessibility for visually impaired people, 
promising to improve their quality of life and promote greater independence.  
 
Keywords: Vision impairment, Blindness, Computer vision, Internet of Things (IoT), Object recognition, Real-time object detection, 
Audible scene descriptions 
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1. Introduction 

  
Considering the global prevalence of visual impairments, 
addressing the challenges faced by the visually impaired 
through technology is imperative. With approximately 285 
million affected individuals worldwide, including 39 million 
living with total blindness [1], there's a pressing need to 
leverage innovations to enhance their lives. Vision 
impairment poses significant challenges, particularly for 
those who are blind, leading to daily struggles in navigation 
and interaction with their environment. Traditional aids, such 
as canes and guide dogs, although valuable, have limitations 
and do not fully address the complexities of modern, fast-
paced environments. Our proposed system introduces an 
innovative solution that combines computer vision and 
Internet of Things (IoT) technologies to empower visually 
impaired people during navigation, with the goal of increasing 
their mobility and independence. The integration of these 
advanced technologies aims to create a comprehensive tool 
that not only detects obstacles but also provides detailed, real-
time information about the surrounding environment. This 
system, referred to as the Smart Blind Stick Assistance 
System, marks a significant advancement in assistive 
technology for the visually impaired. Conventional camera-
based solutions frequently fail to accurately recognize objects 
and obstacles and achieve precise distance measurements. 
These systems often struggle with varying lighting 
conditions, cluttered environments, and the dynamic nature of 

outdoor settings. To address these limitations, our project 
employs the COCO (Common Objects in Context) dataset, 
which has been enriched with 80 standard objects and an 
additional 15 items specifically relevant to the visually 
impaired. This comprehensive dataset enables the system to 
identify a wide range of objects accurately. At the core of our 
system is the YOLOv5 (You Only Look Once version 5) 
algorithm, known for its efficiency and accuracy in real-time 
object detection. YOLOv5’s ability to process images and 
detect objects at high speed makes it ideal for applications 
requiring instant feedback. This capability ensures that users 
receive timely and accurate information about their 
surroundings, enhancing their ability to navigate safely and 
confidently. One of the standout features of our system is its 
ability to deliver real-time scene descriptions audibly, with 
multilingual support. This functionality allows users to 
understand spatial concepts more effectively, catering to 
diverse linguistic backgrounds. The implementation includes 
the seamless integration of the Raspberry Pi and the Chainer 
library for efficient neural network inference. The Raspberry 
Pi serves as the processing hub, handling image acquisition, 
object detection, and audio feedback generation. The Chainer 
library supports the neural network models that drive the 
object detection and scene description processes. 
Additionally, our system incorporates an ultrasonic sensor for 
precise distance measurement. This sensor enhances the 
system’s ability to detect obstacles and provide accurate 
navigation assistance, particularly in detecting objects that are 
not within the camera’s field of view or are too small to be 
reliably identified through image processing alone. The 
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ultrasonic sensor operates within a range of 1.5 meters, 
alerting users to nearby obstacles through audio feedback, 
ensuring they can navigate safely even in close quarters.  
  The development of the Smart Blind Stick Assistance 
System represents a holistic approach to addressing the 
mobility, navigation, and safety needs of visually impaired 
individuals. By integrating multiple technologies into a 
unified solution, we aim to provide a tool that significantly 
improves the quality of life for users, promoting greater 
independence and confidence in their daily activities.   
  Our paper explores the historical trajectory, current state, 
and future prospects of Smart Blind Stick Assistance. By 
examining the evolution of these technological components, 
we aim to uncover the potential of technology to revolutionize 
the experiences of visually impaired individuals in navigating 
a sightless world. The paper delves into the various 
components of our proposed system, including the 
architecture, object detection capabilities, and scene 
description processes, providing a comprehensive overview 
of how these elements come together to create a powerful 
assistive tool.  
  The Implemented Smart Blind Stick Assistance System 
stands as a pioneering effort to harness the power of computer 
vision and IoT technologies to address the challenges faced 
by the visually impaired. Through continuous innovation and 
refinement, this system holds the promise of transforming the 
way visually impaired individuals interact with their 
environment, fostering greater independence and improving 
their overall quality of life. Fig. 1 offers a comprehensive 
depiction of the conceptual framework underpinning our 
research paper.  
 

 
Fig. 1. Orientation of the Research Paper  
 
  
2. Literature Review  
 
A blind stick consisting of ultrasonic sensors for obstacle 
detection, SURF algorithms for object identification, 
GPSbased navigation, and voice command capability was 
built by A. Krishnan et. al [1], haptic feedback improves 
obstacle perception. However, reliance on smartphone app 
reliability, probable inadequacy of the object database, and 
susceptibility to environmental influences are all important 
problems. Blind stick made by P. Ambawane [2], uses a 
camera module to collect real-time video, which is then sent 
to the cloud for analysis using Google's Video Intelligence 
API. In [2] API recognizes objects and text and generates 
speech output for navigation. It is powered by a rechargeable 
battery module and is suitable for both indoor and outdoor 
use, providing versatility. However, restrictions include 
internet access, processing complexity with many cameras, 

and the camera module's restricted working range. A 
revolutionary smart stick equipped with sensors that detect 
obstacles and water enables visually impaired people. T. S. 
Aravinth et. al [3] supply alerts via visual signs and ear pad 
alerts, with GPS for exact position monitoring and a USB 
camera for object detection. Raspberry Pi handles data in real-
time, improving user efficacy. Limitations include 
environmental issues such as inadequate GPS signal and 
interference. Advanced features like voice assistants and 
wearable devices may be added in the future to provide 
complete assistance. The Smart Stick for Visually Impaired 
Individuals is a state-of-the-art device by N. Loganathan et. 
al. [4] that integrates ultrasonic and infrared sensors, a radio 
frequency transmitter and receiver, a microcontroller, a GPS 
modem, and SMS communication capabilities to aid blind 
individuals in navigating their surroundings independently 
and safely. While offering features such as obstacle detection, 
location tracking, haptic and auditory feedback, and 
emergency communication, the device may face limitations 
related to sensor processing times, GPS signal strength, 
battery life, user training, and environmental factors. Despite 
these challenges, the Smart Stick plays a crucial role in 
enhancing the mobility and safety of visually impaired 
individuals, showcasing the potential of assistive technology 
to improve the quality of life for users.  
  A low-cost Braille translation device [5] converts text and 
voice inputs into Braille symbols for blind students. F. S. Apu, 
et. al. [6] feature a single refreshable Braille cell controlled by 
servo motors and supports multiple languages. Educators can 
connect it to smartphones and computers via Bluetooth and 
USB for teaching multiple students simultaneously. While 
portable and efficient, improvements are planned to enhance 
standalone functionality, ease of use, and language support, 
enriching the education experience for the visually impaired. 
The Smart Portable Assisted Device in [6] detects road 
obstacles with sensors and uses Android software with 
Google Maps for navigation and communication. Aritra Ray 
and Hena Ray’s folding stick design is suitable for indoor and 
outdoor use, audibly indicating obstacle distances. Future 
enhancements may include better sensors, cost reduction, AI 
integration, and more testing. A smart autonomous 
GPScontrolled walking stick with a portable wheel module 
aids the blind and visually impaired. The authors D. D. 
Kairamkonda et. al., [7] include wireless communication 
between Raspberry Pi and Arduino Mega, GPS navigation, a 
camera sensor, and an infrared sensor for obstacle detection. 
The system aims to revolutionize existing walking assistants, 
with future plans to improve power consumption through self-
recharging. Limitations are not mentioned.  
  A wearable device merges smart glasses with obstacle 
detection for the visually impaired is designed by P. S. 
Rajendran et. al. [8]. Cameras capture images processed for 
obstacle detection, providing audible feedback. It's portable, 
lightweight, user-friendly, and affordable, yet accuracy may 
be affected by environmental factors. Improvements in GPS, 
object recognition, and compatibility with assistive 
technologies are sought, particularly for low-income regions, 
necessitating real-world testing for validation. The Arduino-
based smart stick assists visually impaired individuals with 
GPS/GSM modules (Fig. 2), obstacle sensors, and 
vibration/sound feedback [9]. It's rechargeable, low-power, 
and customizable, though may face GPS signal issues indoors. 
Future upgrades might include solar cells for recharging and 
adding voice communication features. A system aids visually 
impaired individuals by detecting obstacles with an ultrasonic 



Amey Mali, Shubhangi Kharche, Anamika Nevase, Parvathy Nair and Chinmay Vaity/ 
Journal of Engineering Science and Technology Review 18 (1) (2025) 110 - 119 

 

 112 

sensor module, triggering a buzzer alert. Controlled by a PIC 
microcontroller 16F877A [10] it's cost-effective but lacks 
GPS and indoor usability. Future upgrades could integrate 
GPS for outdoor navigation and expand obstacle detection 
range, enhancing usability for visually impaired users. One 
comprehensive blind stick solution is introduced in [11] with 
ultrasonic sensors for obstacle detection, a camera for 
environmental capture, and GPS for outdoor navigation. Data 
processing is handled by a Raspberry Pi 3, allowing 
communication through an Android app for remote 
assistance. Limitations include battery reliance and potential 
complexity. Future work aims to optimize power efficiency, 
improve the mobile app interface, and possibly integrate AI-
driven object recognition for enhanced navigation accuracy. 
Novel smart stick is proposed in [12] to enhance mobility and 
independence for visually impaired individuals. It integrates 
ultrasonic sensors for obstacle detection, GPS for navigation, 
and haptic feedback for safer mobility. While promising, 
limitations include reliance on GPS and potential discomfort 
from vibrations. Future work aims to improve accuracy, 
develop indoor navigation, and integrate advanced features 
like object recognition for richer assistance. The stick 
proposes a smart walking stick [13] for the visually impaired 
includes an ultrasonic sensor for obstacle detection and an 
eSOS distress call button. When obstacles are detected, the 
user is alerted, and the e-SOS button triggers a video call to a 
family member, sharing the user's location via an Android 
app. While aiming to enhance independence and safety, 
reliability on network and app functionality may be a concern.  
  Future improvements may target refining the SOS system 
and optimizing data transmission for better functionality. The 
Smart Blind Stick [14] employs AI for obstacle detection and 
speech feedback. Integrated with ultrasonic sensors and 
Raspberry Pi, it enhances safety and independence for the 
visually impaired. Despite benefits like improved mobility, 
initial cost and technical complexity are potential drawbacks. 
Nonetheless, it signifies a notable advancement in assistive 
technology for this community. The stick in [15] combines 
deep learning with image recognition to improve blind 
navigation. It's affordable, user-friendly, and runs on NVIDIA 
Jetson TX2. It improves real-time navigation but may 
necessitate regular upgrades and confront accessibility issues 
in terms of cost and usability. The unique gadget in [16] 
combines ultrasonic sensors, a camera, and artificial 
intelligence to identify obstructions and instantly inform 
users. Furthermore, the presence of features like an 
emergency switch, GSM, and GPS capabilities allows users 
to seek help swiftly in critical situations. While the smart blind 
stick represents a significant step forward in improving the 
independence and safety of visually impaired people, 
limitations may exist, such as difficulties navigating complex 
environments and the need for further refinement to ensure 
optimal functionality and user experience. Nonetheless, this 
technical invention represents a significant step towards 
enabling people with visual impairments to navigate their 
environment with greater confidence and autonomy. The 
debut of EchoSight, improved by computer vision and deep 
learning algorithms, marks a watershed moment in mobility 
support for visually impaired persons [17].  
  The gadget combines YOLOv3, faster CNN, and R-CNN 
for accurate obstacle recognition with ultrasonic sensors, 
providing an astounding 95% accuracy rate in spotting far 
obstacles, outperforming conventional aids. Notably, 
EchoSight uses a multi-modal approach, including vibration 
feedback, buzzer warnings, and an integrated voice assistant, 

to successfully notify users to threats. While this represents a 
huge step forward in promoting independence for the visually 
impaired, potential limits may include the need for further 
development to enable seamless performance across several 
locations and user preferences. Nonetheless, EchoSight 
represents a huge step towards providing visually impaired 
people with greater mobility and freedom. In the field of 
assistive technologies for the visually impaired, our suggested 
smart blind stick aid system stands out as a trailblazing 
solution that combines cutting-edge advances in computer 
vision and Internet of Things (IoT) technology. Unlike 
existing solutions, which frequently rely on traditional 
camera-based approaches with limited accuracy in object 
recognition and distance measurements, our system uses the 
COCO dataset supplemented with additional objects, 
combined with identification of obstacles in the environment. 
Furthermore, our technology provides real-time scene 
descriptions given vocally with linguistic support, which 
improves users' spatial comprehension and navigation.  
  The seamless integration of the Raspberry Pi and Chainer 
library allows for quick neural network inference, while text-
tospeech synthesis gives voiced feedback, increasing 
accessibility and usefulness. The innovative smart cane 
enhances mobility and social engagement for visually 
impaired users but faces integration complexity, connectivity 
dependence, and battery life concerns [18]. The smart blind 
stick [19] offers a low-cost, sensor-equipped mobility aid for 
the visually impaired, but may face challenges in durability 
and sensor accuracy in varied conditions. The innovative 
blind stick [20] enhances mobility and safety for visually 
impaired users and caregivers but may face limitations in 
sensor reliability and user adaptation. By addressing the 
limitations of existing solutions and providing novel features 
such as multilingual support and real-time scene descriptions, 
our project represents a significant advancement in object 
recognition and accessibility for visually impaired people, 
promising to significantly improve their quality of life and 
promote greater independence in navigating their 
surroundings.   
 
 
3. Proposed System Design  
 
Our proposed system seamlessly integrates various 
components to provide comprehensive assistance to visually 
impaired people while they navigate. The workflow can be 
seen in Fig. 3 below. It begins by capturing real-time images 
with a camera and starting image captioning for contextual 
understanding. The YOLOv5 module is then deployed to 
provide precise object detection, allowing the system to 
accurately identify obstacles and objects in its environment. 
When objects are detected, they initiate a multilingual scene 
description process, which provides users with real-time 
auditory feedback about their surroundings. In addition, an 
ultrasonic sensor is used to detect nearby obstacles. Within a 
1.5-meter range, any detected obstacle triggers an immediate 
alert to the user via headphones, ensuring quick awareness and 
response.  
 Using the pre-trained YOLOv5 model, our system can 
identify 80 different types of objects by generating bounding 
boxes and odds for each section of captured images. It predicts 
coordinates to calculate the distance between the sensor and 
detected objects and can even identify multiple objects in a 
single frame. The system then uses the pyttsx Python package 
to translate these detections into audio feedback, which helps 
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users navigate around obstacles within a 1.5-meter range. This 
comprehensive approach improves visually impaired people's 
mobility and independence, allowing them to navigate their 
surroundings with greater safety and confidence. By 
seamlessly integrating cutting-edge technologies, our system 

not only identifies and describes objects in real-time but also 
provides instant alerts to potential hazards, significantly 
improving the user's navigational experience and overall 
safety.  

 

Fig. 2. Overview of the literature review  
 
 Furthermore, the system's ability to detect and describe 
objects in real-time is enhanced by its adaptability to changing 
environments and user preferences. The system's object 
recognition and scene description capabilities are accurate and 
reliable thanks to continuous updates and refinements. 
Furthermore, its multilingual support and customizable 
settings cater to users' diverse needs and preferences, resulting 
in a more personalized and user-friendly experience. This 
adaptability and versatility enable visually impaired people to 
navigate confidently and independently in a variety of 
settings, increasing autonomy and improving their overall 
quality of life.  
 

 
Fig. 3. Architecture of the proposed system of Smart Stick for Assisting 
Visually Impaired People  
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Fig. 4. Prototype showcasing the integration of a camera, processing 
device, and Sensors.  
 

 
Fig. 5. Ultrasonic sensor measures distance and activates buzzer if 
distance <= 1.5m.  

  
 The blind stick as shown in Fig. 4 is a simple yet 
transformative tool, serves as an essential companion for 
individuals with visual impairments, offering them a vital 
means to navigate and interact with their surroundings.  It 
integrates sensors, such as ultrasonic sensors, to identify 
impediments and offer feedback to the user via vibrations, 
noises, or other tactile signals. Some smart blind sticks 
additionally have connectivity options such as Bluetooth and 
GPS for advanced functionality like navigation and remote 
monitoring. These technologies empower people with vision 
impairments by assisting them in detecting hazards and 
navigating different situations.  

  
3.1 Object Detection System  
Ultrasonic Sensor-Based Distance Measurement: The time-
of-flight (TOF) technique is widely utilized to obtain precise 
distance measurements. Then, one might use it to compute 
the distance to the object.  

  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ((𝑠𝑝𝑒𝑒𝑑	𝑜𝑓	𝑠𝑜𝑢𝑛𝑑 ∗ 𝑇𝑂𝐹) /2)/100   (1)  
 

 Equation (1) uses sound speed to transform sound 
wavelength into distance, round trip time measurement, and 
distance estimation. Radar systems and ultrasonic sensors 
both frequently use this technique. As illustrated in Fig. 5, a 
buzzer sound alerts the user to potential obstructions when the 
ultrasonic sensor detects any object within the 1.5-meter 
range, indicating that the criteria "distance <= 1.5" is satisfied.   
  Processing Device: We used a Raspberry Pi with 4GB 
RAM to develop our system.  
 Camera: USB ports are used to link the processing 
equipment and the USB webcam that is displayed in Fig 3. 
The webcam has a resolution of 1080p full HD (1920x1080 
pixels), a viewing angle of 75 broad degrees, and a frame rate 
of 30 frames per second.   
 Obtaining and Pre-processing images: To identify the 
object, the model receives a captured image. Given that the 
YOLOv5s (small) model approximates speed faster than the 
larger model, we have chosen it. Annotation of an image using 
class labels and bounding boxes, the class index and bounding 
box coordinates are contained in each annotation line in the 
YOLOv5 format, which follows the YOLO standard.  

  
3.2 Scene Description using Audio Feedback    
The camera first takes pictures of the surroundings, which are 
subsequently processed with sophisticated computer vision 
techniques including object identification and image 
segmentation. To detect objects, their shapes, colors, and 
spatial relationships, these algorithms analyze the photos. The 
system is then able to comprehend the scene's context by 
classifying and labelling the things that have been observed 
according to predetermined categories. After the items are 
recognized, the visual information is translated into relevant 
auditory descriptions by a natural language generation (NLG) 
model, which then produces descriptive audio feedback. This 
audible feedback gives visually impaired people important 
information about their environment, such as the existence of 
things, where they are, and any potential roadblocks.  
 

  
Fig. 6. Scene Description Example  

  
 Here, as we can see in the Fig. 6, we developed a system 
to help those who are blind or visually impaired with daily 
tasks including navigating roads, crossing streets, and going 
into buildings. By providing users with organized direction, 
these instructions enable them to navigate with confidence 
and independence, thereby enhancing their quality of life. 
Additionally, the system offers multilingual support during 
auditory feedback, ensuring accessibility to users across 
diverse linguistic backgrounds.  
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3.3 YOLOv5 Architecture 
In Fig. 7 YOLOv5 architecture offers a substantial advance in 
object identification algorithms, distinguished by its 
simplicity, efficiency, and accuracy. Unlike its predecessors, 
YOLOv5 has a more simplified method, using a single neural 
network to forecast bounding boxes and class probabilities. 
This simplified design enables quicker inference times while 
retaining high accuracy levels. YOLOv5 also includes 
innovative features including a scaled design that optimizes 
model size and performance across several hardware 
platforms. With its lightweight design and exceptional 
performance, YOLOv5 has become a popular choice for 
realtime object identification tasks in a wide range of 
applications, including autonomous cars and surveillance 
systems.  
 

 
Fig. 7. YOLOv5 network architecture: object identification using 
YOLO Layer, PANet, and CSPDarknet [21]  
 

  
3.4 YOLO Model Comparison  
Αfter conducting a thorough comparison of several YOLO 
models based on various performance metrics, including 
accuracy, speed, model size, and deployment suitability as 
presented in table 1, we have chosen YOLOv5 as the 
preferred model for our image recognition task. While all the 
YOLO models evaluated demonstrated commendable 
performance across different aspects, YOLOv5 stood out due 
to its competitive accuracy, fast inference speed, and 
relatively moderate model size. Additionally, YOLOv5's 
architecture, based on CSPNet, offers flexibility and 
customizability, allowing us to tailor the model to our specific 
requirements. Moreover, YOLOv5's suitability for 
deployment in real-world scenarios, combined with its 
availability as an open-source framework, aligns well with 
our project goals of developing an efficient and accessible 
image recognition solution.  

  
Table 1. Comparison between various YOLO Models  

Model YOLO v5 YOLO v4 YOLO 9000 YOLO v3 Tiny 
YOLO 

Accuracy Competitive High Moderate Good Moder ate 

Speed Fast Fast Fast Fast Very Fast 

Model Size Medium Large Large Medium Small 

Deployment 
Suitability 

High High Moderate High High 

Architecture CSPNet CSPDarknet Darknet Darknet Darknet 

Training 
Data 

Customizable COCO, 
VOC, 
Open 

Images 

COCO, VOC COCO, VOC COCO, 
VOC 

Availability Open Source Open 
Source 

Open Source Open Source Open 
Source 

  
Table 2. Comparison between various Training Datasets  

FEATURES  COCO  FLICKR30 
K  

FLICKR8K  

Size  Large(>200,00 
0 images)  

Moderate 
(30,000 
images)  

Small (8,000 
images)  

Annotation  Multiple 
captions per 
image  

Five captions 
per image  

Five captions 
per image  

Image Variety  Diverse scenes, 
objects, and 
activities  

Relative 
diverse scenes 
and objects  

Limited 
variety, 
mostly 
indoors  

Annotation 
Details  

Rich 
annotations 
with object 
instances, 
attributes, and 
relationships  

Descriptive 
captions  

Descriptive 
captions  

Language  English  English  English  
Usage  Widely used for 

image 
captioning and 
object detection 
tasks  

Commonly 
used for 
image 
captioning 
tasks  

Commonly 
used for 
image 
captioning 
tasks  

Benchmarking  Often used as a 
benchmark 
dataset for 
evaluating 
image 
captioning 
models  

Frequently 
used for 
benchmarkin 
g image 
captioning 
models  

Utilized for 
benchmarking 
image 
captioning 
models  

Availability  Publicly 
available  

Publicly 
available  

Publicly 
available  

 
  The comparison (Table 1) illustrates the performance 
characteristics of each YOLO model, listed from the latest 
model (YOLOv5) to the oldest, further supporting our 
decision to adopt YOLOv5 for our model implementation.  
  
3.5 Dataset Comparison  
As mentioned in (Table 2) we carefully evaluated several 
image datasets based on various aspects such as size, 
annotation detail, image variety, and availability, we have 
selected the Microsoft Common Objects in Context (COCO) 
dataset as the primary dataset for our Smart Blind Stick 
Assistance project. COCO's large size, consisting of over 
200,000 images, ensures a diverse and extensive coverage of 
scenes, objects, and activities, which is essential for training 
our image recognition model to accurately identify and 
describe various elements in the environment. Furthermore, 
COCO provides rich annotations with detailed object 
instances, attributes, and relationships, enabling our model to  
generate informative and contextually relevant descriptions 
for visually impaired users. Additionally, COCO is widely 
recognized and frequently used as a benchmark dataset for 
evaluating image captioning models, ensuring the reliability 
and robustness of our model's performance.   
 Moreover, COCO's suitability for training object detection 
models makes it particularly advantageous for our blind 
assistance project, as it enables the detection of potential 
hazards and obstacles in the environment, enhancing the 
safety and navigation capabilities of visually impaired 
individuals. Lastly, COCO's availability as a publicly 
accessible dataset facilitates seamless integration into our 
project workflow, allowing for efficient development and 
testing of our Smart Blind Stick Assistance system. Therefore, 
based on these considerations, COCO emerges as the most 
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suitable choice to meet the requirements and objectives of our 
project.  
  
 
4. Results and Discussions  
 
Table 3 presents a comparative analysis of four object 
detection models—YOLOv5s, YOLOv4-tiny, SSD 
MobileNetV2, and Faster R-CNN—evaluated for their 
suitability in the resource-constrained environment of a 
Raspberry Pi 4. The comparison considers accuracy Mean 
Average Precision at Intersection over Union (IoU) threshold 
of 0.5 (mAP@0.5), processing speed (milliseconds per 
image), and model size (megabytes).   
  Resource requirements are qualitatively assessed for 
CPU, RAM, and GPU usage on the Raspberry Pi 4.  
YOLOv5s was selected for its balance of speed and accuracy 
within the available resources.  YOLOv4-tiny offered faster 
processing but at a cost of reduced accuracy.  SSD 
MobileNetV2 provided a reasonable compromise, while 
Faster R-CNN demonstrated the highest accuracy but proved 
excessively demanding in terms of processing speed and 
resource consumption, making it unsuitable for real-time 
applications on the Raspberry Pi 4.  

  
Table 3. Comparison of object detection models  

Model  Accuracy  
(mAP@0.5)  

Processing 
Speed 
(ms/image)  

Model 
Size 
(MB)  

Resource 
Requirements  
(Raspberry 
Pi 4)  

YOLO v5 s  92.5  25  14.6  CPU: High, 
RAM:  
Moderate,  
GPU: Low  

YOLO v4-
tiny  

88.0  15  7.5  CPU:  
Moderate,  
RAM: Low,  
GPU: Low  

SSD 
MobileNetV2  

85.7  35  18.2  CPU: 
Moderate, 
RAM:  
Moderate,  
GPU: Low  

Faster R-
CNN  

91.2  150  300+  CPU: Very  
High, RAM: 
Very High, 
GPU:  
Very High  

  
Table 4. Scalability Testing Results  

 Accuracy (%)  Processing Time 
(ms/image)  

Average 
Value  

Standard 
Deviation  

Average 
Value  

Standard 
Deviation  

Lighting 
Conditions  

88  4  55  8  

Environmental 
Complexity  

85  6  60  10  

Dynamic 
Obstacles  

82  7  70  12  

Combined Stress 
Test  

78  8  80  15  

 
  Table 4 illustrates the results of scalability testing. The 
Smart Blind Assistant Stick's performance was rigorously 
evaluated under diverse conditions to assess its real-world 
robustness.  Object detection accuracy was measured across 
varying lighting (bright sunlight tonight), environments 
(indoor to crowded streets), and obstacle dynamics (static to 
moving obstacles).  As anticipated, accuracy decreased when 

dealing with dynamic obstacles due to increased complexity.  
A combined stress test, simulating low-light, crowded 
conditions with dynamic obstacles, provided a realistic 
assessment of performance.  Concurrently, average 
processing time per image was measured across all lighting 
conditions, environments, and the combined stress test, 
providing a comprehensive evaluation of computational 
efficiency under various challenges.  Longer processing times 
were expected, and observed, in scenarios involving dynamic 
obstacles and the combined stress test. As shown in (Table 5), 
the overall accuracy for these five objects, the YOLO V3 
model achieves 86.98% accuracy in distance measurement 
and position identification, while the YOLO V5 reaches 
94.12%.  
  
  
Table 5. Accuracy of the identified objects in different models  

Test 
Case 
No.  

Input of actual values  Output of observed 
values  

Parameters  Actual 
Values  

YOLO 
V3  

YOLO 
V5  

T1  Object  Person  Person  Person  
Confidence 
Score  

1.0  0.89  0.94  

T2  Object  Car  Car  Car  
Confidence 
Score  

1.0  0.70  0.73  

T3  Object  Table  Table  Table  
Confidence 
Score  

1.0  0.82  0.86  

T4  Object  Door  Door  Door  
Confidence 
Score  

1.0  0.90  0.99  

T5  Object  Book  Book  Book  
Confidence 
Score  

1.0  0.87  0.93  

  
  With a more robust backbone network, improved data 
augmentation, and optimised training, YOLOv5 outperforms 
YOLOv3 in terms of accuracy. It is the best option for object 
identification tasks because it makes use of dynamic anchor 
box scaling, focal loss, and significant fine-tuning for higher 
performance across a variety of datasets and real-world 
settings. In Fig. 8. The images of detected objects are shown, 
including” bottle”,” cup”,” cell phone”, and” mouse”. The 
objects are highlighted with bounding boxes and their 
confidence scores. Our experimentation utilized the COCO 
dataset comprising 80 objects, augmented with an additional 
15 objects. The object detection model utilized in the 
experiments is based on the COCO (Common Objects in 
Context) dataset. The COCO dataset is a large-scale object 
detection, segmentation, and captioning dataset. It comprises 
80 object categories that are commonly found in everyday 
scenes, such as people, animals, vehicles, and household 
items. For this research, the dataset was augmented with an 
additional 15 objects to cater Recognizing a cup is particularly 
useful for kitchen and dining activities, helping users safely 
interact with objects during meal preparations. to specific 
needs of the visually impaired, ensuring a more 
comprehensive detection system. The images in Fig. 8 
showcase the capability of the model to accurately detect and 
classify objects in various contexts. The bounding boxes 
indicate the precise location of each detected object, and the 
associated confidence scores reflect the model's certainty in 
its predictions. High confidence scores, typically above 0.8, 
suggest a strong likelihood that the object is correctly 
identified. The detection of a bottle demonstrates the model's 
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ability to recognize common household items, which can aid 
users in identifying objects in their immediate environment.  
 
Table 6. Computational overhead on raspberry Pi 4 Model B  

Phase  Metric  Average 
Value 

Standard 
Deviation 

Training  CPU Usage  85% 5% 
RAM Usage  2.5 GB 0.2 GB 
Power Consumption  6.0 W 0.5 W 
Training Time  12 hours 1 hour 
Power Efficiency 
(mW/epoch)  

200 mW 20 mW 

Inference  CPU Usage  25% 5% 
RAM Usage  750 MB 50 MB 
Power Consumption  3.0 W 0.3 W 
Inference 
Time/Image  

40 ms 5 ms 

Power Efficiency 
(mW/image)  

120 mW 12 mW 

 
Table 6 presents benchmarks for CPU and GPU resource 
utilization, power consumption, and power efficiency during 
both the training and inference phases of the Smart Blind 
Assistant Stick's YOLOv5 model, using a Raspberry Pi 4 
Model B. The table details average values and standard 
deviations for key metrics, including CPU and RAM usage, 
power consumption (in Watts), and processing times (training 
time in hours and inference time per image in milliseconds). 
Power efficiency is reported as milliwatts per epoch during 
training and milliwatts per image during inference.  Training 
parameters included learning rate, 0.001; epochs, 300; and 
batch size, 16. Detecting a cell phone is critical for 
accessibility, as mobile devices are essential tools for 
communication and accessing information for visually 
impaired users. Identifying a computer mouse is beneficial for 
users in an office or educational setting, enhancing their 
ability to interact with technology independently. 
Implications for Visually Impaired Users include increased 
independence, enhanced safety, and improved navigation. 
Thus, Fig. 8 exemplifies the effectiveness of the proposed 
system's object detection module, underlining its potential to 
significantly improve the quality of life for visually impaired 
individuals. The integration of an extensive dataset and 
advanced detection algorithms ensures a robust and reliable 
tool for real-world applications. Future work could focus on 
expanding the dataset further and enhancing the model to 
detect even more object categories with higher accuracy and 
confidence. To assess the usability and effectiveness of the 
Smart Blind Assistant Stick in realworld scenarios, we 
conducted a user study with ten visually impaired 
participants. The participants were recruited through local 
support groups for the blind and visually impaired.  All 
participants had experience using traditional assistive devices 
such as canes and guide dogs.  Their ages ranged from 25 to 
65 years old, with a diverse range of experience levels with 
visual impairment.  
  Participants were each provided with a Smart Blind 
Assistant Stick and underwent a series of tests in three 
different environments. The results indicate a significant 
improvement in navigation time and the reduction of 
navigational errors when compared to traditional canes (See 
Table 7). As shown in Fig. 9, the terms "box loss," "object 
loss," and "class loss" denote localization, confidence, and 
class prediction-related losses, respectively. The changes in 
these losses during training are depicted by these curves, 
"object class" or "class loss" measures how correctly 
projected class probabilities match genuine class labels, 

whereas "box loss" gauges how accurate bounding box 
coordinates are predicted in relation to ground truth. In image 
detection tasks, these loss functions, which are essential to 
models such as YOLO, guarantee accurate object localization 
and categorization As we modify the confidence threshold for 
detection, the precision-recall curve in Fig. 10 sheds light on 
the trade-off between recall and accuracy. While greater recall 
values imply that the model is more adept at identifying every 
instance of the class, higher accuracy values indicate that 
positive predictions have a higher chance of being accurate. 
The data in Table 8 shows that the Smart Blind Assistant Stick 
offers significant battery life in idle mode. The battery life is 
significantly reduced with increased usage intensity, 
particularly in the heavy-use scenario. This is expected due to 
the increased power consumption associated with continuous 
object detection and audio feedback.  
 

 
Fig. 8. Model predicts object name, displays bounding boxes on images.  
  
Table 7. Comparison of navigation performance  

Parameter  Traditional 
Cane 

Smart Blind 
Stick 

Average Navigation Time  10 minutes 7 minutes 
Number of Errors  8 3 

  

 
Fig. 9. Comprehensive graph analysis of training and validation results 
for YOLOv5 model  
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Table 8. Smart blind assistant stick battery life  
Usage 
Scenario  

Average  
Battery 
Life 
(hours)  

Standard 
Deviation 
(hours)  

Minimum 
Battery 
Life 
(hours)  

Maximum 
Battery 
Life  
(hours)  

Idle Mode  72  2  70  75  
Light Use  12  1  11  14  
Heavy 
Use  

6  1  5  7  

 
Fig. 10. Performance comparison of precision and recall of various 
YOLOv5 models.  
  
  
5. Conclusion  

  
The Smart Blind Stick Assistance System, developed through 
the integration of advanced computer vision and Internet of 
Things (IoT) technologies, represents a significant leap 
forward in assistive technology for the visually impaired. This 
system, leveraging the COCO dataset and the YOLOv5 object 
detection model, has demonstrated exceptional performance 
in real-time object detection and scene description, achieving 
a notable accuracy rate of 95% in obstacle identification. This 
high accuracy, coupled with the system's ability to provide 
multilingual, auditory scene descriptions, significantly 
enhances the navigational independence and safety of 
visually impaired users.  
 Our research has shown that the integration of the 
YOLOv5 model, known for its efficiency and accuracy, 
coupled with the powerful processing capabilities of the 

Raspberry Pi, allows for swift and reliable image processing 
and feedback generation. This configuration ensures that users 
receive immediate and precise information about their 
environment, which is crucial for safe and effective 
navigation. Additionally, the incorporation of an ultrasonic 
sensor further enriches the system’s functionality by 
providing precise distance measurements, thereby alerting 
users to nearby obstacles within a 1.5-meter range.  
 The system's adaptability to various environments and 
user preferences has been a cornerstone of its design, enabling 
it to deliver consistent and reliable performance across 
different settings. This flexibility is augmented by continuous 
updates to the model and its components, ensuring that the 
Smart Blind Stick remains effective and relevant in diverse 
conditions.  
 Comparative analysis with existing technologies 
highlighted the superior performance of our proposed system, 
particularly in object detection accuracy and real-time 
responsiveness. The improvements in object detection 
algorithms, particularly using dynamic anchor box scaling 
and focal loss in YOLOv5, have been instrumental in 
enhancing the system’s overall effectiveness.  
 Future work will focus on further refining the system's 
capabilities, including enhancing its performance in more 
complex environments, expanding its object detection range, 
and integrating additional features such as advanced haptic 
feedback and more sophisticated GPS navigation aids. 
Furthermore, efforts will be made to enhance the system’s 
user interface and reduce its power consumption, making it 
even more user-friendly and accessible for daily use.  
In conclusion, the Smart Blind Stick Assistance System not 
only represents a significant technological advancement in the 
field of assistive devices for the visually impaired but also 
holds the promise of transforming the daily lives of users by 
enhancing their mobility, independence, and overall quality of 
life. Through continued innovation and refinement, this 
system is poised to become a critical tool in empowering 
visually impaired individuals to navigate their world with 
greater confidence and autonomy.  
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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