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Abstract 
 

Present study deals with the acquisition and analysis of different types of incipient discharges in transformer by adopting 
Ultra-High Frequency (UHF) technique. The Nyquist rate sampling method generates a large number of samples, making 
it inefficient for developing an online monitoring system. To reduce this, compressive sensing techniques are employed for 
signal compression and reconstruction. Various compressive sensing methods, including Convex, Non-Convex, Greedy, 
and Iterative Thresholding, were compared. Orthogonal Matching Pursuit (OMP) was found to be the optimal algorithm, 
achieving optimal reconstruction time and error at a compression ratio of 45%. The reconstructed signals were compared 
with the originals using Fast Fourier Transform (FFT), revealing similarities in dominant frequencies. A Long Short-Term 
Memory (LSTM) machine learning model was used for signal classification, consistently outperforming other algorithms. 
This study enhances understanding of incipient/partial discharge detection and classification, highlighting the effectiveness 
of innovative signal processing and machine learning approaches in power system engineering.  
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1. Introduction 
 
Transformer forms the primary constituent of the power 
system network. The reliability of transformer in service 
depends mainly on the insulation structure. During operation 
of transformer in service, it undergoes various stresses 
including electrical, thermal, mechanical, and due to 
environmental factors. The major stresses that occur in a 
transformer are due to PD as a result of localized electric 
fields in insulation structures. Such discharges may lead to 
insulation breakdown and perhaps catastrophic failure of the 
transformer if left unattended. 
 Partial discharge detection and classification in 
transformer oil is one of the necessities of electrical power 
system reliability and safety. Ultra-high frequency sensors, 
one of the non-intrusive types of PD monitoring techniques, 
basically detect the electromagnetic spectrum in the range of 
300 MHz to 3 GHz. Judd et al. utilized UHF sensors to 
measure partial discharges in power transformers in order to 
model the impact of electromagnetic interferences [1]. In turn, 
high-frequency ranges produce more samples that require 
greater resources for their processing and storage. Thus, a 
robust methodology can be taken up for efficient acquisition, 
compression, reconstruction, and analysis of UHF signals in 
PD detection and classification. Integrating such a system 
with machine learning algorithms will avail meaningful 
features. Beltle et al. studied the efficiency of UHF sensors on 
PD detection emanating from multiple sources within 
transformers and showed a periodic behavior while analyzing 
each discharge source singly to explain the various influences 
upon transformer performance [2]. 
 UHF technique is widely used for localizing PD in 
systems due to its anti-interference capabilities. However, 

sampling UHF signals, which range from 300 MHz to 3 GHz, 
is challenging due to the Nyquist principle [3,4]. To overcome 
this, compression sensing techniques can detect and analyse 
UHF signals using lower sampling rates. These algorithms 
exploit the signal's compressibility to capture relevant 
information while minimizing the required sampling 
frequency. This allows for effective detection and analysis of 
UHF partial discharge signals even with sampling rates below 
the Nyquist threshold. Gao et al. have adopted compressive 
sensing technique for sampling the UHF discharge signals 
from PD for reducing the sampling frequencies below 
Nyquist rates [5]. 
 Discharge phenomena in transformers, including as 
corona, surface, and internal discharges, are intricate and 
necessitate precise classification for fault diagnosis and 
maintenance. Machine learning algorithms have become 
potent instruments for analysing intricate data patterns related 
to partial discharge. These algorithms are essential for pattern 
recognition, feature extraction, problem diagnosis, anomaly 
detection, and predictive maintenance. Studies have shown 
the efficacy of sophisticated machine learning methodologies 
across several scenarios [6]. Mahidhar et al., employed 
Generative Adversarial Networks (GANs) to augment digital 
twin models of transformer insulation discharges, therefore 
enhancing the reliability and accuracy of data gathering [7]. 
Desai et al., employed Time-Frequency Transformation 
techniques and quadratic support vector machines to classify 
partial discharge sources in transformers, effectively 
differentiating between various discharge types based on their 
distinct signatures [8]. Janani et al., investigated advanced 
classification models such as Fuzzy Support Vector Machines 
(SVM), Kernel SVM, and metric multidimensional scaling, 
which markedly surpassed conventional methods in precisely 
identifying PD sources in high-voltage insulation systems [9]. 
Nonlinear feature extraction algorithms demonstrate 
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enhanced efficacy relative to conventional methods, 
effectively capturing complex correlations within the data that 
linear approaches may neglect. The ongoing investigation and 
enhancement of machine learning methods in transformer 
defect analysis underscore their significant potential in 
guaranteeing the reliability and safety of high-voltage 
insulating systems. Integrating these sophisticated approaches 
would enable the field to adopt more efficient, dependable, 
and predictive maintenance practices, hence enhancing 
operational performance and minimizing the chance of 
transformer failures. 
 The integration of compressive sensing and machine 
learning in transformer monitoring could significantly 
enhance power system reliability and reduce costs. By 
minimizing data acquisition and processing time, these 
techniques enable more efficient real-time monitoring and 
fault detection. This not only reduces the risk of catastrophic 
transformer failures but also optimizes maintenance 
schedules, leading to lower operational costs and improved 
system reliability. Moreover, the reduced data storage and 
transmission requirements can help lower infrastructure costs 
for large-scale deployments 
 Having known the above concerns the present work is 
formulated on tackling the challenges posed by PD signals, 
which surpass the capabilities of existing resources in online 
monitoring systems. By employing advanced signal 
processing techniques assisted with machine learning 
algorithms to effectively monitor and classify the PD. 
 
 
2.  Experimental Study and Methodology 
 
The setup for simulating partial discharge, depicted in Fig. 1, 
consists of three main sections: a high voltage source for 
generation, a defect unit with various electrode 
configurations, and sensors with a storage unit for detection 
and analysis of partial discharge.  
 

 
Fig. 1. Setup to simulate Partial Discharge. 
 
 Ultra-high frequency (UHF) sensors are linked to a digital 
storage oscilloscope (DSO) with a bandwidth of 3.5 GHz and 
a sampling rate of 40 GS/s, facilitating signal analysis and 
storage. This comprehensive setup enables the generation, 
detection, and analysis of partial discharge events, 
contributing to a deeper understanding of their characteristics 
and behaviours. Different configurations are utilized to 
simulate various types of partial discharge phenomena. 
Corona discharge involves a needle electrode applying high 
voltage to a grounded plane electrode, both made of 
aluminium, with a 5 mm gap distance. Surface discharge 
conforms to IEC 60112 standards, with electrodes set at a 60° 
angle above the specimen, spaced 10 mm apart. Particle 
discharge utilizes a 10 mm diameter spherical high voltage 
electrode and a curved ground electrode to cradle a copper 
particle. Void discharge employs a 1mm x 1mm void in 
pressboard between aluminium disc electrodes, immersed in 
transformer oil to prevent additional discharges. These setups 

ensure standardized testing conditions for accurate analysis, 
promoting understanding of partial discharge behaviour. 
 

 
Fig. 2. Different partial discharge configuration (a) Corona discharge, (b) 
Surface discharge, (c) Particle discharge and (d) Void discharge. 
 
Compressive Sensing 
Compressive sensing is an important signal-processing 
technique for both biomedical imaging and structural health 
monitoring, enabling the accurate reconstruction of sparse 
signals from incomplete measurements. The methodologies 
used, such as convex optimization, greedy algorithms, 
iterative thresholding, and non-convex approaches, are highly 
effective for detecting partial discharge in transformer oil 
[10,11]. In power systems management, CS has emerged as a 
transformative strategy, particularly for real-time monitoring 
and control. Another team proposed a CS-based approach for 
load frequency control in multi-area interconnected power 
systems [12]. This approach significantly reduces data 
transmission sizes while ensuring high recovery accuracy at 
the central controller, thereby enhancing the reliability of 
communication networks, which are essential for the effective 
management of complex power systems with increasing load 
demands. In another study further demonstrated the 
application of CS in optimal reactive power control [13]. 
Their approach effectively addressed both data volume and 
operational efficiency challenges by minimizing data size and 
power loss, showcasing the practical value of CS in 
improving performance. In the context of smart grids, 
investigated the use of CS for online topology identification, 
reformulating the problem as one of sparse recovery [14]. 
Their findings suggest that CS can effectively handle data 
from distributed generators, thereby enhancing system 
security and monitoring capabilities. Additionally, 
highlighted the potential of CS in harmonic analysis, 
achieving improved frequency resolution without extending 
observation time [15]. In the study CS to detect harmonic 
frequencies in electrical systems [16]. Their work 
demonstrated that fewer samples can effectively reconstruct 
signals, showcasing CS’s potential to reduce measurement 
overhead while maintaining accuracy. The author developed 
a stochastic economic dispatch algorithm using CS to handle 
high-dimensional uncertainties in distribution systems [17]. 
Their approach reduces computational costs while improving 
statistical accuracy, which is crucial for modern power system 
operations. Other team addressed supraharmonic emissions in 
smart grids, proposing a CS-based technique to achieve 
higher frequency resolution at reduced sampling rates [18]. 
This advancement meets the growing demand for effective 
monitoring of the power quality impacts of new technologies. 
It enables better tracking of transient changes in power 
quality, further demonstrating the versatility and effectiveness 
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of compressive sensing across various engineering and 
technology applications in power system monitoring, 
operation, and control, thus enhancing network reliability 
 
Basic Pursuit: Convex methods in compressive sensing, like 
Basis Pursuit, offer computationally efficient solutions for 
sparse signal reconstruction. To sample signals below the 
Nyquist rate, they compress data using a random sensing 
matrix which should satisfy certain property called Random 
Isometry Property [19]. Through linear programming, they 
minimize the L1 norm, ensuring accurate signal recovery 
from sparse measurements [20, 21]. Employing the primal-
dual interior point method, these techniques converge to 
global optima. Newton's iteration optimizes solutions, 
relaxing parameters to bias towards optimal results. The 
process continues until the surrogate duality gap meets 
predefined criteria, indicating optimal reconstruction. 
 
Iterative Hard Thresholding: Iterative thresholding 
algorithms form the basis for sparse signal recovery and 
include variants such as IHT. Such techniques are finding 
applications in tasks that require efficient reconstruction from 
highly incomplete data, for example, Compressed Sensing 
MRI and distributed sensor networks. IHT iteratively 
thresholds the signal coefficients and has achieved relatively 
good performance with low memory and computational cost. 
[22] These algorithms, in general, rely on proper definition of 
key elements in UHF signal analysis for partial discharge: the 
measurement matrix and the sparsity parameters. Sparsity is 
enforced by initializing with a zero vector and then using an 
iterative update rule involving hard thresholding until 
convergence, which results in a sparse estimate of the vector 
preserving the salient features of the input signal. 
 
Sparse Bayesian Learning: Sparse Bayesian Learning 
(SBL) is a signal reconstruction algorithm that utilizes a 
Bayesian framework and iterative procedures [23]. Initially, it 
sets up input parameters, including the measurement vector 
(y) and forward model matrix (Φ). Hyperparameters (α) 
governing signal distribution are initialized, along with an 
estimate of the sparse signal (a). The algorithm iteratively 
computes statistics, updating activations and variances for 
signal elements. It selects the most influential element based 
on unspecified criteria and refines the signal estimate 
accordingly. This iterative process continues until 
convergence criteria are met, yielding the final estimate of the 
sparse signal vector. SBL gradually enhances signal 
reconstruction through successive iterations. 
 
 
3.  Results and Discussion 
 
UHF Signals for Partial Discharge 
UHF signals were captured for four different types of partial 
discharge in transformer oil. Each discharge exhibited 
distinctive waveform characteristics in the UHF frequency 
range, offering valuable insights into the underlying 
phenomena. Fig 3 shows UHF signal captured for various 
partial discharges. 
 
Impact of Compression Ratio on Reconstruction Time 
Fig. 4 displays the reconstruction error percentage for four 
compressive sensing models: BP, IHT, SB, and OMP. The x-
axis represents compression ratio, and the y-axis shows 
reconstruction error. The graph illustrates the trade-off 
between compression ratio and reconstructed signal accuracy. 

A 10% error threshold was used to determine acceptable 
compression ratios for each model As compression ratio 
decreases, reconstruction error generally increases across all 
models due to the loss of information from the original signal. 
Compression removes redundant or less essential data while 
preserving essential features. However, as compression ratio 
decreases, more data is removed, resulting in greater 
information loss and higher reconstruction error when the 
signal is reconstructed. 

 
Fig. 3. UHF Signals for different partial discharge 
 
 
 OMP exhibits the lowest reconstruction error at lower 
compression ratios (around 30% and below) by selecting the 
best matching atoms from the dictionary to represent the 
signal sparsely. OMP excels in finding optimal sparse 
representation where signal sparsity is high, effectively 
capturing essential components while discarding noise and 
redundancy. Additionally, at lower compression ratios, OMP 
efficiently exploits signal sparsity and accurately reconstructs 
it with minimal error, as the dictionary size remains relatively 
large compared to the compressed signal size. 
 

 
Fig. 4. Variation of reconstruction error with respect to compression ratio. 
 
Impact of Compression Ratio on Reconstruction Time 
The reconstruction time, together with accuracy, is a vital 
evaluation metric in compressive sensing. The relationship 
between reconstruction time and compression ratio is 
depicted in Fig. 5, demonstrating that reconstruction time 
tends to increase with the compression ratio, while 
reconstruction error typically rises at higher ratios. 
 Moreover, different algorithms exhibit varying 
reconstruction times, as shown in Fig.5. For example, out of 
the examined techniques, OMP demonstrates the quickest 
reconstruction time, highlighting the potential for accuracy 
and speed trade-offs. To determine the most suitable 
compressive sensing method for a specific application, it is 
essential to understand the interplay between reconstruction 
time and compression ratio. 
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Fig. 5. Variation of Reconstruction time with respect to compression ratio 
 
 
 A comprehensive comparison of reconstruction error (%) 
and reconstruction time (s) for each of the four approaches is 
presented in Table 1, covering a range of compression ratios. 
This comparison facilitates the selection of the optimal 
algorithm based on the desired balance between 
reconstruction time and accuracy. 
 
Fast Fourier Transform (FFT) 
A detailed examination of both the original and rebuilt signals 
is essential to assess the performance of compressive sensing 
(CS) methods for signal reconstruction. The frequency 
content and spectral properties of the original signal are 
revealed by applying the Fast Fourier Transform (FFT) to 
both signals. The reconstruction process' fidelity is assessed 
using the FFT on the reconstructed signal. Reconstructed 
UHF waveforms with a 45% compression ratio are displayed 
in Fig. 6 along with the equivalent signals from four recovery 
algorithms and the FFT of the original signal. The quality of 
the reconstruction is shown by the overlap between these 
lines. While several approaches had considerable faults, the 
OMP method provided satisfactory reconstructed signals. 
 
Table 1. Reconstruction error and Reconstruction time with 
various compression ratio 

CR Reconstruction Error (%) Reconstruction Time (sec) 
BP IHT SB OMP BP IHT SB OMP 

30 36 40 35 25 0.57 0.22 0.33 0.340 
35 28 32 27 20 0.71 0.82 0.41 0.342 
40 22 26 14 15 0.71 1.02 0.68 0.353 
45 17 21 10 7.8 0.95 1.17 0.74 0.398 
50 14 16 8.5 6.9 1.20 1.36 0.76 0.667 
55 12 12 6.5 5.8 1.24 2.08 0.76 0.742 
60 7.8 10.8 6.2 4.6 1.40 2.19 0.85 0.747 
65 7.7 10.5 4.7 2.5 1.47 2.30 1.08 0.913 
70 7.4 8.8 4 2 1.64 2.53 1.13 0.924 
75 7.2 8.6 2.4 0.9 1.78 2.67 1.28 1.059 
80 6.5 7.2 2 0.75 2.32 3.21 1.77 1.499 

 

Table 2. Reconstruction error and Reconstruction time with 
various compression ratio. 

Feature Algorithms 
Actual BP IHT BP OMP 

Shape 
Factor 2.32 1.839992 1.78988 2.039999 2.279864 

Kurtosis 54 42.8274 41.661 47.48274 53.0658 
Skewness 0.68 0.539308 0.52462 0.597931 0.668236 

Impulse 
Factor 25 19.8275 19.2875 21.98275 24.5675 
Crest 
Factor 11.1 8.80341 8.56365 9.760341 10.90797 

Clearance 
Factor 35.2 27.91712 27.1568 30.95171 34.59104 

 

Fig. 6. FFT of Original Signal and Reconstructed Signal of OMP at 45% 
compression ratio (a) Corona, (b) Surface, (c) Particle and (d) Void 
discharge. 
 
Impact of Reconstruction on extracted features 
The study compares features like peak value, crest factor, 
clearance factor, skewness, kurtosis, and impulse factor in 
signal analysis and PD classification. Table 2 shows that the 
reconstruction process significantly impacts the preservation 
of essential characteristics. The results show that certain 
algorithms, like OMP, exhibit a closer resemblance to the 
original signal values, suggesting OMP excels in preserving 
essential characteristics for PD classification during the 
reconstruction process. 
 The Orthogonal Matching Pursuit (OMP) algorithm is 
proficient at maintaining essential signal characteristics, 
including skewness, kurtosis, crest factor, and impulse factor, 
throughout compression and reconstruction phases. These 
attributes are essential for preserving signal integrity, 
particularly in predictive diagnostics (PD) classification. The 
OMP approach consistently exhibits low distortion, 
preserving the signal's intrinsic features and enabling precise 
analysis and interpretation. The superior performance of the 
Long Short-Term Memory (LSTM) model in predictive 
diagnostics directly correlates with the quality of signal 
information retained by the OMP algorithm. The integration 
of OMP for compression and LSTM for classification 
establishes a robust framework for accurate predictive 
diagnostics, hence improving decision-making across diverse 
applications. 
 
Machine Learning based Classification 
To give the performance benchmark of the LSTM model, 
several of the most widely-used machine learning models are 
compared to it in MATLAB: SVM, kNN, Random Forest, and 
Decision Tree. These models will be trained using the same 
set of features extracted from reconstructed signals, and then 
their classification will be given. The project deals with a 
comprehensive evaluation aimed at comparing different 
machine learning approaches in the classification of PD types 
using reconstructed signal data by finding their relative 
strengths and weaknesses. Various algorithms are considered 
in this work, from simple, traditional classifiers like Support 
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Vector Machine to complex methods such as Random Forest. 
The LSTM model performed as the most capable classifier, 
which gave an accuracy of 99% in perfect classification. 
Other models, namely Decision Tree, kNN, Random Forest, 
and SVM, also showed very promising results; however, the 
LSTM outperformed these and gave the best accuracy among 
other techniques shown in Fig. 7. For instance, Decision Tree 
gave an accuracy of 79.6%, kNN and Random Forest 
highlighted 85.42% and 89.5%, respectively, while SVM 
highlighted 92.47% accuracy. For every model, the values of 
hyperparameters had been rather carefully tuned with grid 
search before any evaluation to be optimally set for accurate 
classification. The LSTM-specific hyperparameters were 
tuned and are presented in Table 3, showing our effort of 
thorough optimization for improved performance of the 
model. 
 
Table 3. Hyperparameters for LSTM model. 

Hyperparameters Value 
Activation Function Re-Lu 

Loss Function Sparse Categorical Cross 
Entropy 

Optimizer Adam 
Learning Rate 0.001 

Epsilon 1e-08 
Decay Rate 0.004 

Epochs 50 
Dropout 0.1 

 

 
Fig. 7. Performance of various machine learning models in terms of 
accuracy. 
 
 The application of compressive sensing and machine 
learning in transformer monitoring can result in substantial 
enhancements in power system reliability and cost efficiency. 
These techniques facilitate more efficient real-time 
monitoring and fault detection by minimizing data collecting 
and processing time. This method not only mitigates the 
possibility of severe transformer failures but also streamlines 
maintenance schedules, lowering operational expenses and 
improving system reliability. Moreover, the diminishment of 

data storage and transmission necessities can decrease 
infrastructure expenses for extensive implementations. 
 
 
4.  Conclusion 
 
Reconstruction and investigation of the ultra-high frequency 
signal generated by partial discharges in different types of 
transformer oil and paper insulation systems, such as corona 
discharges, surface discharges, particle movement, and void 
discharges, are performed through this work. Key findings: 
The captured UHF signals had main frequency content from 
300 MHz through 3 GHz, with the dominant concentration 
around 1 GHz, with a temporal duration of roughly 50 
nanoseconds; several CS methods were assessed in terms of 
signal compression and reconstruction—Convex, Non-
Convex, Greedy, and Iterative Thresholding methods. The 
results indicated a trade-off between the compression ratio 
and reconstruction accuracy; higher compression ratios meant 
faster reconstruction times, but with increased errors. By 
choosing a compression ratio of 45%, the efficiency can be 
well balanced with fidelity, targeting less than 10% of 
maximum reconstruction error for signal accuracy to further 
provide analysis. Reliability of the reconstructed signals was 
further tested using a Fast Fourier Transform analysis, 
showing a high degree of similarity with the original signals. 
In addition, the proposed LSTM model has shown excellent 
performance in the classification of different types of PD, 
giving almost 0.99 R² in all tested samples, beating other 
traditional classification algorithms such as SVM, Random 
Forest, Decision Tree, and KNN, which generated a bit low 
accuracy. Integrating compressive sensing techniques with 
UHF sensors in real-world transformer monitoring offers 
significant advantages, such as reducing data transmission 
bandwidth and storage needs. LSTM-based classification 
models can be deployed in cloud or edge computing systems 
to facilitate real-time monitoring and diagnostics. However, 
challenges remain, including sensor calibration, noise 
interference, and signal attenuation, which must be addressed 
to ensure reliability.   
 Future research will aim to apply these techniques to other 
critical power system components, such as circuit breakers 
and cables. Additionally, the potential for real-time 
monitoring will be explored to enhance fault detection 
responsiveness and accuracy. Incorporating environmental 
factors like temperature, humidity, and electromagnetic 
interference into the experimental setup will further 
strengthen the robustness of these methods in real-world 
conditions. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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