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Abstract 
  

Landslide is one of the most common geological disasters globally, which has caused serious impact on human society 
and natural environment. High-precision prediction of landslide displacement has important effects on prevention and 
early warning against landslide disasters. Most existing landslide displacement prediction models focus on static model 
methods and focus minimally on the effects on the external environmental variables of landslide. To solve these problems, 
this study proposed a time series gate recurrent unit (GRU) dynamic prediction model that considers the effects of 
environmental variables. First, landslide displacement was decomposed into the trend and periodic term displacements by 
exponential smoothing. Second, a GRU model was built by considering the influences of external environmental 
variables on landslide displacement to predict the periodic term displacement. Third, the individual component 
displacements were aggregated to attain a dynamic forecast of the landslide movement. Lastly, a case study was 
conducted based on the landslide of Baishui River, China. The effectiveness of the proposed prediction model was 
verified by comparing with traditional intelligence algorithms (e.g., back propagation (BP) and extreme learning machine 
(ELM)). Results demonstrate that the proposed model conforms well to the evolution process of landslide displacement 
with consideration to the influences of external environmental variables on the fluctuation characteristics of periodic term 
displacement. The memory structural function of the GRU model can automatically adapt to the dynamic variation 
characteristics of landslide data during landslide prediction. The minimum and maximum prediction errors of the GRU 
model are 0.01 mm and 12 mm, respectively. The GRU model, compared with the BP and ELM static models, effectively 
increases the prediction accuracy (RMSE is increased by 6.7 times and the MRE is increased by 3.5 and 7.6 times, 
respectively). This study provides an important evidence for the prediction, early warning, prevention, and reduction of 
landslide disasters. 
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1. Introduction 
 
Landslide is a type of geological disaster characterized by 
extensive global distribution, sudden occurrence, and 
extensive damages. Landslide disasters can cause 
considerable casualties and property losses and also result in 
significant damage to resources, the environment, ecology, 
and other aspects [1-2]. In recent years, the frequency and 
intensity of landslide occurrence have increased annually as 
a result of global climate change, rapid industrialization, 
melting glaciers, and strong rainfalls. Landslides have 
emerged as a significant threat to the sustainable 
development of human production and life. Hence, research 
on the prediction and forecast of landslide has practical 
significance [3]. Landslide displacement is a macroscopic 
manifestation of complicated mechanical changes in 
landslide mass. Numerical prediction of landslide 
displacement is significant in the study of landslide change 
mechanisms and prevention of landslide disasters [4]. The 
analysis of the variation trend of displacement and 
construction of forecast models based on landslide 
monitoring data have become effective means to 
comprehensively control landslide disasters. Existing 
landslide displacement prediction mainly includes physical 
[5], statistical [6-8], and intelligence models [9-10]. Given 
the uncertainty of the rock-soil material parameters, 

constitutive model, and boundary conditions of landslide, 
physical models have difficulty in accurately predicting 
future deformation. Statistical prediction model requires 
analysis of the internal relationship and development laws of 
extensive historical monitoring data, and it disregards the 
constitutive relationship between rock and soils in the 
landslide mass during prediction. Hence, this model has a 
poor generalization performance.  

Intelligence prediction model learns landslide 
displacement deformation characteristics aided by computers, 
such as machine learning or deep learning model [11-12]. 
Intelligence prediction model is not restricted by 
complicated physical parameters, such as the geology and 
hydrology of the study area, during prediction. This model 
brings new opportunities for the scientific and accurate 
analysis and prediction of landslide displacement 
deformation [13-14]. 

Extensive studies have been conducted on predicting 
landslide displacement through the application of machine 
learning techniques. Nevertheless, existing prediction 
models of landslide deformation mainly focus on the single 
variable of time or displacement. These models emphasize 
on data model and algorithm optimization but disregard 
research on landslide geologic model. Hence, the practical of 
significance is how to introduce in the new machine learning 
algorithm under the support of mass multi-source time series 
monitoring data and the macroscopic deformation track 
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information[15] with consideration to the dynamic influence 
of different action modes of the causes of landslide 
displacement to realize high-precision prediction. To provide 
some references to the prediction of landslide deformation, 
this study built a prediction model based on GRU with 
consideration of the effects of multiple environmental 
variables. 
 
 
2. State of the art 
 
Recently, many scholars have applied machine learning 
algorithms to landslide prediction. Some of the details of 
their findings are as follows. Feng et al. [16] first proposed 
the theoretical framework of intelligence rock mechanisms 
and established the intelligence analytical method of rock 
mechanics by using the back propagation neural network 
system. Cao et al. [17] studied intelligence landslide 
prediction based on the improved algorithms of various 
neural networks from different perspectives, thereby further 
facilitating the development of intelligence landslide 
prediction systems. However, they proved various problems 
of neural networks, such as large sample size, over fitting, 
difficult convergence, and local optimization. Cortes et al. 
[18] used neural networks as bases to propose the support 
vector machine (SVM) model. This model mapped linear 
inseparable data onto a high-dimensional space by 
introducing kernel function theory, thereby realizing the 
linear separation of data. The SVM model is theoretically 
superior to neural networks. Zhao et al. [19] studied 
landslide deformation prediction by using SVM and 
discovered some of its advantages, including small training 
sample size, strong generalization performance, and easy 
acquisition of global optimal solution. Tien Bui et al. [20] 
ranked landslide adjustment factors based on the least square 
SVM technique and established a hybrid learning algorithm 
to predict landslide. Their results showed that the least 
square SVM technique can increase the efficiency of the 
random gradient decreasing algorithm in landslide space 
prediction. Thereafter, SVM began to comprehensively 
succeed neutral networks. Nevertheless, various studies have 
indicated that the values of the penalty coefficient, kernel 
function parameters, and relaxation coefficient of SVM are 
key influencing factors of prediction accuracy. Moreover, a 
fixed and mature method to select the values of the three 
parameters is lacking, thereby becoming a hindrance in the 
extensive application of SVM. To address the considerable 
influence of the kernel function parameters and penalty 
factor on the SVM-based prediction process, Shihabudheen 
et al. [21] built a landslide displacement prediction model 
using extreme learning machine (ELM). Their results proved 
that ELM has strong extrapolation prediction ability and is 
superior to BP and SVM in terms of network convergence 
rate and prediction accuracy. 

Swarm intelligence and bionic algorithms have been 
applied recently to optimize the parameters of the prediction 
model. Guo et al. [22] optimized the neutral network 
parameters by using the particle swarm and sparrow search 
algorithms, thereby effectively improving the prediction 
performances of BP. Wen et al. [23] built a hybrid model by 
combining particle swarm algorithm and SVM. Al-Shabeeb 
et al.[24] optimized the structural parameters of the ELM 
network by using the genetic algorithm (GA) and studied 
landslide sensitivity prediction. They found that GA-ELM 
had relatively high accuracy. Although the improved 
algorithms can relatively optimize network structural 

parameters, such as BP, SVM, and ELM, the new 
optimization algorithms introduced many network 
parameters, resulting in difficulties in parameter 
optimization. 

Deep learning technologies are being developed 
continuously. Lecun et al. [25] proved from the technical 
perspective that the effects of local extreme problem on deep 
network could be disregarded, and deep learning technology 
has become the most leading machine learning method. 
Nava et al. [26] compared the prediction effects of 
multilayer perception, convolutional neural network and 
GRU for landslide masses with different geographic 
locations and geological background, proving that deep 
learning model achieved better prediction effects. Liu et al. 
[27] decomposed the “step-type” landslide displacement. 
They predicted the periodic term displacement by GRU and 
found that this algorithm could accurately predict the 
periodic term displacement of landslides by maximizing 
historical landslide information. 

The preceding studies mainly build landslide prediction 
models based on traditional machine learning algorithms and 
optimized model parameters. On the one hand, the built 
models demonstrate overreliance on mathematical fitting 
and deduction of landslide displacement monitoring but 
disregard the influence of the internal evolution mechanism 
of landslides and external environmental variables on 
landslide displacement. On the other hand, existing 
prediction models, such as ELM, SVM, and BP belong to 
typical static networks. With respect to modeling principle, 
these models transform dynamic time series into static 
problems appropriate for the algorithms. None of these 
models have considered the dynamic evolution 
characteristics of landslide during prediction and are 
mismatched with the evolution data of landslides, thereby 
restricting the improvement of the prediction accuracy. To 
solve these problems, a dynamic prediction model was built 
by coupling GRU in deep learning and time series analysis 
with comprehensive consideration of the influencing 
mechanisms of landslide causes on displacement changes. 
The present study aims to offer a robust methodology for the 
dynamic forecasting of landslide displacement. 

The remainder of this study is organized as follows. 
Section 3 constructs the landslide displacement prediction 
models based on time series neural learning and designs the 
test schemes of GRU landslide displacement prediction by 
considering environmental variables. Section 4 investigates 
the effectiveness of the GRU model prediction based on the 
monitoring point ZG118 at the Baishui River landslide in 
China. Lastly, Section 5 presents the conclusions. 
 
 
3. Methodology 
 
3.1 Time series analysis of landslide displacement 
Landslide is controlled by the collaborative effects of 
internal and external factors. Internal factors mainly include 
rock properties and the geologic and internal structures of 
the slope stratum. External factors include movements of 
surface and ground water, rainfall, artificial slope cutting or 
loading, vibration, and other factors resulting in the slope 
losing stability [28-29]. Controlled by internal factors, 
increments of landslide displacement and time present a 
monotone increasing function and reflect the variation trend 
of the long time series of displacement. Influenced by 
external environmental factors, landslide displacement and 
time increase in a fluctuating manner and reflect periodic 



Caiyun Gao and Chuanjiao Pan/Journal of Engineering Science and Technology Review 17 (6) (2024) 208 - 215 

 210 

changes caused by external environmental factors. Landslide 
displacement is decomposed as follows: 
 

                                      (1) 
 

Where,  is the monitoring value of the displacement, 
 is the trend term displacement of the landslide, and  is 

the periodic term displacement. In this study, the trend term 
displacement was extracted using the exponential smoothing 
method. The smoothing formula is as follows: 

First-order exponential smoothing method: 
 

                           (2) 
 

Where  is the predicted value of data in phase t,  is 
the original value of data in phase t, and  refers to the 
smoothing coefficient, where .Based on the first-
order exponential smoothing sequence, applying the same 
smoothing coefficient to the first-order exponential 
smoothing results in the second-order exponential smoothing. 
 

                       (3) 
 

                        (4) 
 

Where,  represents the trend value of the phase , and 
 denotes the trend coefficient ( ). 

 
3.2 GRU model 
The Deep learning, gate recurrent neural network has 
become a strong tool for processing sequence data. GRU is a 
variant of recurrent neural networks (RNN). RNN, which is 
different from traditional artificial neural networks (ANN), 
has connections among adjacent nodes in the hidden layer.  
 

 
Fig. 1.  Comparison of the RNN and ANN structures 

 
Each hidden layer node concurrently receives 

information from the input layer at the current time step and 
the information passed from the hidden layer at the previous 
time step (Fig. 1). Hence, it can keep a memory state during 
sequence processing, thereby enabling the determination of 
the internal time series relations of the sequence data [30-31]. 

GRU combines the input and forget gates of LSTM into 
an update gate according to different contributions of three 
gate control structures to the model’s learning ability, 
thereby forming a gate control structure composed of update 
and reset gates. This situation can decrease the 
corresponding weight parameters. The Schematic of GRU is 
shown in Fig. 2. 

The update gate controls the ignorance degree of 
historical information, whereas the reset gate is used to 
decide the combination degree of input state and historical 
information. The forward calculation per time is as follows: 

 
                      (5) 

 
                       (6) 

 
                (7) 

 
Where,  is the input,  is the update gate,  is the 

reset gate,  is the output of the current time step,  is the 
sigmoid function,  is the output of the previous time step, 

, , and  are the weight matrixes, tanh is a 
hyperbolic tangent function, , , and  are deviation 
coefficients. 

 
Fig. 2. Schematic of GRU 
 

The basic process of the proposed dynamic landslide 
displacement prediction model based on time series GRU by 
considering the effects of environmental variables is shown 
in Fig. 3.  

Model accuracy was evaluated using root-mean-square 
error (RMSE) and mean relative error (MRE). 

 

                        (8) 

 
                         (9) 

 
Where,  and  represent the forecasted and observed 

values, respectively, at time  and  refers to the sample 
size. 

 
Fig. 3. Process of the prediction model 
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4. Result Analysis and Discussion 
 
4.1 Landslide monitoring data analysis 
The Baishui River landslide is located in Zigui County, 
China. It has been monitored since June 2003, when the 
reservoir water level reached 135 m. At present, there are 11 
GPS deformation monitoring points in the landslide region, 
and Point ZG118 is at the middle of the landside mass. 
ZG118, compared with other monitoring points where data 
fluctuates substantially, reflects the entire process of 
displacement evolution. In this study, the ZG118 data at 72 
phases from 2007 to 2012 were chosen for analysis (Fig. 4). 
The monitoring curves of the accumulative displacement, 
rainfall, and reservoir water level are shown in Figs. 5 and 6. 
According to the data of the reservoir water level meter, the 
monitoring curves were divided into two periods for analysis. 
 

 
Fig. 4. Displacement curve of the Baishui River landslide(ZG118） 
 

Period 1: The reservoir water level fluctuated within the 
range of 145-155 m. The accumulative displacement at 
ZG118 was kept stable in the beginning and the deformation 
rate began to accelerate thereafter. From January to July 
2007, the reservoir water level was lowered to 144.2 m, and 
the accumulative displacement growth changed suddenly. 
The maximum displacement growth rate reached 310.9 
mm/month (July 2007). From August 2007 to September 
2008, the reservoir water level experienced two stages of 
rising and fluctuation. The accumulative displacement curve 
presented a stable variation and the maximum displacement 
growth rate reached 31 mm/month. The preceding variations 
were caused by the violent changes of external 
environmental variables (i.e., changes of rainfall and 
reservoir water level in the flood season). 

Period 2: The reservoir water level had periodic 
fluctuations within the range of 145-174 m. The landslide 
mass adapts to the regular changes in rainfall and reservoir 
water level. The accumulative displacement at ZG11 
presents a “step-like” growth [14]. From 2009 to 2012, the 
maximum displacement growth rates were 96, 55, 105, and 
59 mm/month, respectively. All maximum displacement 
growth rates appeared in the period when the reservoir water 
level lowered and there was concentrated rainfall in the 
summer. 
 
4.2 Decomposition of displacement and selection of 
environmental variables 
 

4.2.1 Decomposition of displacement 
Displacement at ZG118 was decomposed into the trend and 
periodic term displacements using the second-order 
exponential smoothing method (smoothing coefficient is 0.4). 
The trend and periodic term displacements at ZG118 are 
shown in Fig. 7. 

 

 
Fig. 5. Accumulative displacement-rainfall monitoring curves 

 
Fig. 6. Accumulative displacement–reservoir water level monitoring 
curves 

 
Fig. 7. Trend and periodic term displacements at ZG118 
 
4.2.2 Selection of environmental variables 
Selection of environmental variables can significantly 
influence the landslide displacement prediction accuracy 
significantly. The accumulative displacement curve at 
ZG118 presents “step-type” fluctuations. Rainfall and 
periodic fluctuation of reservoir water level are dominant 
factors influencing the deformation characteristics at ZG118. 
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Seasonal rainfall is an important cause of periodic 
changes of landslide displacement. Landslide soil is wet 
during rainfall, resulting in soil loss, which influences the 
stability of the landslide. In addition, rocks crack and ground 
water level rises upon the entrance of rainwater into rock 
cracks, resulting in the easy facilitation of landslide. As 
shown in Fig. 8, the effects of rainfall on periodic term 
displacement at ZG118 are relatively hysteretic. Every year, 
the periodic term displacement presents an evident 
increment trend at one to two months after rainfall increases. 
The correlation coefficients of periodic term displacement 
with monthly, bimonthly, and maximum monthly rainfall 
were calculated as 0.982, 0.993, and 0.992, respectively, 
using the grey correlation. This finding indicates the close 
relationship between periodic term displacement and rainfall. 

 

 
Fig. 8. Relationship between periodic term displacement and rainfall 
 

 
Fig. 9. Relationship between periodic term displacement and reservoir 
water level 
 

When reservoir water level rises, water pressure may 
increase, thereby breaking the stress balance of rock and soil 
and influencing the stability of the landslide. In addition, 
water infiltration may cause the saturation loss of soil, 
thereby increasing landslide risks of the reservoir banks. 
When reservoir water level lowers, stresses on rocks and 
soils in the landslide will still be influenced. With an 
increase in water level variation rate, the influence on 
landslide stability increases and landslide risks also increase. 
As shown in Fig. 9, reservoir water level significantly 
influences periodic term displacement at ZG118. Calculation 
indicates that the grey correlation degrees of periodic term 
displacement with reservoir water level, monthly variations 
of reservoir water level, and bimonthly variations of 

reservoir water level are 0.982, 0.720, and 0.812, 
respectively, indicating their close relationships in a time 
series. 

Influences of rainfall and reservoir water level are 
periodic and relatively random. To prevent the adverse 
effects of randomness on the prediction results, influences of 
the monthly, bimonthly, and tri-monthly periodic term 
displacement growths on prediction were considered (Fig. 
10). 

 
Fig. 10. Relationship between periodic term displacement and reservoir 
water level 

 
In summary, nine variables were chosen as 

environmental variables of periodic term displacement at 
ZG118: monthly rainfall, bimonthly rainfall, maximum 
monthly rainfall, reservoir water level, monthly variations of 
reservoir water level, and bimonthly variations of reservoir 
water level, monthly periodic term displacement growth, 
bimonthly periodic term displacement growth, and tri-
monthly periodic term displacement growth. 
 
4.3 Landslide displacement prediction 
 
4.3.1 The prediction process of landslide displacement 
As shown in Fig. 3, the prediction process in this study is as 
follows: 

(1) Decomposition of accumulative displacement. It was 
divided into the periodic and trend term displacements based 
on the exponential smooth method by using the original 
landslide data. 

(2) Selection of landslide environmental variables. 
According to the grey correlation analysis, the nine 
environmental variables were used as inputs of the periodic 
term displacement model. 

(3) Construction of the data grouping model. Data of the 
72 phases from 2007 to 2012 were divided into two groups: 
60 groups (2007-2011) before the training dataset and 12 
groups (January to December 2012) after the prediction 
dataset. 

(4) Prediction of the trend term displacement. The trend 
term displacement data were used as the input and the GRU 
model, thereby obtaining the prediction results. Results were 
evaluated and compared. 

(5) Prediction of the periodic term displacement. The 
nine influencing factors were used as inputs and the GRU 
model, thereby obtaining the prediction results. Results were 
evaluated and compared. 

(6) The prediction results of the trend and periodic term 
displacements were superposed, thereby obtaining the 
prediction results of the accumulative displacement. 
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4.3.2 Prediction of trend term displacement 
The trend term displacement at ZG118 was predicted using 
the GRU neural network. Input and output of the GRU 
network were both 1, and the hidden layer has 200 neurons. 
The maximum training rounds was 300, gradient threshold 
was 1, and initial learning rate was 0.005. The staged 
learning rate adjustment strategy was applied. The 
attenuation period and attenuation factor of learning rate 
were 125 and 0.2, respectively. The prediction results are 
listed in Table 1. 
 
Table 1. Trend term displacement at ZG118 predicted using 
GRU (mm) 
Sequence Trend term 

displacement 
Prediction 
results 

Residual 
error 

61 2202.44 2202.01 -0.43 
62 2205.31 2208.29 2.99 
63 2203.90 2211.49 7.59 
64 2206.98 2211.76 4.78 
65 2210.51 2218.94 8.43 
66 2209.39 2227.40 18.01 
67 2223.67 2230.03 6.36 
68 2255.76 2248.83 -6.94 
69 2279.10 2285.57 6.47 
70 2300.14 2307.68 7.54 
71 2313.20 2323.64 10.43 
72 2318.16 2332.94 14.78 
 

Table 1 shows that in 12 phases of trend term 
displacement at ZG118 predicted using GRU, the maximum 
and minimum residual errors were 18.01 mm and 0.43 mm, 
respectively. MRE of prediction is 0.35%, proving the good 
performances of GRU in predicting trend term displacement 
at ZG118. 
 
4.3.3 Prediction of periodic term displacement 
The periodic term displacement at ZG118 was predicted 
using the GRU neural network. Inputs of the GRU 
prediction are monthly rainfall, bimonthly rainfall, monthly 
maximum rainfall, reservoir water level, monthly variations 
of reservoir water level, and bimonthly variations of 
reservoir water level, monthly displacement increment, 
bimonthly displacement increment, and trimonthly 
displacement increment. Output was 1, and the hidden layer 
has 80 neurons. Maximum training rounds were 300, 
gradient threshold was 1, and initial learning rate was 0.005. 
The staged learning rate adjustment strategy was utilized. 
The attenuation period and attenuation factor of learning rate 
were 125 and 0.2, respectively. The prediction results are 
listed in Table 2. 

Table 2 shows that among the 12 phases of periodic term 
displacement at ZG118 predicted using GRU, the residual 

error fluctuates significantly. Maximum and minimum 
residual errors were 9.78 mm and 0.91mm, respectively. 
According to the analysis of reasons, rainfall in December 
2012 decreased from the peak (177.2 mm) to 12.5 mm, 
while reservoir water level increased from the minimum to 
the peak (about 174.1 m). Sudden changes in the external 
environment influence the prediction performances of GRU. 

 
Table 2. Periodic term displacement at ZG118 predicted 
using GRU（mm） 
Sequence Periodic term 

displacement  
Prediction results Residual 

error 
61 7.16 8.89 1.73 
62 -3.51 -0.21 3.29 
63 7.70 5.52 -2.17 
64 8.82 4.16 -4.66 
65 -2.81 -4.95 -2.15 
66 35.71 29.78 -5.94 
67 80.23 79.31 -0.92 
68 58.34 59.25 0.91 
69 52.60 44.49 -8.11 
70 32.66 25.11 -7.55 
71 12.40 6.43 -5.97 
72 10.24 0.46 -9.78 

 
 
4.3.4 Prediction of accumulative displacement 
The predicted accumulative displacements at ZG118 are 
listed in Table 3. Table 3 shows that in the 12 phases of 
accumulation displacement at ZG118 predicted using GRU, 
the maximum and minimum residual errors were 12.07 mm 
and 0.01 mm, respectively. MRE of calculation was 0.14%. 
To further verify the effectiveness of the proposed algorithm, 
ELM and BP were applied for prediction under the same 
conditions. Results were compared with the prediction 
results of GRU (Table 4 and Fig. 11 ). Accuracy evaluations 
are shown in Table 5. 
 
Table 3. Accumulative displacement at ZG118 predicted 
using GRU（mm） 
Sequence Periodic term 

displacement  
Prediction results Residual 

error 
61 2209.60 2210.90 1.30 
62 2201.80 2208.08 6.28 
63 2211.60 2217.01 5.41 
64 2215.80 2215.92 0.12 
65 2207.70 2213.98 6.28 
66 2245.10 2257.17 12.07 
67 2303.90 2309.34 5.44 
68 2314.10 2308.07 -6.03 
69 2331.70 2330.06 -1.64 
70 2332.80 2332.79 0.01 
71 2325.60 2330.07 4.47 
72 2328.40 2333.40 5.00 

 
Table 4. Prediction results comparison of GRU with ELM and BP（mm） 
Sequence Displacement GRU Residual error ELM Residual error BP Residual error 

61 2209.60 2210.90 1.30 2255.23 45.63 2210.69 1.09 
62 2201.80 2208.08 6.28 2155.21 -46.59 2197.53 -4.27 
63 2211.60 2217.01 5.41 2185.93 -25.67 2188.70 -22.90 
64 2215.80 2215.92 0.12 2229.47 13.67 2212.55 -3.25 
65 2207.70 2213.98 6.28 2274.74 67.04 2212.91 5.21 
66 2245.10 2257.17 12.07 2205.19 -39.91 2195.10 -50.00 
67 2303.90 2309.34 5.44 2277.45 -26.45 2266.36 -37.54 
68 2314.10 2308.07 -6.03 2342.46 28.36 2340.61 26.51 
69 2331.70 2330.06 -1.64 2365.68 33.98 2310.42 -21.28 
70 2332.80 2332.79 -0.01 2374.57 41.77 2331.61 -1.19 
71 2325.60 2330.07 4.47 2354.56 28.96 2322.00 -3.60 
72 2328.40 2333.40 5.00 2342.35 13.95 2310.99 -17.41 
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Fig. 11.  The comparison chart of GRU with ELM and BP 
 
Table 5. Prediction accuracy comparison of GRU with ELM 
and BP 
Prediction models RMSE/mm MRE 
BP 37.21 0.71% 
ELM 37.22 1.52% 
GRU 5.55 0.20% 
 

As shown in Fig. 11 and Table 4, the prediction results 
of GRU agree the most with the original monitoring value, 
and residual errors are in relative uniform distribution. The 
prediction process of BP and ELM can only reflect the 
overall trend of landslide mass deformation. Residual errors 
of prediction at some points are relatively high. Maximum 
residual errors of BP and ELM were 50 mm (Phase 66) and 
67.04 mm (Phase 65), respectively. Moreover, residual 
errors of Phases 61, 62, and 70 were relatively high. 
Combining with accuracy evaluation indexes in Table 5, 
RMSE of GRU increased 6.7 times compared with those of 
BP and ELM. Meanwhile, MRE increased 3.5 times and 7.6 
times, respectively. That is, the time series GRU model 
considering the influences of external environmental 
variables has high prediction accuracy and stability. 
Moreover, it substantially conforms to the dynamic 
characteristics of landslide. 
 
 
5. Conclusions 
 

To improve the accuracy of landslide prediction, a dynamic 
prediction model based on time series by considering the 
effects of environmental variables is proposed. The proposed 
model is applied to predict the Baishui River landslide in 
China. Some of the major conclusions are as follows. 

(1) Landslide displacement is decomposed into the trend 
and periodic term displacements. Thereafter, the 
corresponding mathematical models are built according to 
their various characteristics to predict the dynamic features 
conforming to landslide deformation. 

(2) Changes in reservoir water level and rainfall can 
significantly affect the prediction of periodic term 
displacement. Displacement changes substantially in the 
period with high reservoir water level and rainfall, but it 
changes slightly in the period with stable reservoir water 
level and in non-rainy seasons. 

(3) The time series GRU model considering multiple 
influencing factors can predict landslide displacement 
substantially, showing high accuracy and stability. The 
unique memory structure of the GRU model can 
automatically adapt to the historical information of 
monitoring points during training, thereby realizing the state 
feedback of the model and matching with dynamic 
characteristics of the data. 

On the bases of considering the influences of 
environmental variables, this study realizes the dynamic 
prediction by combining time series analysis and GRU 
neural network. This research provides technical references 
to the prevention and reduction of landslides. This study 
considers the responses of causes, such as reservoir water 
level and rainfall, but it still lacks a deep quantitative 
analysis on the hysteretic responses of causes to landslide. 
Future studies can predict landslide displacement by 
considering to the hysteretic responses of causes. 
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