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Abstract 
  

Traditional greenhouse electric tractors are not equipped with high-precision sensors, which make it difficult to conduct 
rotary tillage parameter measurements. Therefore, problems due to imperfect rotary tillage parameter measurements are 
encountered, such as inconvenient measurement, low data resolution, poor sensing accuracy of operation parameters, and 
large noise. To improve the accuracy of data collected by electric tractor rotary tillage operations, this study presented a 
strong tracking untracked Kalman filter (STUKF) parameter observation method based on a genetic algorithm (GA) 
optimization neural network. First, a back propagation neural network was used to predict the state of the greenhouse 
tractor, and GA was used to avoid the local minimum in the prediction process. Second, untrace transform and strong 
tracking filter were applied to solve the strong nonlinearity and imprecision problems of the network model. Third, a 
method of operation parameter observation based on genetic algorithm back propagation (GABP)-STUKF was proposed. 
Finally, the actual vehicle test was carried out on the washboard pavement of the Jiangsu Agricultural Machinery Test 
and Identification Base. Results show that, the mean absolute error (MAE) and root mean square error (RMSE) of 
longitudinal vehicle speed observation were 0.017 and 0.025 m/s, respectively. The MAE and RMSE of cutter roll speed 
prediction were 8.941 and 18.413 rpm, respectively. The MAE and RMSE predicted by ploughing depth were 0.029 and 
0.038 m, respectively. With the acquisition methods of motor driver and rope sensor taken as the control group, the MAE 
observed by GABP-STUKF for the above three operating parameters increased by 10%, 46.8%, and 7.54%, respectively. 
This study provides a new idea for the parameter observation of greenhouse electric tractors.. 
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1. Introduction 
 
In recent years, the integral role of agriculture in helping 
accelerate ecological priority green development in order to 
achieve the "double carbon" goal has received extensive 
consideration and attention [1-2]. At present, most small 
agricultural machinery operating in China's greenhouses use 
internal combustion engines as their power source. However, 
these machines face problems such as low levels of 
automation and intelligence, high labor intensity, and low 
operational efficiency. Moreover, the emission of polluting 
gases during their operation seriously affects environmental 
control within the greenhouse. Greenhouse electric tractors 
have developed rapidly due to the use of motors as power 
systems. Currently, some small electric tractors have been 
applied to agricultural production. As a type of small 
agricultural machinery, greenhouse electric tractors are 
characterized by their compact structure, low pollution, and 
ease of operation [3-5]. 

However, studies on electric tractors mostly focus on 
medium and large electric tractors in China and foreign 
countries [6-7]. Owing to space restrictions and entrance 
sizes, greenhouses have extremely strict requirements on the 
size of tractors and can usually accommodate only small 
tractors. From an operational perspective, greenhouse 
farming mostly involves shallow and micro-tillage 

cultivation. The power requirements for greenhouse tillage 
are lower compared with those for field operations, making 
electric equipment more suitable. For example, in 
greenhouse rotary tillage operations, the accurate acquisition 
of various parameters is essential for controlling tillage 
depth and ensuring operation quality. However, due to cost, 
installation challenges, operating environments, and actual 
working conditions, high-precision sensors are not suitable 
for small greenhouse agricultural machinery used in 
greenhouses. Thus, some advanced methods or algorithms 
for information observation have become important options. 

Scholars have used various methods, such as Kalman 
filter, neural network, and regression analysis, to predict and 
observe the rotary tillage operation parameters of electric 
tractors in greenhouses [8-10]. However, they have failed to 
find an effective method to improve the accuracy of data 
collection of rotating tillage operation of electric tractors in a 
greenhouse environment. Therefore, determining how to 
carry out an accurate collection of the main data (speed, 
depth, speed) of greenhouse electric tractors under the 
rotating farming operation mode and find a better data 
fusion observation method is an urgent problem to be solved. 

Therefore, this study established an improved neural 
network method based on a genetic algorithm (GA) to 
predict the motion state of a small electric tractor in the 
laboratory. Traceless transformation and strong tracking (ST) 
filter were used to solve the strong nonlinearity and 
inaccuracy problems of the network model. An observation 
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method of operation parameters based on genetic algorithm 
back propagation-strong tracking untracked Kalman filter 
(GABP-STUKF) was proposed and verified in a specific site, 
which provided a novel idea for conducting parameter 
observation of greenhouse electric tractors. 
 
 
2. State of the art  
 
Scholars have conducted extensive research on the 
parameter observation and fusion correlation of electric 
tractors. To accurately measure the working area of uneven 
plots and the tillage depth of rotary tillage, Chen et al. [11] 
built a rotary tillage quality monitoring system by 
integrating and processing the data of the Beidou navigation 
satellite system and various sensors through LabVIEW. 
Through field tests, they verified that this method can 
effectively adapt to irregular plots and accurately monitor 
the tillage depth. However, the system's use of navigation 
and other sensors made it incompatible with the operational 
needs of small agricultural machinery in greenhouses. Wei 
et al. [12] proposed a state parameter estimation method 
based on volume Kalman filter to solve the complexity and 
low accuracy problems of state parameter estimation of large 
tractors for estimating major parameters such as longitudinal 
speed and lateral speed. However, the method mainly fused 
and estimated major parameters, such as the development 
speed of large tractors. As small electric tractors in the 
greenhouse environment were not considered, the specific 
experimental results need to be further verified. Pascuzzi et 
al. [13] installed multiple force sensors on a blade embedded 
on the suspension system to obtain ploughing depth data 
while measuring tillage resistance, thus achieving real-time 
adjustments of ploughing depth. However, since multiple 
force sensors are in contact with the soil, the soil 
environment has a certain impact on the blade, resulting in 
poor data fusion accuracy of the sensors. Askari et al. [14] 
evaluated the ability of response surface method to predict 
the traction performance of agricultural tractors in semi-deep 
tillage operations and comprehensively considered the 
influence of different operational parameters on tractor 
traction performance. However, experimental study was 
lacking on the deeper level of tillage depth and the deep 
fusion between different parameter data. Aiming at the 
navigation problem of agricultural tractors, Soitinaho [15] 
studied the local navigation and obstacle avoidance of 
agricultural tractors under the rotating tillage operation 
mode and adopted the method based on nonlinear model 
predictive control to carry out the work. They derived the 
control algorithm based on parameter fusion, but it did not 
consider rotating tillage operation in the greenhouse 
environment. Zhao et al. [16] proposed a pitch angle 
prediction model for paddy field graders to identify 
parameters online, established an ARMA time series model, 
and estimated and updated the model parameters online base 
on recursive least square method. The shortcoming of the 
proposed prediction model is that its effectiveness and the 
feasibility of pitch angle model parameters require further 
testing. To improve the performance of the orchard parallel 
hybrid tractor, Mocera [17] proposed a data fusion algorithm 
of hardware in the loop technology based on a model. The 
results showed that the algorithm has good stability in terms 
of load split and speed control between two power sources. 
However, the tillage depth adjustment based on this fusion 
algorithm is not efficient in the rotating tillage scenario. Dou 
et al. [18] built a radial basis neural network model based on 

the rotary tillage operation of a large hybrid tractor. They 
took vehicle speed, acceleration, inequality rate of rotary 
tillage resistance, and rotary tillage resistance coefficient as 
inputs and rotary tillage power demand as output to predict 
the power, but the overall prediction effect was poor. In 
view of the shortage of tractor field test data and the 
difficulty of real-time evaluation and accurate prediction of 
operation quality, Wen et al. [19] combined BP neural 
network and GA based on agricultural big data to predict 
and evaluate tractor field rotary farming operations. 
However, both the relevant data collected and the accuracy 
of fusion algorithm were insufficient. Hamouda [20] took 
the sensors applicable to electric tractors as the research 
object and constructed a network adaptive fusion algorithm 
based on GA and extended Kalman filter (EKF). The nodes 
were optimized by this method, but the rotating tillage 
working conditions of electric tractors were not considered. 
Vogt [21] improved ploughing efficiency by fusing and 
estimating battery parameters in various operating 
configurations of electric tractor energy transmission. 
However, the plan did not consider the balanced control of 
electricity and the effect of parameter fusion under rotary 
ploughing. Ping et al. [22] introduced an ST algorithm into 
an untracked Kalman filter to estimate the road adhesion 
coefficient and solve the filtering divergence problem caused 
by the error of the equation of state and noise statistics. 
Although this study could provide a theoretical basis for the 
driving state of vehicles, it did not address the difficulty of 
obtaining the state equations of some systems. At the same 
time, the operating conditions of rotary tillage in 
greenhouses were not considered. Lagnelv [23] applied 
adaptive methods and models to evaluate the life cycle of 
tractors, demonstrating the effectiveness of these methods by 
taking rotary farming as an example. The results showed that 
the evaluation was successful; however, it did not address 
rotary farming in a greenhouse environment, and the 
algorithm's adaptability to greenhouse conditions requires 
further verification. Zhou et al. [24] proposed an extended 
synovial observation method based on Hurwitz for electric 
tractors and carried out data fusion and predictive analysis, 
achieving good results. However, the shortcomings of the 
fusion algorithm are that it is not very satisfactory for 
controlling the stability of rotary tillage. In view of the low 
prediction accuracy of field traction performance of four-
wheel drive tractors, Zhao et al. [25] established a prediction 
model of rolling and sliding efficiencies of the whole 
machine and designed a prediction algorithm and process 
based on the 2-D iterative method. However, the estimation 
of rotational speed in the algorithm was not accurate enough, 
and the adaptability of the algorithm in greenhouse tractors 
was not explained. 

The above studies focused on parameter observation and 
data fusion of medium and large tractors or electric tractors, 
yet studies on the parameter observation, prediction, and 
fusion of rotary tillage operations of small electric tractors in 
greenhouses are few. Different from the traditional crawler 
electric tractor platform, this study took rotary farming 
operation as an example and introduced GA to predict the 
relevant parameters of the neural network. The optimization 
network model of traceless transformation and ST filter was 
used to construct the parameter observation method based on 
GABP-STUKF. Finally, the experimental method was 
compared with the original data acquisition and 
measurement method, and the accuracy of the observation 
method was further verified. The study results provide a 
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basis for parameter observation and optimization of 
greenhouse electric tractors. 

The remainder of this study is structured as follows. In 
Section 3, GABP neural network parameters are predicted, 
and ST untracked Kalman operation parameter joint 
observation is carried out on the basis of GABP. Moreover, 
the experimental scheme is designed based on GABP-
STUKF. In Section 4, experiments and data analysis are 
carried out to verify the practical effect of the proposed 
method. Finally, Section 5 summarizes this study and draws 
relevant conclusions. 
 
 
3. Methodology  
 
3.1 Neural network parameter prediction based on 
GABP 

 
3.1.1 Parameter prediction based on BP neural network 
The core idea of the BP neural network is to find the optimal 
value of the system by calculating the error gradient and 
following the direction of decline. First, the input of the 
training set sample is normalized and sent to the input layer. 
The weight and threshold between the input node and the 
node of the hidden layer are calculated, and the processed 
data are passed into the hidden layer. Similarly, the 
information of the hidden layer is transmitted to the output 
layer, and the corresponding predicted value is output after 
processing by the output layer. After each output, the error 
between the output value and the output of the training 
sample is calculated and fed back from the output layer to 
the input layer, layer by layer. Simultaneously, the weight 
and threshold between the layers are adjusted. Second, 
several iterations are performed to reduce the error between 
the network output and the sample output until the set 
iterations or accuracy requirements are met. Finally, the 
weights and thresholds after the end of the iteration are used 
as network parameters, and the corresponding outputs can be 
obtained for the input information of unknown samples. The 
structure of the BP neural network model is shown in Fig. 1. 
The current of the traveling motor, current of the PTO motor, 
pitch angle, and output of the previous moment are selected 
as the input of the system, and the outputs are the cutter roll 
speed and ploughing depth. 
 

 
Fig.1.  BP neural network structure 
 

In Fig. 1,  is the network model output at k-1; is 
the current of the traveling motor, A; is the PTO motor 
current, A; is the tractor pitch angle, rad; is the 

working depth at the time k, m; and  is the cutter roll 
speed at k, r/min. 
 
3.1.2 GA-based network parameter optimization 
The BP neural network is a type of error gradient descent 
method. When solving some complex problems, oscillation 
occurs during the search for the best solution, which slows 
down the convergence rate of the model. At the same time, 
when the network finds the optimal solution with gradient 0 
in the learning process, the network model stops searching, 
and the iterative process ends. Therefore, when no 
constraints are added to the model, the BP neural network 
may fall into the local optimal solution, resulting in the 
failure of model training. In the face of complex 
multidimensional nonlinear problems, the error between the 
BP neural network output and the sample output is often a 
complex multidimensional space. Therefore, local minima 
usually appear in this complex error space. Once the 
traditional BP neural network model falls into the local 
minimum point, it can stop autonomous learning and fail to 
search for the global optimal solution. 
 

 
Fig. 2. BP neural network structure optimized by genetic algorithm 
 
 In view of the above problems of the traditional BP 
neural network, other algorithms can be introduced to 
optimize the network weight and threshold and thus solve 
the problem of local minimum. The GA, with its global 
random search capability, is an effective tool for solving 
optimization problems. As an evolutionary algorithm, GA 
excels in exploring the solution space and finding global 
optima. The core idea of GA is to learn from the biological 
evolution theory of "survival of the fittest," find the global 
optimal solution from the probability perspective, and use 
the fitness function as the evaluation index of optimization 
results. It can then learn from the genetic evolution process 
of natural selection, hybridization, and mutation of 
biological genes in nature to further improve individual 
adaptability through multiple iterations. The search direction 
is automatically obtained and adjusted until the global 
optimal solution is obtained. 
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 After optimization by GA, the optimized weights and 
thresholds are taken as the initial weights and thresholds of 
the BP neural network. The optimization process is shown in 
Fig. 2. 
 
3.2 Joint observation of operation parameters based on 
strong tracking untracked Kalman 
 
3.2.1 Untraced Kalman filter 
Untraced Kalman filter (UKF) does not need to linearize 
nonlinear functions, so EKF does not need to calculate the 
Jacobian matrix of the state and measurement equations. 
UKF approximates the probability density function of the 
nonlinear function and uses a series of sampling points to 
approximate the posterior probability density of the state and 
measurement equations. 

The state equation of longitudinal velocity is as follows:  
 

                        (1) 
 
Where T is the sampling duration, s; is the 

longitudinal vehicle state noise at time k, m/s; is the 
longitudinal speed at time k, m/s; and  is the longitudinal 

acceleration at time k, . 
With acceleration, PTO motor current, traveling motor 

current, and pitch angle as the control vector untraced 
Kalman of the system, and longitudinal vehicle speed, cutter 
roll speed, and tillage depth as the observation targets, the 
equation of the state of the observation system can be 
obtained combined with the aforementioned GA-BP neural 
network model. 
 

                            (2) 
 
Where 

 

               (3)  

 
Where  is the longitudinal speed at time k, m/s; 

is the cutter roll speed at time k, r/min; is the operation 
depth at time k, m; is the longitudinal acceleration at 

time k, ; is the traveling motor current at time k, A; 
 is the PTO motor current at time k, A; is the tractor 

pitch angle at time k, rad; is the longitudinal vehicle 
state noise at time k, m/s; is the cutter roll speed state 
noise at time k, r/min; and  is the depth state noise at 
time k, m. 

According to the previous laboratory results [26], the 
measurement equation of the observation system can be 
obtained by using the original measurement method on the 
platform and the abovementioned conversion formula of 
ploughing depth. 
 

                              (4) 
 

Where 

                             (5) 

 
Where  is the traveling motor speed measurement 

value at time k, r/min; is the PTO motor speed 
measurement at time k, r/min; is the total length of 
hydraulic cylinder measurement at time k, m; is the 
travel motor speed measurement noise at time k, r/min; 

is the PTO motor speed measurement noise at time k, 
r/min; and  is the total length of hydraulic cylinder 
measurement noise at time k, m. 

According to the obtained state equation (2) and 
measurement equation (4), the implementation steps of UKF 
are as follows: 

(1) Initialize the system status. 
 

                              (6) 
 

                   (7) 
 

                (8) 

 
Where η is the number of parameters to be estimated, 3; 

λ is the regulator, 2; is the initial covariance matrix; and 
 are Sigma point weights. 
(2) Solve the prediction step. 
The estimate of the state equation at time k-1 is split 

into several sampling points, so that the mean and variance 
near a certain point (called Sigma point) generally meet the 
Gaussian distribution. The split estimate at k-1 is as follows: 
 

    (9) 

 
Where is the covariance matrix at time k-1; and 
and are estimates corresponding to the Sigma 

points of the prediction step at time k-1. By substituting the 
predicted value of each sampling point after resolution into 
the equation of state, the prior estimate of each sampling 
point can be obtained as follows: 
 

                             (10) 

Where  is the prior estimate corresponding to the 

Sigma point of the prediction step at time k. 
According to the Sigma point weight defined by 

Equation (9), the prior estimate and covariance of the final 
prediction step is as follows: 
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                           (11) 

 

     (12) 

 
(3) Update step. 
Similarly, the prior estimate of the measurement 

equation at time k is split into several sampling points, and 
the split prior estimate is as follows: 
 

      (13) 

 
Wher and are the prior estimates corresponding 

to each sampling point in the update step. 
(4) Filter output. 
The prior estimate and covariance of the final update 

step are as follows: 
 

                             (14) 
 

                             (15) 

 

              (16) 

 

           (17) 

 
System output 

 
                             (18) 

 
                     (19) 

 
                        (20) 

 
3.2.2 Reconstruction of the prediction step based on 
strong tracking filter 
In Section 3.2.1, the equation of state obtained according to 
the GABP neural network model does not conform to the 
real time domain characteristics of ploughing depth and 
rotation speed of the tractor during operation. Therefore, to 
overcome the problem of the equation of state set in 
Equation (2) being incapable of accurately tracking the time-
varying system, this study used ST filtering theory to 
optimize the covariance matrix in the Kalman filtering 
process. Specifically, the fading factor was introduced to 
increase the weight of new data on the predicted value of 
new state updates and thus improve the robustness of the 
system. Therefore, the updated prediction step prior 
covariance matrix is  
 

          (21) 

 
Where is defined as the fading factor, and  is 

the updated prediction step prior covariance matrix. 
 

                                   (22) 
 

                         (23) 
  
 Where, 

 
                             (24) 

 
                          (25) 

 

                                (26) 

 
In summary, the implementation process of GABP-

STUKF is shown in Fig. 3. 

 
Fig. 3. GABP-STUKF identification method framework 
 
4. Result Analysis and Discussion 

 
4.1 Overview of observation test platform 
To verify the practicability and accuracy of the GABP-
STUKF algorithm in rotary farming operations, this study 
carried out a parameter acquisition test on the washboard 
pavement of the Jiangsu Agricultural Machinery Test and 
Identification Base (Pukou District, Nanjing, longitude 
118.70509°, latitude 32.13504°), with a test pavement length 
of 20 m, as shown in Fig. 4. 
 

  
Fig. 4. Test site 

 
As shown in Fig. 5, the test platform was equipped with 

additional high-precision sensors as the control group to 
collect the main parameter information of rotary tillage:  

(1) Collection of longitudinal vehicle speed information: 
GNSS equipment (Shanghai Huatan Navigation Technology 
Co., LTD., RTK accuracy ±(8+1×10-6ε) mm, static 
accuracy ±(2.5+0.5×10-6ε) mm; ε is the distance from the 
mobile station to the reference station, km) was used to 
measure the longitudinal speed of the platform. 
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(2) Tool roll speed information acquisition: A speed 
sensor (Model CZ480, Shanghai Vibration Transmission 
Electronic Technology Co., LTD.) with a measuring range 
of 0–1000 rpm) was installed at the output shaft of the tool 
roll on the experimental platform to measure the rotary tiller 
speed. 

(3) Tillage depth information collection: An ultrasonic 
distance sensor (Model: UB500-18GM75, Wenzhou Yesi 
Electric Co., LTD.) with a measuring range of 0–0.5 m) was 
installed at the suspension mechanism of the experimental 
platform to measure the distance between the rotary center 
of the cutter roll and the road surface. 

 

Fig. 5. Test Platform 
 
4.2 Test results and analysis 
For the collection of original data of the electric tractor in 
the test, the longitudinal speed information is directly 
collected by the upper computer through RS485 protocol, 
and the cutter roll speed and ploughing depth information 
are collected by the PLC analog module and transmitted to 
the upper machine through the RS485 protocol. The data 
collected in the test are shown in Fig. 6. 

The data in Fig. 6 were input, GABP-STUKF was used 
to estimate rotary farming operation parameters, and GABP-
UKF and the estimated results of the original values were 
used as the control group ( ). The 
estimated results are shown in Fig. 7. 

Mean absolute error (MAE) and root mean square error 
(RMSE) are calculated based on the data in Fig. 7, and the 
results are shown in Table 1. 

 

 

 

 
Fig. 6. Actual vehicle data 
 
Table 1. Observation result statistics 

Parameter MAE RMSE 
GABP-STUKF GABP-UKF Original value GABP-STUKF GABP-UKF Original value 

Longitudinal speed 
(m/s) 0.017 0.019 0.019 0.025 0.027 0.029 

Rotational speed 
(rpm) 8.941 10.328 16.814 18.413 18.668 27.020 

Tilling  
depth (m) 0.029 0.029 0.031 0.038 0.038 0.040 
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Fig. 7. Observation results of operating parameters of greenhouse electric tractors 
 

 
As can be seen from Fig. 7 and Table 1: 
(1) The longitudinal speed value obtained based on 

GABP-STUKF is between the original and measured values, 
close to the test and GABP-UKF values, indicating that 
GABP-STUKF can approximate the measured value 
relatively. 

(2) The speed value obtained based on GABP-
STUKF is also between the original and measured values, 
and the curve is almost identical with the test value. The 
value obtained by GABP-UKF is also almost identical, 
indicating that GABP-STUKF is highly accurate in 
predicting speed. 

(3) Under different measurement methods, the 
change of ploughing depth data showed a relatively obvious 
“zigzag” change, which is mainly related to the test road 
condition. However, the ploughing depth value based on 
GABP-STUKF is also basically between the original and 
measured values. The change of ploughing depth data based 
on this method is also consistent with the test value in terms 
of the overall trend. 

(4) The original platform uses the Hall sensor of the 
motor driver to measure motor speed. Owing to its low 
resolution, the longitudinal speed collected is “serrated” with 
the knife roll speed, which affects the accurate collection of 
status information. 

(5) For the results of tillage depth observation, 
outliers are eliminated in the observation process to 
“smoothen” the signal curve. GABP-STUKF can reduce 
signal noise while approaching the measured value. 

(6) The MAE and RMSE of longitudinal vehicle 
speed observation are 0.017 and 0.025 m/s, respectively, 
which are 10% higher than the original values. 

(7) The MAE and RMSE observed for cutter roll 
speed are 8.941 and 18.413 rpm, respectively. MAE is 
increased by 46.8% compared with the original value, 
showing the most obvious effect. 

 (8) The MAE and RMSE of tillage depth 
observation are 0.029 and 0.038 m, respectively. MAE is 
increased by 7.54% compared with the original value, and 
the effect is the least improved compared with the speed. 
 
 
5. Conclusions 
 
This study proposed a GABP neural network model to solve 
the problems of unstable measurement of rotary farming 
operation parameters and low sensor accuracy of greenhouse 
electric tractors. STUKF was used to observe the main 
parameters of rotary farming. Finally, the following 
conclusions could be drawn: 
(1) The operation parameter prediction method is developed 
based on the BP neural network, and the weight and 
threshold values of the network are optimized by GA to 
solve the problem of falling into the local optimal in the 
prediction process of the BP neural network. 
(2) Based on the established prediction model, GABP-
STUKF algorithm is designed to solve the problem of strong 
nonlinear equation of state. 
(3) The observation results show that the GABP-STUKF 
algorithm has a certain improvement in longitudinal speed, 
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rotational speed, and tillage depth than the original rotating 
tillage operation parameter acquisition method of electric 
tractors. 

This study combined theory and experiment to optimize 
the BP neural network by GA and proposed an observation 
method based on GABP-STUKF, which has certain 
reference value for the estimation of rotating tillage state and 
parameter optimization of greenhouse electric tractors. Since 
this study did not consider the observation of rotating tillage 
parameters of electric tractors under different working and 
soil environments, the proposed method is only applicable to 
the greenhouse environment. Therefore, the change of state 
parameters of electric tractors under different environments 

can be fully considered in future study, and the observation 
method obtained by integrating various factors can be more 
realistic. 
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