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Abstract 
 

The Electromechanical Impedance (EMI) method presents an attractive option for engineering system monitoring due to 
its non-destructive nature, cost-effectiveness, and high sensitivity to even minor damages. Establishing a robust conditional 
maintenance program in Structural Health Monitoring (SHM) systems necessitates accurate information regarding damage 
presence, beginning with early detection. Consequently, recent years have witnessed the development of various 
approaches aimed at enhancing damage detection processes within the EMI-SHM domain. This paper offers a meticulous, 
systematic review of the latest technological advancements to augment damage detection capabilities within the EMI-SHM 
framework. A meticulous analysis of the selected journal articles focuses on the methods developed and the research 
emphases. Moreover, attention is directed towards contextualizing issues pertinent to industrial application, encompassing 
considerations such as temperature variation and compensation techniques, sensor reliability, and the inherent nature of the 
work. A thorough statistical examination of the findings is undertaken, affording invaluable insights into the contemporary 
landscape of EMI-SHM research. Additionally, a detailed analysis of temperature compensation techniques and sensor 
reliability methodologies is executed, identifying crucial gaps for implementation in industrial settings. The insights 
leveraged not only shed light on the current state of investigation but also furnish invaluable guidance for future endeavors 
in EMI-based damage detection technologies suitable for industrial-scale deployment. 
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1. Introduction 
 
The Electromechanical Impedance (EMI) method has 
garnered prominence as a proficient approach for structural 
system monitoring. This is attributed to its cost-effectiveness, 
nondestructive attributes, and remarkable sensitivity in 
discerning even small changes in structural conditions [1 - 4]. 
Moreover, its inherent characteristics render the technique 
amenable to integration within a comprehensive autonomous 
monitoring framework [5]. 
 The EMI technique relies on the electromechanical 
coupling between the host structure and the piezoelectric 
patch attached to it embedded within it. Excitation of the 
piezoelectric patch by a sinusoidal voltage signal allows a 
signature of the structure status attributable to both the 
converse and direct piezoelectric effects. These acquired 
signatures are intrinsically linked to the structure’s health, 
such that any changes in them reveal changes in the structural 
conditions, enabling the detection of damages [4], [6 - 8]. 
 In recent years, a concerted endeavor among researchers 
has been directed toward enhancing the efficacy and 
reliability of EMI-based damage detection methodologies in 
the realm of Structural Health Monitoring (SHM). These 
endeavors have led to the development of numerous 
innovative techniques, algorithms, and instrumentation 
approaches to enhance the sensitivity, accuracy, and 
robustness of EMI-SHM-based systems. Consequently, a 
comprehensive appraisal of these recent advancements is 

imperative to elucidate the state-of-the-art in this domain, 
identify emerging trends, and highlight avenues for future 
research. 
 This contribution undertakes a systematic review focusing 
on methodologies developed within the past five years to 
enhance damage detection. Through a meticulous synthesis 
and analysis of extant literature, this review offers a 
comprehensive and statistical examination of the evolved 
technologies, assessing the methods used, research emphases, 
and implementation challenges pertinent to using the EMI 
technique in real-world scenarios. Moreover, this review 
delineates prospective avenues for EMI-SHM-based damage 
detection. 
 
 
2. Materials and Methods 

 
The systematic study used the Knowledge Development 
Process - Constructivist (ProKnow-C) methodology 
described in Ensslin et al. [9]. Fig. 1 illustrates the steps used 
herein. 
 Since this work aimed to investigate the latest techniques 
for enhancing damage detection using the electromechanical 
impedance method, the search strings used were 
electromechanical impedance, damage detection, and 
damage identification. The AND operator linked the first two, 
and the OR operator linked the last two. The period 
investigated was the most recent five years. 
 The search was conducted from January 19 to January 29, 
2024, using three databases: IEEE Xplore, Scopus, and 
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Springer. The results were narrowed to include only journal 
articles and peer-reviewed material in English. 
 After filtering the results, the first step was to analyze the 
alignment of the title, keywords, and abstract with the actual 
research. This step (Fig. 1) resulted in the selection of 4 
journal articles from IEEE Xplore, 52 from Scopus, and nine 
from Springer databases. In this stage, 57 items were selected 
after identifying and removing eight duplicates. 
 

 
Fig. 1. Flowchart illustrates the steps to select the journal articles for the 
systematic analysis. 
 
 The papers were then thoroughly reviewed to determine 
their effective alignment with the research topic. The 
selection criteria were focused on approaches aimed at 
enhancing damage detection in EMI-SHM systems, with 
consideration given to all aspects related to damage detection 
tasks. At this stage, 51 papers were identified as fully aligned 
with the scope of the research. The selected documents were 
then moved to the second stage for systematic analysis. 
 The following aspects were evaluated in each paper: (1) 
the method used for damage detection; (2) the focus of the 
study on the overall system for structural health monitoring; 
(3) the type of method used, whether it depends on a previous 
structural model to achieve results or not; (4) the material 
investigated in the study; (5) how the damage was created in 
the monitored specimen; (6) the temperature range considered 
in the study; (7) the intrinsic nature of the research, 
delineating between theoretical, experimental, or industrial-
scale endeavors, and; (8) the incorporation or absence of a 
structural model about the monitored specimen. 
 From the gathered information regarding the defined 
points, statistical analysis was performed using the Python 
packages Numpy 1.24.4 version [10] and Pandas 1.5.3 
version [11], which were used to process the imported raw 
data, and Matplotlib 3.7.2 version [12] and Squarify 0.4.3 
version [13], used to plot the results. 
 The points investigated herein provide a detailed 
overview of the latest developments in damage detection 
techniques using the electromechanical impedance method in 
Structural Health Monitoring (SHM). This information helps 
to understand the current research directions and identify 
areas that require further study, guiding future research. The 
following section describes the analysis's results and their 
corresponding discussions. 
 

 
3. Results and Discussions 

 
The analysis of the approaches developed for damage 
detection revealed an organization into three general groups: 
(1) data-driven methods, which do not rely on the 
development of a structural model; (2) Machine Learning 
(ML)-based techniques, which require training an ML model 
for damage detection; and (3) model-based methods, which 

require a previous structural model to detect damages in the 
monitored structure. 
 The proportion of each group (Fig. 2) shows that data-
driven methods were the most used approach, representing 
62.7 % of the total number of papers investigated. This was 
followed by ML-based techniques (31.4 %) and model-based 
approaches, which accounted for 5.9 %. 
 

 
Fig. 2. Proportions of general approaches used to improve damage 
detection in the EMI-SHM. 
 
 
 The results indicate a trend toward developing approaches 
that do not rely on structural model-based methods, which can 
be time-consuming and costly for complex structures. 
Additionally, ML-based approaches require specific training 
for each condition. Conversely, data-driven methodologies 
offer pronounced advantages due to their adaptability and 
capacity for seamless extension to diverse scenarios. 
Furthermore, their capacity to furnish real-time resolutions 
renders them the preferred choice [14]. 
 Investigating the number of papers by year (Fig. 3) shows 
an increasing trend in research on techniques to improve 
damage detection using information from the 
electromechanical impedance method, instilling a sense of 
optimism about the future of the field. However, there has 
been a lack of studies regarding model-based techniques in 
the last three years, possibly due to their need for a previous 
structural model, which would be a disadvantage in real-life 
situations. According to the results, only ML-based 
techniques and data-driven methods have been applied 
recently, with an increasing trend for each class of techniques. 
 

 
Fig. 3. Trend analysis of approaches employed to enhance damage 
detection in the EMI-SHM over the recent years. 
 
 The examination of techniques used to enhance damage 
detection in EMI-SHM identified five classes: (1) 
Improvement of instrumentation and hardware; (2) Machine 
learning techniques; (3) Numerical or analytical methods; (4) 
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Optimization techniques; and (5) Statistical techniques. Tab. 
1 shows the list of studies that used each of these techniques. 
 Tab. 1 shows that statistical and ML techniques are widely 
used. Fig. 4 reveals that statistical techniques are the most 
commonly used, accounting for 37.3 % of the analyzed 
papers. They are followed by ML techniques (31.4 %), 
numerical and analytical methods, and improvements in 
instrumentation and hardware, each accounting for 13.7 %. 
 
Table 1. List of studies for each class of methods used to 
improve damage detection in the EMI-SHM. 

Method class References 
Improvement of 
instrumentation and 
hardware 

[1], [15-20] 

ML techniques [21-36] 
Numerical or analytical 
methods [37-43] 

Optimization techniques [44-45] 
Statistical techniques [46-64] 

 

 
Fig. 4. Classes of methods employed to enhance damage detection in 
the context of EMI-SHM. 
 
 Statistical techniques and other data-driven methods often 
do not require prior data on the monitored structure. This 
flexibility offers a key advantage in industrial-scale 
applications, making them well-suited for these conditions, 
where system information is limited or unavailable. Needing 
or previous information on the monitoring structure is critical 
for large-scale monitoring systems, where structural 
conditions and behaviors cannot be fully anticipated in 
advance. 
 Another aspect investigated was the research's focus on 
the overall EMI-SHM system. This system includes the data 
collection system, the electromechanical impedance (EMI) 
theoretical model implemented in the software to acquire the 
signatures, and techniques for processing the collected data, 
which aim to detect damage [14], [65-67]. Sometimes, 
indexes are used to reveal the occurrence of damage. Also, 
there are techniques to compensate for temperature effects 
that occur in real-life situations. 
 From this basis, the works studied were classified into five 
classes based on their emphasis on the overall EMI-SHM 
system: (1) development of damage indicators, (2) 
improvement of the EMI model, (3) instrumentation and 
hardware focus, (4) signal processing for damage detection, 
and (5) development of temperature compensation 
approaches. Tab. 2 shows the list of the studies with their 
respective class. 
 

Table 2. List of studies regarding the research emphasis on 
the improvement of damage detection in the context of the 
EMI-SHM. 

Method class References 

Damage indicator [41], [43], [49], [52], [53], 
[57], [60] 

Electromechanical 
impedance (EMI) model [38], [39], [40], [42]. 

Instrumentation and 
hardware [1], [15-20]. 

Signal processing for 
damage detection 

[21-24], [27-34], [36], [44-
48], [50-51], [54-56], [59], 
[61] 

Temperature 
compensation 

[25-26], [35], [37], [58], 
[62-64] 

 
 The analysis of the classes (Fig. 5) reveals a significant 
emphasis on signal processing techniques to enhance damage 
detection, which accounted for 49.0 % of the total number of 
papers evaluated. This was followed by a focus on 
temperature compensation techniques, explored in 15.7 % of 
the total, and the development of damage indicators, 
instrumentation, and hardware, each accounting for 13.7 %. 
 

 
Fig. 5. Distribution of the research focuses to improve damage detection 
in the EMI-SHM. 
 
 Looking deeper into the relationship between the 
developed methods and the research focus (Fig. 6), it is 
possible to delineate the application of each method in each 
part of the EMI-SHM system. 
 Fig. 6 shows that ML methods were the most used for 
signal processing (25.5 %), followed by statistical techniques 
(19.6 %). Optimization techniques were used in only 3.9 % of 
the papers analyzed. 
 

 
Fig. 6. Heatmap relating the classes of methods (y-axis) and the 
focusing of the researches (x-axis) applied to improve the damage 
detection in the context of the EMI-SHM. 
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 Within the domain of machine learning (ML) techniques 
applied to damage detection, Convolutional Neural Networks 
(CNN) have emerged as a predominant choice, featured in 
62.5 % of the selected works employing ML methodologies. 
Noteworthy mentions of CNN employment include studies by 
Rezende et al. [22], Alazzawi and Wang [23-24], Ai et al. 
[27], Le et al. [28], Nguyen et al. [30], Ai and Cheng [31], Ai 
and Zhang [32], Ai et al. [33], Du et al. [34-35], and Rezende 
et al. [36]. 
 Beyond CNN, diverse ML approaches have been explored 
within the selected literature. Alazzawi and Wang 
investigated the utilization of a Deep Residual Network 
(DRN) [23] and a two-layer-based CNN algorithm [24]. At 
the same time, Du et al. delved into the realm of few-shot 
learning [34] and developed a multi-task CNN approach for 
damage detection [35]. Freitas et al. [25] contributed to the 
discourse by applying an adaptive neuro-fuzzy inference 
system, and Meher et al. [29] explored the efficacy of a feed-
forward backpropagation neural network. Additionally, 
Perera et al. [21] introduced k-means (KM) clustering as a 
methodological tool, and Silva et al. [26] provided insights 
into Transfer Learning Analysis (TCA) as a viable option for 
damage detection tasks. 
 The primary advantage of CNN-based frameworks is their 
ability to discern subtle alterations in EMI spectra without 
requiring a pre-processing step. Utilization of CNNs for 
damage detection has yielded encouraging outcomes. Du et 
al. [35] demonstrated a high generalization ability using a 
CNN-based framework, with an average accuracy of 93.21 %. 
Alazzawi and Wang [24] put forth a CCN-structured 
framework for the detection of various types of damage, 
attaining a test accuracy of 100 %. 
 Despite the advantages of the CNN in damage detection 
tasks, DRN-based workflows have emerged to overcome 
some limitations of the CNN methods. The DRN method 
offers a more expeditious training process, facilitates easier 
gradient transmission, and enables constructing a deeper 
neural network with reduced gradient vanishing [23]. The 
deployment of this approach has yielded remarkable 
outcomes, attaining a test accuracy of 100 % [23]. This 
performance not only surpasses the capabilities of the CNN 
but also exceeds those of the Deep Auto-Encoder (DAE) and 
the Long-Short Term Memory (LSTM) methods. 
 Nevertheless, the necessity for a substantial quantity of 
training data regarding the system under observation can 
present obstacles to implementing these methods in real-scale 
conditions. This is because the information required for these 
methods is often not readily available in practical situations. 
 Alternative methods, such as few-shot learning, which 
require fewer input data than CNN methods, can be 
investigated in greater depth to address this issue. Its 
application has demonstrated high recognition ability, with an 
average accuracy of 97.63 % [34]. Moreover, utilizing 
transfer learning methodologies can circumvent this 
limitation and represent a subject worthy of further detailed 
investigation. 
 Statistical techniques, the most used of all the methods 
surveyed, were used most often to process signals in the 
damage detection process (19.6 %), develop damage 
indicators (9.8 %), and then in the research about temperature 
compensation techniques (7.8 %). 
 Numerical or analytical methods were mainly used to 
improve the theoretical model of electromechanical coupling, 
accounting for 7.8 % of the total. The other applications were 
poorly explored. Numerical or analytical methods applied to 
developing damage indicators accounted for 3.9 %, and only 

2.0 % were used to research temperature compensation 
approaches. 
 The nature of these methods means that they are used 
more in formulating mathematical models. Despite their other 
applications, this can explain their higher use in improving the 
electromechanical coupling model. 
 Temperature is an essential issue in EMI-SHM systems 
because it affects the impedance or admittance measurements. 
In this sense, the development of temperature compensation 
techniques is critical to achieving reliable results and reducing 
false positive alarms [68-76]. 
 Regarding the improvement of temperature compensation 
techniques, Fig. 6 shows that the most used techniques were 
the statistical methods (7.8 %), followed by the ML 
techniques with 5.9 %. Only 2.0 % was attributed to the 
numerical or analytical methods. 
 When evaluating the temperature range considered in 
each study (Fig. 7), it was found that most studies did not 
consider temperature variation, accounting for 52.9 % of the 
total analyzed. 21.6 % of the studies provided no information 
on temperature, and only 25.5 % considered temperature 
variations, which simulated more realistic conditions. 
 

 
Fig. 7. Emphasis on temperature range considerations in the reviewed 
studies. 
 
 According to the results, there is a lack of investigations 
considering temperature variations. Developing techniques 
that include temperature compensation steps and damage 
detection is crucial to achieving a more robust system and 
bringing it closer to industrial applications. It can also provide 
more insight into the effects of temperature on measurements. 
 Another aspect examined was the type of material used in 
the studies. Fig. 8 shows the number of times each material 
was used in all the papers. Aluminum was the most used 
material in the experiments, appearing 23 times, followed by 
steel (20 times) and composites (9 times). Concrete was used 
eight times, and Acrylonitrile Butadiene Styrene (ABS), a 
thermoplastic polymer, appeared in only one work. 
 Regarding the composites, only the use of Carbon Fiber 
Reinforced Polymer (CFRP) and Glass Fiber Reinforced 
Polymer (GRFP) was noted. The former was used by Castro 
et al. [47], Castro et al. [48], Perera et al. [21], Zhu et al. [38], 
and Soman et al. [41], and the latter by Soman et al. [41], 
Singh et al. [53], Malinowski et al. [55], Singh et al. [59] and 
Kim and Na [19]. 
 An evaluation of the damage types used in the research 
papers (Fig. 9) shows that the simulation of damage by mass 
addition was the most frequently used, occurring 12 times. 
Drilling was used 11 times, and cracking was used ten times. 
The other types accounted for only a fraction of the total. 
 The type of damage investigated often reflects the nature 
of the research, with specific damages such as mass addition 
and drilling being most common in laboratory-scale studies. 



Paulo Elias Carneiro Pereira, Simone Rodrigues Campos Ruas, Vitória Ribeiro da Silva, José dos Reis Vieira de Moura Junior and Roberto 
Mendes Finzi Neto/Journal of Engineering Science and Technology Review 17 (6) (2024) 102 - 112 

 
 

106 

A high prevalence of these damage types suggests that a 
significant proportion of research has been conducted under 
laboratory conditions. 
 

 
Fig. 8. Distribution of material utilization in the reviewed papers, 
indicating the absolute frequency of each material’s application. 
 

 
Fig. 9. Distribution of the damage types investigated in the reviewed 
studies, highlighting the absolute frequency of each one. 
 
 A thorough examination of the studies confirmed that all 
were conducted in laboratory settings without accounting for 
industrial-scale conditions. This highlights the need for 
further research utilizing EMI-SHM systems under such 
conditions to reflect practical applications better. 
 In addition to the types of structural failures, some 
researchers have investigated how to improve sensor failure 
detection and differentiate them from structural damage, as 
seen in Huynh et al. [40], Jiang et al. [54], and Le et al. [28]. 
In these works, the sensor failures most investigated were 
pseudo-soldering, wear, breakage, and debonding. 
Additionally, these aspects related to the shear-lag 
phenomenon were explored by Huynh et al. [40]. 
 Detecting sensor damage is essential in real-world EMI-
SHM applications, as sensors are exposed to environmental 
conditions that can cause sensor failure. In this sense, it is 
necessary to distinguish these from structural damage to avoid 
false alarms and implement a reliable maintenance program. 
Given the importance of this aspect on EMI-SHM practical 
applications, recent findings on this realm are discussed in the 
next section. 
 An essential inquiry pertinent to industrial applications 
employing EMI-SHM pertains to establishing a robust 
framework capable of furnishing dependable data to inform 
decision-making processes. In this context, an assessment 
was conducted to ascertain whether the studies were 
conducted under industrial conditions. The analysis revealed 
that all investigations were predominantly experimental. This 

observation underscores a distinct need for research 
endeavors focusing on damage detection within industrial 
environments, which aligns with the findings from Na and 
Baek [77]. 
 The investigation under actual conditions, wherein 
structures are inherently exposed to diverse environmental 
factors, including but not limited to ultraviolet (UV) radiation 
and thermal cycling induced by heating and cooling 
processes, can provide information to evolve the EMI-SHM 
systems to an industrial-scale application. 
 The evaluation of the works' nature revealed that 27.5 % 
of the total presented a structural model of the monitored 
structure. The majority of these models (21.6 %) were 
generated using the Finite Element Method (FEM), as seen in 
Adhikari and Bhalla [15], Antunes et al. [37], Fan et al. [44], 
Fan and Li [51], Hamzeloo et al. [39], Zhang et al. [45], Ai et 
al. [57], Baral et al. [62], Djemana et al. [58], Le et al. [28], 
and Wang et al. [61]. Other models were obtained using 
numerical or analytical methods, as described by Kim and 
Wang [16] and Huynh et al. [40]. 
 In the realm of structural modeling methodologies, some 
research [78], [79], [80], [81], [82], [83], [84] has 
incorporated the Spectral Element Method (SEM) instead of 
the FEM. SEM has demonstrated superior performance, 
particularly in scenarios involving electromechanical 
coupling, owing to its necessity for accurately 
accommodating exceedingly short wavelengths within the 
model to replicate the complexities of electromechanical 
interactions. Therefore, SEM could be considered for 
structural modeling in EMI-SHM. 

 
Practical Aspects of EMI-SHM Implementation 
This section addresses critical challenges in damage detection 
for real-scale monitoring, focusing on two main aspects: (1) 
the impact of temperature variations on impedance 
measurements and recent methods to mitigate these effects, 
and (2) approaches developed to distinguish between 
structural damage and sensor failures. 
 The influence of each variable on the EMI-SHM system 
is examined in the context of industrial applications. This 
highlights critical issues in real-world monitoring and 
proposes research directions to enhance the functionality and 
reliability of EMI-SHM systems. 

 
On temperature-induced effects and compensation 
techniques 
Impedance measurements are highly temperature-dependent, 
necessitating proper correction to prevent false structural 
damage diagnoses, as temperature impacts peak frequency 
and magnitude [34], [64]. Studies indicate that temperature 
variations cause a primarily linear frequency shift and vertical 
shifts in peak magnitude, particularly in resonant peaks, 
which may exhibit quadratic or cubic behavior. These shifts 
are also frequency-dependent, becoming more pronounced at 
higher frequencies [37], [62], [85], [86], [87], [88]. 
 This pattern has been employed in formulating 
compensation techniques based on the adjustment of shifts by 
a reference thermal state. Approaches structured on the 
concept of Effective Frequency Shift (EFS) [63], [64], [87], 
[89] identify the necessary frequency shift to achieve the 
maximum cross-correlation coefficient (CC) between the 
actual and reference impedance data. Building on the analysis 
of the similarity between impedance signatures, other classes 
of CC-based frameworks were also proposed [58], [90]. 
 The shifts have also been corrected by shifting the 
impedance curve in the opposite direction of the temperature-
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induced shifts [91] or directly correcting the horizontal and 
vertical shifts independently in sequential steps [92]. 
 Through a detailed analysis of the temperature-induced 
changes in the impedance signatures, Baral et al. [62] 
developed compensation equations for horizontal and vertical 
shifts derived from linear regression analysis. Furthermore, 
Antunes et al. [37] investigated the linear relationship 
between the variables and employed a linear interpolation 
approach to execute the temperature compensation. 
 Additionally, models based on polynomial interpolation 
[85], [93] have been proposed, with the relationship between 
temperature and EMI signals serving as the foundation for 
these models. 
 Temperature compensation models that directly adjust 
signals to mitigate temperature-induced changes typically 
rely on a reference state for effective performance [34], [37], 
[91], [94]. Recent advancements have introduced alternative 
solutions to address the limitations of these approaches. 
 Statistical methods have played a significant role in these 
developments, including (1) the Akaike Information Criterion 
(AIC), which, through feature extraction, has proven effective 
in identifying and isolating temperature-induced variations in 
signals [46]; (2) a combined framework employing Dickey-
Fuller and Johansen tests, which distinguishes structural 
damage from temperature effects in time series data [50]; (3) 
the development of a Hurst exponent-based damage index, 
robust against horizontal and vertical shifts in impedance 
signals [60]; and (4) the use of fiber Bragg grating (FBG) 
sensors and Linear Mixed Models (LMM) for direct 
temperature compensation without the need for external 
reference patterns [94]. 
 Machine learning (ML) techniques have further expanded 
the range of methodologies. Du et al. [35] proposed a CNN 
framework incorporating a temperature compensation 
subnetwork based on a modified 1-D U-Net architecture, 
demonstrating high recognition accuracy and strong 
generalization capabilities. In the context of domain transfer, 
Silva et al. [26] applied a TCA-based workflow that initializes 
with a baseline condition (source domain) and transfers 
knowledge to an unknown condition (target domain). 
 Additionally, a database of temperature and frequency 
was used as input for an Adaptive Neuro-Fuzzy Inference 
System (ANFIS) to develop fuzzy rule-based systems 
(FRBS). The framework proposed by Freitas et al. [25] 
generated output impedance signatures corresponding to 
baseline states, with predicted signatures closely aligning 
with actual measurements. 
 Despite advances in compensation techniques, some 
researchers are exploring ML-based frameworks as an 
alternative to bypass this process. A pivotal criticism of 
traditional compensation methods is their failure to account 
for changes in the shape of the EMI curve [34]. 
 In this context, Du et al. [34] proposed a few-shot learning 
approach based on a modified prototype network enhanced 
specifically to process EMI data. Similarly, Rezende et al. 
[22], [36] introduced a workflow centered on a CNN model 
capable of bypassing temperature compensation. Leveraging 
deep learning models’ ability to capture subtle signal 
variations, the proposed frameworks eliminate the need to 
process temperature effects. 
 Based on the studies analyzed, recent research in EMI-
SHM systems highlights three main approaches for 
addressing temperature effects: signal-shift-based, statistical-
based, and ML-based methods. Signal-shift-based approaches 
rely on prior databases of impedance signatures and 
corresponding temperature data, while ML-based models for 

temperature compensation often require large datasets to 
achieve reliable results. This challenges practical 
applications, where such data may be difficult or impractical. 
In ML frameworks, transfer learning has emerged as a 
potential solution, reducing the need for extensive data. 
 Statistical-based methods have proven effective in 
distinguishing between temperature-induced variations and 
structural changes in EMI data, making them attractive for 
real-world applications. However, most approaches have not 
accounted for multiple damages, highlighting the need for 
further research to evaluate their performance under such 
conditions. 

 
Recent advances in sensor reliability 

 
 Differentiating sensor failure from structural damage 
represents a critical challenge within real-scale EMI-SHM 
systems. Misinterpreting these two phenomena can result in 
false positives, necessitating comprehensive research to 
elucidate their behavior under sensor failure conditions. 
 In pursuit of elucidating the behavior of EMI-SHM 
systems under sensor failure conditions, Huynh et al. [40], in 
investigations on the shear-lag effect, sensor breakage, and 
debonding, concluded that the defect on sensors affects the 
signatures in different manners. Specifically, it was found that 
sensor defects affect both resonant and non-resonant 
frequency bands, whereas structural damages primarily 
influence resonant frequency bands. 
 Moreover, sensor debonding causes decreased resonance 
magnitudes and steeper slopes in the susceptance signatures, 
whereas sensor breakage induces upward shifts in the 
resistance patterns and decreased slopes in the susceptance 
[40]. These findings elucidate that the imaginary admittance 
and impedance slope are practical diagnostic markers for 
identifying sensor faults. 
 In addition to these diagnostic markers, alterations in the 
magnitude of the resonant conductance peak [95], shifts in the 
peak frequency of real admittance [95], [96], and variations 
in the magnitude of the resonant real impedance peak [97] 
have been identified as reliable indicators for the detection of 
sensor failures. 
 Consequently, meticulous analysis of the real and 
imaginary components of the impedance (or admittance) 
signatures can yield crucial insights into identifying and 
differentiating sensor failures from structural damages. 
 Identifying key features plays a pivotal role in sensor fault 
detection and can be achieved through integrated frameworks 
that leverage a combination of techniques and methodologies. 
In this context, the synergistic application of Principal 
Component Analysis (PCA) to extract primary features, 
coupled with a k-Nearest Neighbor (k-NN)-based classifier – 
a supervised learning technique – has demonstrated 
formidable efficacy, achieving a recognition accuracy of 100 
% in identifying several types of mechanical failures in PZT 
patches [98]. 
 A similar approach by Jiang et al. [99] employed PCA to 
extract principal components (PCs) representing critical 
characteristics of the admittance spectrum. These were then 
used in a KM algorithm, an unsupervised ML technique, to 
cluster different sensor faults. An Artificial Neural Network 
(ANN) model trained by these features could discern the 
degrees of sensor damage with an accuracy of 100 %. 
Furthermore, the combination of PCA with the Library for 
Support Vector Machines (LibSVM) achieved a fault 
recognition accuracy of 97.5% [54]. 
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 These studies underscore the efficacy of integrating 
fundamental feature extraction techniques with ML classifiers 
for the reliable detection and differentiation of multiple types 
of sensor faults. However, as observed, these approaches 
require a pre-processing step before the classification task. 
 Techniques capable of automatically selecting key 
features can eliminate this pre-processing step. In this regard, 
CNN-based models have demonstrated the ability to 
distinguish between different types of sensor damage, even in 
the presence of noise, relying solely on raw data inputs [100]. 
 Current state-of-the-art research on sensor fault detection 
has predominantly focused on mechanical defects, 
overlooking critical electrical faults such as weld breakage 
and electrical cable rupture. However, including electrical 
defects is essential for comprehensively analyzing real-world 
EMI-SHM systems. These defects can be incorporated into 
the pre-processing step by monitoring the electrical current 
passing through the PZT patches. Significant reductions in 
current to zero, or current saturation, may serve as critical 
indicators of underlying electrical issues, providing valuable 
diagnostic insights that complement mechanical fault 
detection. 
 Moreover, the analyzed studies show a significant gap in 
sensor damage detection research, which largely neglects the 
impact of temperature variations. As this parameter affects the 
impedance (or admittance) measurements, developing 
strategies to identify sensor faults under temperature 
variations is critical for implementing real-scale EMI-SHM 
systems. 

 
Addressing challenges in industrial-scale EMI-SHM 
systems 
The analysis conducted in this study revealed several key 
insights: (1) EMI-SHM research has predominantly focused 
on laboratory-scale conditions, often neglecting the 
complexities of industrial-scale environments, and (2) current 
damage detection studies have not integrated sensor failure 
detection with temperature compensation strategies. 
 The primary execution of research in laboratory-scale 
conditions can be due to confidentiality agreements in 
collaborations with industry partners. In such cases, the 
outcomes may be protected as patents. 
 In this context, Gallo et al. [101] proposed a system that 
captures the resistive component of the electrical impedance 
from PZT patches to enable real-time monitoring of aircraft 
components. The system compares real-time data with 
baseline measurements and issues alerts upon detecting 
damage, accounting for the compensation for environmental 
effects. 
 Focusing on monitoring industrial tanks in the oil 
industry, Gallo et al. [102] developed an EMI-based system 
comprising subroutines for data acquisition, data processing, 
interpretation, and visualization of the results, and a wireless 
communication system. The industrial solution can detect 
damages in fuel tanks and monitor reinforcement beams and 
the tank's roof support system. 
 The lack of investigation under real-world conditions 
underscores the urgent need for research to develop EMI-
SHM systems suitable for industrial applications. 
Establishing strategies for sensor failure detection and 
temperature compensation is essential for advancing 
operational, real-world-adapted EMI-SHM systems. 
 However, developing such systems presents significant 
challenges. The framework must incorporate techniques and 
methods that are interoperable, ensuring that information 
generated by one method is seamlessly usable in subsequent 

stages. The system must effectively manage temperature 
variations, detect sensor failures, and provide reliable data for 
downstream processes such as damage localization. 
Addressing these challenges requires a workflow that ensures 
both accuracy and trustworthiness in damage diagnosis. 
Additionally, the necessary infrastructure may demand 
substantial investment, emphasizing the need for close 
collaboration between industry and research institutions. 
 To address these challenges in industrial-scale EMI-SHM 
systems, a comprehensive workflow could include the 
following sequential steps: pre-processing and removal of 
anomalous signatures for each PZT patch, temperature 
compensation, sensor failure detection, structural damage 
detection, and then damage localization. Future research 
should focus on developing reliable techniques capable of 
processing information at each step, ensuring robustness and 
accuracy throughout the system. 
 
 
4. Concluding Remarks 

 
The presented work provides an overview of the current 
research status on enhancing damage detection through 
systematic analysis. By examining the selected works, it was 
possible to investigate various facets of the research stage, 
including the methods used for damage detection, the focus 
of the research studies, temperature variations, materials used, 
types of damages considered, and the general nature of the 
research, whether experimental or industrial-scale. Following 
a rigorous analysis of these dimensions, the ensuing 
conclusions have been delineated: 
 

• The majority of methods used to improve damage 
detection were data-driven, accounting for 62.7 % of 
the total analyzed. This makes them the most 
investigated approach for addressing damage 
detection issues. Additionally, there has been a 
recent trend in using data-driven and ML techniques 
to improve damage detection. Data-driven 
techniques are an exciting option for industrial 
applications as they only require input data to 
provide results without requiring previous or 
specific model training for each structure. 
Therefore, future research focusing on industrial-
scale applications could consider these techniques 
due to their flexibility. 

• Statistical and ML techniques were the most used in 
damage detection. Statistical methods were used for 
signal processing to detect damages, formulate 
damage indicators, and develop temperature 
compensation strategies. The latter was applied as a 
signal processing approach to detect damages, as 
some ML techniques can select the best features to 
analyze automatically, do not require a pre-
processing step, and compensate for the temperature 
effect by learning the relations between the 
impedance signatures and the temperature levels at 
each structural condition. 

• The necessity for a substantial quantity of data in 
ML-based methodologies may prove to be a 
limitation in industrial-scale implementation, given 
the typical constraints on the availability of 
information in such settings. To address this 
challenge, future research should prioritize 
investigations into few-shot learning and transfer 
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learning approaches, which may offer enhanced 
suitability for industrial-scale deployment. 

• Regarding the temperature range used in the studies, 
only 25.5 % have considered variations in the 
temperature conditions. This shows a lack of 
investigations considering temperature variations, 
making the research more closely related to real-life 
conditions. It is, therefore, incumbent upon future 
investigations to diligently incorporate 
considerations of temperature variations, 
particularly when developing industrial-scale 
monitoring systems. 

• Incorporating considerations regarding temperature, 
a mere 15.7 % were dedicated to advancing 
temperature compensation methodologies. The lack 
of research inquiries into this realm is notably 
conspicuous, given the profound impact of 
temperature fluctuations on impedance 
measurements. This gap becomes particularly 
pronounced when contemplating deploying 
industrial-scale electromechanical impedance 
systems. 

• All of the studies investigated exclusively 
comprised experimental inquiries and did not 
encompass investigations at an industrial scale. 
Consequently, a conspicuous deficit in industrial-

scale research is apparent. Therefore, future research 
targeting industrial applications will contribute to 
developing accurate, efficient, and trustworthy 
EMI-SHM systems. 

• Research on sensor failure detection has not 
encompassed temperature variation, leading to a gap 
in investigations addressing sensor reliability 
alongside temperature compensation. Future studies 
on distinguishing sensor failures from structural 
damage must integrate temperature compensation 
techniques. Developing such frameworks is crucial 
for establishing reliable EMI-SHM systems suitable 
for industrial-scale applications. 
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