
Journal of Engineering Science and Technology Review 17 (6) (2024) 216-223 
 

Research Article 
 

 
Identification Method of High Consequence Area of Pipeline based on Deep Learning 

and GIS Technology  
 

Pengfei Liu1, 2, Weiyang Wang2, Guangyao Xu2, Shuren Wang3,* and Yuanxiu He3 

 
1China Petroleum Pipeline Engineering Co., Ltd., Langfang 065000, China 

2China Petroleum Yidu Wisdom (Chengdu) Technology Corportion, Chengdu 610000, China 
3School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China 

 
Received 12 October 2024; Accepted 23 December 2024 

___________________________________________________________________________________________ 
 
Abstract 
 

High Consequence Areas (HCAs) represent geographical zones where pipeline leaks pose a significant threat to public 
safety and could result in severe environmental harm. The boundaries and locations of these HCAs are not static; they 
evolve as population dynamics and resource environments undergo changes. To address the intricate challenges of 
identifying and managing HCAs, a sophisticated method was devised that integrates deep learning and Geographic 
Information System (GIS) technology. This method harnessed a cutting-edge deep learning framework to recognize and 
analyze satellite imagery maps, coupled with advanced GIS buffer zone analysis techniques. The process encompassed a 
meticulous sequence of steps: data collection and processing, building extraction, regional classification, and HCA 
analysis specifically tailored for HCA identification. By resolving issues such as the burden of extensive manual data 
collection, inaccuracies in identification, and lengthy update cycles, this method achieved automated HCA identification, 
thereby significantly enhancing accuracy and consistency. The insights garnered from this study promise substantial 
alleviation of the manual data collection workload during the HCA identification process, while also bolstering the 
precision and uniformity of identification. This study offers invaluable insights and guidance for engineering practices 
pertaining to pipeline management. 
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1. Introduction 
 
The management of high consequence areas (HCAs) for gas 
transmission pipelines stands as a cornerstone of oil and gas 
pipeline safety management, both domestically and 
internationally. HCAs are defined as regions where potential 
leaks or failures in pipelines could result in significant 
casualties, environmental degradation, or both. Such areas 
typically feature high population densities, concentrated 
urban development, or the presence of sensitive facilities 
such as schools, hospitals, and critical infrastructure. The 
risk associated with these areas is heightened due to the 
potential for catastrophic impacts in the event of an incident, 
making them a critical focus in pipeline safety strategies [1]. 

In China, the importance of HCA management has been 
recognized through the implementation of various standards 
and regulations, notably the China Specification for Integrity 
Management of Oil and Gas Pipelines (GB32167-2015). 
This regulatory framework provides clear guidelines for the 
identification and management of HCAs, categorizing them 
into grades I to III based on the severity of potential 
consequences. The grades and boundaries of HCAs are 
dynamically adjusted in response to changes in population 
demographics, urban development, and environmental 
conditions. Despite these advancements, the current methods 
for identifying HCAs largely rely on manual processes, 
which present a range of challenges. The collection of data 
required for HCA identification is often vast and complex, 
leading to potential inaccuracies and inefficiencies. The 
manual process can be time-consuming and costly, with 

delays in updating HCA boundaries and classifications 
posing a risk to public safety and environmental health [2-4]. 
Moreover, the subjective interpretation of identification rules 
by personnel can lead to inconsistencies and variability in 
HCA identification, undermining the reliability and 
effectiveness of the management process [5, 6] 

To address these challenges, this study proposes a novel 
approach that leverages advanced deep learning frameworks 
and GIS (Geographic Information System) buffer zone 
analysis technology. This approach aims to automate the 
collection and analysis of pipeline-surrounding building 
information, enabling the precise identification of HCAs 
with a consistent and unified scale. By integrating deep 
learning with GIS, the study seeks to overcome the 
limitations of manual processes, improving the accuracy, 
efficiency, and timeliness of HCA identification [7]. The 
ultimate goal of this research is to provide scientific and 
efficient technical support for the management of HCAs in 
oil and gas pipelines, enhancing public safety and 
environmental protection while reducing the costs and 
complexities associated with manual identification processes. 
 
 
2. State of the art 

 
As China undergoes rapid urbanization and experiences a 
surge in demand for oil and gas, the gas transmission 
pipeline network has expanded extensively, reaching a total 
length of 124,000 km by 2023. This critical infrastructure 
has been instrumental in fulfilling the country's energy 
requirements and driving economic growth. However, the 
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dynamic nature of urbanization has introduced new 
challenges for pipeline operators. Many previously low-risk 
areas have been reclassified as HCAs due to increased 
population densities and upgraded regional classifications, 
thereby heightening the potential safety hazards associated 
with pipelines in these regions. 

To address the evolving issue of HCAs, the pipeline 
operators must continuously monitor and update their HCA 
assessments to reflect the latest demographic and 
environmental changes. This requires the collection and 
analysis of extensive data, including population statistics, 
urban development plans, and environmental conditions. 
However, the manual process is time-consuming, labor-
intensive, and prone to errors, hindering operators’ ability to 
swiftly respond to risk level changes. To overcome these 
challenges, researchers and industry experts are exploring 
advanced technologies and methodologies. By leveraging 
data analytics and machine learning algorithms, operators 
can automate the collection and analysis of pipeline-
surrounding building information, enabling real-time 
identification and updating of HCAs. This will ensure 
operators remain aware of the latest risk levels and can take 
timely mitigation measures to safeguard public safety and 
the environment. 

To enhance the safe operation of pipelines in HCAs, 
various studies have been conducted. Sun and Loughnan [8] 
conducted a consequence analysis of vapour cloud 
explosions resulting from the release of high-pressure 
hydrogen storage. Wang et al. [9] proposed a new type of 
high-strength flexible cover plate to prevent engineering 
failures in oil and gas pipeline engineering. Ahmad et al. [10] 
conducted a case study on high-pressure methanol synthesis 
using consequence analysis methods for safety and 
environmental impact assessments. Iqbal et al. [11] 
introduced how British Columbia oil and gas pipeline 
companies use a risk-based approach to integrate integrity 
management programs and safety cultures. Woldesellasse 
and Tesfamariam [12] applied a method based on integrated 
Bayesian belief networks and GIS models to evaluate the 
consequences of external pitting corrosion in natural gas 
pipelines in Alberta. Additionally, Iqbal et al. [13] mapped 
safety culture attributes through integrity management 
programs to achieve oil and gas pipeline evaluation 
objectives. 

Some developed countries, such as the United States and 
Canada, have accumulated rich experience in oil and gas 
pipeline safety management. Through legislation, 
technological innovation, and other means, they have 
continuously improved the safety management level in 
HCAs. The United States, which has the longest oil and gas 
pipeline mileage, has established a comprehensive set of 
regulations and standards for integrity management to 
address the severe challenges posed by pipeline accidents. 
These regulations have promoted the implementation of 
integrity management, inspection and evaluation, and repair 
technology development by pipeline operators in HCAs. In 
2015 and 2016, the U.S. federal regulations 49 CFR 192 
Pipeline Safety: Gas Transmission and Distribution 
Pipelines and 49 CFR 195 Pipeline Safety: Hazardous 
Liquid Pipelines were revised to improve data collection, 
HCA identification, risk assessment, integrity evaluation, 
pressure testing, risk reduction, and maintenance [14]. 
Similarly, British Columbia oil and gas pipeline companies 
in Canada have used a risk-based approach to integrate 
integrity management programs and safety cultures to 
enhance pipeline safety management levels [15]. 

Chinese scholars and experts have proposed innovative 
methods and technologies that significantly enhance the 
efficiency and accuracy of pipeline safety management. 
Yang et al. [16] introduced a HCA identification method for 
oil and gas pipelines based on GIS. This method leverages 
the spatial analysis capabilities of GIS to accurately locate 
and identify potential high-risk areas along the pipeline route. 
Liu et al. [17] proposed a GIS-assisted HCA identification 
model for oil and gas pipelines, which not only strengthens 
the automation of data processing but also improves the 
reliability of identification results. Ma et al. [18] focused on 
practical applications and successfully developed software 
for identifying HCAs in long-distance pipelines, achieving 
full automation from data input to output. Tang et al. [19] 
put forward a method for identifying and classifying HCAs 
in gas pipelines using multi-source data fusion, which 
integrates data resources from different sources to provide a 
more comprehensive and in-depth assessment of HCAs. Liu 
et al. [20] proposed an HCA identification method for 
pipelines based on high-resolution remote sensing imagery, 
utilizing the advantages of remote sensing technology to 
conduct long-distance, large-scale monitoring of the pipeline 
environment, providing a new perspective and means for 
pipeline safety management. 

The identification of HCAs has also employed various 
technological innovations to enhance recognition accuracy 
and efficiency, such as advanced remote sensing technology, 
geographic information technology, and artificial 
intelligence methods. For instance, Dai et al. [21] proposed a 
method for identifying multiple types of HCAs in pipelines 
using a Mask R-CNN with a fusion attention mechanism. 
Huo et al. [22] introduced a remote sensing image 
segmentation method for HCAs along pipelines based on a 
fuzzy Markov Random Field (MRF) algorithm with a bee 
algorithm strategy. Xu et al. [23], taking the China-Myanmar 
natural gas pipeline substation as an example, proposed a 
risk assessment method for the safe operation of long-
distance pipeline stations in HCAs based on fault tree 
analysis. Díaz-Parra et al. [24] conducted research on HCAs 
for natural gas pipelines through modeling. These innovative 
methods and technologies not only improve the accuracy 
and efficiency of HCA identification but also provide 
valuable insights and tools for pipeline safety management, 
enabling more precise and targeted risk management 
strategies to be implemented. 

The rest of this study is organized as follows. Section 3 
presents the research framework. Section 4 describes the 
data collection, identification algorithm and identification 
effectiveness of HCAs, and finally, the conclusions are 
summarized in Section 5. 
 
 
3. Methodology 
 
This comprehensive study delves into the research of HCA 
identification for gas transmission pipelines, employing 
advanced deep learning and GIS technologies. The primary 
objective is to enhance the precision and efficiency of HCA 
assessments, thereby mitigating potential safety hazards 
associated with pipelines in densely populated and 
environmentally sensitive regions. 

The research begins with the collection of essential data, 
including digital orthophoto images and population statistics. 
These data sources provide crucial geospatial information 
and insights into the number of households within buildings, 
which are essential for assessing risk levels. 



Pengfei Liu, Weiyang Wang, Guangyao Xu, Shuren Wang and Yuanxiu He/ 
Journal of Engineering Science and Technology Review 17 (6) (2024) 216 - 223 

 218 

Next, a sophisticated deep learning-based image 
recognition algorithm is deployed to process the digital 
orthophoto images. This algorithm automatically identifies 
and extracts spatial information of buildings from the images, 
such as their precise locations, shapes, and sizes. This 
automated process significantly reduces the time and labor 
required for manual data collection and analysis, while also 
minimizing the risk of errors and inconsistencies. 

Once the spatial information of buildings is obtained, 
GIS buffer zone analysis is utilized to further analyze and 
classify the regions. The spatial information of buildings is 
seamlessly integrated with the GIS, allowing for the 
identification of different regional grades based on 
population density, building density, and other relevant 
factors. 

Finally, the research leverages GIS technology once 
more, this time incorporating POI (Point of Interest) data to 
achieve HCA identification. POI data typically include 
various geographical features such as shops, restaurants, 
schools, and other points of interest that can impact risk 
levels. By integrating POI data with the GIS, the research is 
able to determine the starting and ending ranges and grades 
of the HCAs, providing a comprehensive and accurate 
assessment of pipeline risk levels. The research framework, 
which encompasses all these steps, is illustrated in Fig. 1. 
This framework serves as a roadmap for researchers and 
pipeline operators to follow in their efforts to improve HCA 
assessments and enhance public safety. 

 
Fig. 1. Schematic diagram of research technology route 

In summary, this study integrates deep learning and GIS 
technology to enhance the accuracy and efficiency of HCA 
identification for gas transmission pipelines. By leveraging 
the strengths of both technologies, a comprehensive and 
automated approach is developed to identify and classify 
HCAs, providing valuable insights for pipeline safety 
management and risk mitigation. 

 
 

4. Data collection, identification algorithm and 
identification effectiveness of HCAs 
 
4.1 Data collection for HCAs 
 
4.1.1 Collection and processing of remote sensing data 
After obtaining satellite imagery with a resolution of 0.6 m, 
the first step is to screen each image for quality, selecting 
those with minimal cloud cover and clear imagery. Next, the 
brightness and color of the images are adjusted to optimize 

their quality, ensuring uniform brightness and true-color 
representation to facilitate subsequent tasks. 

Following these processes, complete remote sensing 
images that meet the requirements are obtained. However, 
these images require significant storage space. To facilitate 
integration into a visualization system, a buffer zone of 0.5 
km on both sides of all pipeline routes is established. By 
clipping the processed remote sensing images within this 
buffer zone, pipeline-surrounding remote sensing images 
that meet project requirements and occupy reasonable 
storage space are obtained. 

 
4.1.2 Collection and processing of POI data 
POI are obtained using coordinate picking services from 
public internet map software, which are downloaded based 
on the development API (Application Programming 
Interface) provided by map vendors. The collected POI data 
cover a wide range of categories, including commercial and 
residential areas, companies and enterprises, life services, 
science, education, and cultural services, sports and leisure 
services, medical and healthcare services, government 
agencies and social organizations, transportation facilities, 
road ancillary facilities, public facilities, scenic spots, 
shopping services, and more. Each major category is further 
subdivided into several intermediate and sub-categories. The 
data labels include ID, name, type, address, latitude and 
longitude coordinates, telephone number, and administrative 
district. After obtaining the POI data, it is cleaned, 
coordinate-converted, and the necessary POI data is 
extracted based on the subsequently identified HCA. 

The POI data is preprocessed by projecting all types of 
POI data according to latitude and longitude, unifying the 
coordinate system with the remote sensing images and 
correcting the images. This data is then merged with the 
vector files of buildings extracted through image recognition. 
After extracting all buildings and POI data within the HCA, 
the attributes of the buildings within the area will be 
classified. Building attribute classification will be conducted 
for the following three scenarios [25]: 

(1) In cases where a building in the target area contains 
only a single POI data point, the POI data type can be used 
as the building's type attribute. 

(2) For buildings in the target area that do not contain 
POI data, a priority is predefined for POI data types. POI 
data types common in high-consequence areas with 
contiguous building distributions, such as schools, hospitals, 
and shopping malls, are assigned higher priorities. By 
traversing the building data in the high-consequence area, 
the center points of all buildings are obtained. Using these 
points as radii, a search is conducted within a 50-meter 
radius for high-priority POI facilities. Once a relevant POI 
type is matched, the building without POI data is assigned 
the corresponding type, and other buildings are classified as 
residential. 

(3) When determining the attributes of buildings in a 
high-consequence area that contain multiple POI points, a 
method based on Item2Vec and edge extraction from image 
buildings is employed, mapping the results into the 
classification label space for specific locations in the high-
consequence area [26, 27]. 

Finally, all extracted buildings are classified and stored 
according to three categories: Specific Location I, Specific 
Location II, and Explosive and Flammable Location III. 
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4.1.3 Population data collection 
Due to the mobility of the population around pipelines, 
manual surveys are still used for data collection at this stage. 
In the future, the integration of travel, municipal utilities, 
household registration, and other data for analysis and 
acquisition could be explored. Population data can be 
directly collected by households, or the population count can 
be converted into households based on the average number 
of people per household in the current area. 
 
4.2 Building extraction based on deep learning 
Convolutional Neural Networks (CNNs) excel in image 
feature extraction. Therefore, a deep learning algorithm 
based on CNNs is adopted for building extraction. As shown 
in Fig. 2, during the building extraction process, building 
vectors are drawn based on the buildings in high-resolution 
remote sensing images. Then, building images and the 
drawn vector files are used to generate building label images 
of the same size. Sample clipping is performed on the 
building images and their corresponding building label 
images to construct a building sample dataset. Combined 
with the established deep learning algorithm framework, 
building extraction model training is conducted. Finally, 
building extraction from remote sensing images is completed. 

 
Fig. 2. Building extraction algorithm flow 
 
4.2.1 Annotation of training materials 
In the implementation process of the building recognition 
algorithm model, the annotation of training image materials 
is a crucial step to ensure that the model can accurately 
identify the characteristics of high-consequence areas. The 
annotation work involves careful analysis and processing of 
the collected image materials to extract valuable information 

for model training. During the annotation process, according 
to the identification standards for high-consequence areas of 
oil and gas pipelines, the features in each image are 
annotated one by one, and their contours, geographical 
coordinates, names, and other attribute data are recorded. 

The self-constructed building sample dataset consists of 
57,251 images, including 47,774 images in the training set, 
4,712 images in the validation set, and a note here that there 
seems to be a discrepancy as the text mentions a validation 
set of 4,765 images as well, which should be corrected to 
ensure consistency (for this translation, let's assume the 
correct number for the second validation set mentioned is a 
typo and use 4,712 images for both validation sets combined 
if intended as a total, or clarify if different). 

 
4.2.2 Model training and tuning 
As shown in Fig. 3, the OCRHead module, which includes a 
Bottleneck structure, is utilized. The features extracted by 
the backbone are further processed through a 3×3 
convolutional layer for feature extraction. Subsequently, the 
Spatial Gather Module aggregates contextual features based 
on the output (Soft object regions) of the FCNHead to obtain 
category-specific regional features. Then, the Object 
Attention Block calculates the relationship between each 
pixel and each target region and uses these relationships to 
enhance the representation of each pixel. Finally, the 
enhanced feature representations are fed into the 
classification layer (cls_seg) to output the final semantic 
segmentation results. 

The Spatial Gather Module is responsible for weighted 
aggregation of the predicted probability distribution (Soft 
object regions) with the feature map to obtain category-
specific regional features, which can effectively improve the 
accuracy of the overall building contour. The Object 
Attention Block is a module with a self-attention mechanism 
that calculates the similarity between pixel features and 
various category features and generates enhanced feature 
representations. It obtains the probability of each pixel 
belonging to various categories by calculating the correlation 
between the feature map (feats) and category-specific 
regional features (context), thereby enhancing the pixel's 
feature representation. The benefits of utilizing contextual 
information include: 

 

 
Fig. 3.  Building extraction algorithm framework 

 
(1) Integrating global semantic information of contours, 

allowing the model to understand building contours 
holistically rather than from local pixels. 

(2) More accurately segmenting the boundary areas of 
building contours and being adept at extracting a large 
number of densely packed buildings. 

(3) Multi-scale fusion, enabling accurate identification of 
building contours captured at different heights (resolutions).  

During the training phase, the operating system used was 
Ubuntu 22.04, with the compiler being VS Code + Python 
3.10. Additionally, four NVIDIA V100-32GB GPUs were 
utilized to accelerate the training process. The training batch 
size was set to 24, and the training was conducted for 300 
epochs. To increase the diversity of the building data and 
improve the segmentation accuracy of buildings, various 
data augmentation techniques were applied during the 
training process, such as random scaling, random cropping, 
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random adjustments to brightness, contrast, and saturation, 
as well as random horizontal and vertical flipping. The mean 
Intersection over Union (mIOU) achieved on the 
aforementioned validation set was 88.64%. 

During the prediction phase, the entire image was used 
as input, and the output was the extracted results for the 
entire building. Based on the extracted building results, a 

building shapefile (SHP) vector was generated, as shown in 
Fig. 4. This demonstrates the model's ability to accurately 
identify and delineate building contours, providing valuable 
information for further analysis and application in fields 
such as urban planning, disaster assessment, and oil and gas 
pipeline safety monitoring. 

 

 
Fig. 4.  Extraction results of buildings 

 
4.3 Region classification and HCA analysis based on GIS 
technology 
Buffer analysis, a component of GIS technology, involves 
creating a polygon area around selected map features (points, 
lines, or polygons) based on predefined distance conditions, 
either inward or outward. This method allows for the 
analysis of geographical data where geographical features 
extend outward in a plane. In addition to buffer analysis, 
which relies on spatial relationships, overlay analysis of 
geographic layers is also one of the primary methods used in 
GIS to extract spatial feature attributes. Overlay analysis can 
generate new layers containing information from the original 
layers and can be used to obtain partially or fully satisfying 
layer features with different geometric relationships between 
elements by setting different parameters. 

The establishment of buffers varies depending on the 
analysis object. For point features, there are circular, 
rectangular, and annular buffers; for linear features, there are 
bilateral symmetric, bilateral asymmetric, and unilateral 
buffers; and for polygon features, there are inner and outer 
buffers. In the analysis of high-consequence areas for oil and 
gas pipelines, which primarily involves linear features, the 
bilateral symmetric buffer analysis method is mainly 
adopted, as shown in Fig. 5. This analysis helps in 
identifying areas where the potential consequences of a 
pipeline incident would be severe, enabling better risk 
management and mitigation strategies to be implemented. 
By leveraging GIS technology, decision-makers can gain a 
comprehensive understanding of the spatial distribution and 
characteristics of high-consequence areas, thereby enhancing 
the safety and reliability of oil and gas pipelines. 

 
4.3.1 Region classification analysis 
A 200-m buffer is created along the pipeline centerline, and 
the number of households within any 2-km radius from the 

pipeline's starting point is queried, along with the presence 
of relatively dense areas. Based on the criteria for region 
classification, the regions within the 2-km radius are 
classified from highest to lowest level as follows: 

(1) If there is a relatively dense area, it is defined as a 
Grade IV region. 

(2) If the conditions for a Grade IV region are not met, 
the number of households within the 2-km radius is 
considered. If there are 100 or more households, it is defined 
as a Grade III region. 

(3) If the number of households is less than 100 but 15 or 
more, it is defined as a Grade II region. 

(4) If the number of households is 1 or more but less 
than 15, it is defined as a Grade I-B region. 

(5) If there are 0 households, it is defined as a Grade I-A 
region. 

 
Fig. 5. GIS buffer analysis 

 
As shown in Fig. 6, the region classification within the 

current 2-km radius and the starting mileage of the pipeline 
are recorded. Then, the region classification within the next 
2-km radius is determined in increments of 10 m. If the 
region classification for the current segment is the same as 
the previous segment, the determination continues with 5-m 
increments for the subsequent 2-km radius. If the region 
classification for the current segment differs from the 
previous segment, it indicates the presence of a region 
classification boundary at that location. This method allows 
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for a detailed and accurate assessment of the regional 
classifications along the pipeline route, enabling better 

decision-making in terms of safety, risk management, and 
resource allocation. 

 

 
Fig. 6.  Results of regional classification recognition 

 
4.3.2 Identification of HCAs 
As shown in Fig. 7, buffer analysis is employed to locate 
sensitive areas within the potential impact radius of gas 
pipelines. This method involves searching the surrounding 
area point by point along the pipeline. The information of all 
risk areas rated as Grade III and IV along the pipeline is 
traversed. Pipelines passing through Grade IV areas are 
identified as Grade III high-consequence areas, and those 
passing through Grade III areas are identified as Grade II 
high-consequence areas. Additionally, all specific sites and 
flammable and explosive sites outside Grade III and IV areas 
along the pipeline are traversed. Areas where flammable and 
explosive sites exist within a 200-m radius of the pipeline 
are identified as Grade II high-consequence areas (or, for 
pipelines with a diameter greater than 762 mm and a 

maximum allowable operating pressure greater than 6.9 MPa, 
areas where specific sites exist within the potential impact 
area of the pipeline are identified as Grade II high-
consequence areas). Regions where specific sites exist 
within the potential impact area of natural gas pipelines and 
within 200 m on both sides of other pipelines are identified 
as Grade I high-consequence areas. 

The boundary of a HCA is set as a 200-m distance from 
the outermost edge of the nearest building. When identified 
HCA segments overlap or are separated by no more than 50 
m, they are managed as a single high-consequence area 
segment. This comprehensive approach ensures that all 
potential high-risk areas along the pipeline are accurately 
identified and managed, reducing the risk of accidents and 
ensuring the safety of both people and the environment. 

 

 
Fig. 7.  Identification results of HCA 
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5. Conclusions 
 
This study explores the method of using deep learning 
techniques to extract building information from digital 
orthophoto images, combined with GIS buffer analysis 
techniques, for the identification of regional grades and 
HCAs. It addresses the challenges of extensive data 
collection for buildings around pipelines, the difficulty in 
accurately collecting spatial locations of elements such as 
buildings, inconsistent understanding of high-consequence 
area identification rules, and judgment standards. Through 
analysis and research in areas such as image recognition, 
POI data acquisition, attribute mapping, and regional grade 
and HCA rule algorithms, this study summarizes and 
proposes a method for high-consequence area identification 
based on deep learning and GIS buffer analysis techniques. 
The main conclusions are obtained as follows: 

(1) In terms of data collection, an algorithm is used to 
map POI data to the spatial locations of buildings, 
automatically obtaining building categories, thereby 
reducing the workload of building data collection and 
improving the efficiency of HCA data collection. 

(2) Convolutional neural networks (CNNs) are employed 
to automatically extract building features from remote 
sensing images. The network structure is adjusted to 
integrate the relationship between image context information 
and categorical areas. A self-attention mechanism module is 

introduced to generate enhanced feature representations, 
improving the accuracy of building recognition results. 

(3) GIS buffer analysis techniques are used to analyze 
the spatial location relationship between elements around 
pipelines and pipeline routes. Combined with regional grade 
and HCA identification rule algorithms, quantitative 
identification of HCAs is achieved. 

The application of this method can greatly reduce the 
workload of manual data collection, increase the accuracy 
and consistency of HCA identification, and ensure 
standardized management of HCAs. In the future, population 
big data analysis methods can be integrated to further reduce 
the difficulty of the HCA identification process and increase 
the frequency of HCA updates. 
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