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Abstract 
 

Automatically identifying the working status of transformers can promptly detect faults and abnormalities, which 
provides a scientific basis for maintenance and management. To response the challenges of complex data processing and 
low recognition accuracy in traditional transformer working state monitoring methods, an automatic identification 
method of transformer working state based on big data mining was proposed. First, by using the K-nearest neighbor 
improved fast density peak clustering algorithm, the transformer Supervisory Control and Data Acquisition (SCADA) big 
data were clustered to obtain transformer big data of normal and abnormal states. Then, combining the big data of 
transformers from the two categories, the Γ-type equivalent algorithm was used to estimate the transformer working 
parameters for each category. Finally, within the least-squares support vector machine, the transformer working 
parameters were input to output the automatic identification results of the transformer working status. Results show that 
the method proposed in this study can accurately cluster transformer SCADA big data and estimate transformer working 
parameters. The analysis of the relative error frequency distribution histogram show that the relative error of this method 
in automatically identifying the transformer working status is only ±0.02, which demonstrates high automatic 
identification accuracy. The automatic identification method proposed in this study provides technical support for the 
daily operation and maintenance of transformers. 
 
Keywords: big data mining; transformer; working status; automatic identification; density peak clustering; support vector machine 
___________________________________________________________________________________________ 

 
1. Introduction 
 
The accurate identification of the working status of the 
transformer, as the core equipment of the power system [1], 
is crucial for the safe operation of the power system. 
Transformers play a crucial role in the process of power 
transmission and distribution, and any failure or abnormality 
will have a serious impact on the entire power system. 
However, traditional monitoring methods of transformer 
condition often rely on manual experience, which results in 
poor real-time performance and high errors. This reliance on 
manual labor is not only time consuming and labor intensive 
but also difficult to ensure accuracy under complex and 
changing working conditions. Developing automatic 
identification techniques is important to improve the 
efficiency and safety of transformers [2, 3]. Automated 
monitoring and identification technology can realize real-
time monitoring and accurate identification of transformer 
status. This approach discovers potential problems in time, 
prevents the occurrence of faults, and guarantees the stable 
operation of the power system. 

Many scholars have conducted research in this field and 
achieved some results. For example, big data mining 
technology was found to extract valuable information from 
massive data [4], which provides new ideas for automatic 
identification of transformer working state. By analyzing 
various data in the process of transformer operation, the 
inner law of transformer working state is revealed and the 
effect of automatic identification of transformer working 
state is improved [5]. However, these methods still 

encounter some challenges in their application. Specifically, 
the fast density peak clustering algorithm can handle large-
scale datasets and discover complex structures and patterns 
in the data [6], while the least-squares support vector 
machine (LSSVM) improves the accuracy and 
generalization ability of the model by minimizing the sum of 
squares of prediction errors; the model is more intuitive, and 
its decision boundary and classification basis are easier to 
understand [7]. Although these methods show great potential 
in extracting information, their high algorithmic complexity, 
high demand for computational resources, and high 
requirements for data preprocessing and feature selection are 
factors that limit their performance in real time and accuracy 
to some extent. In addition, the heterogeneity between 
different data sources and the instability of data quality 
increase the difficulty of identification. 

This study designs an automatic identification method of 
transformer operating state based on big data mining to 
address the abovementioned problems. Specifically, the fast 
density peak clustering algorithm, combined with the Γ-type 
equivalence algorithm, is utilized to estimate the operating 
parameters of the transformer. Through the improved fast 
density peak clustering algorithm, the global features of the 
Supervisory Control and Data Acquisition (SCADA) big 
dataset of the transformer are considered along with the local 
features of the SCADA big dataset of the transformer to 
enhance the clustering accuracy of the transformer operating 
data. The work parameters of the clustering results of the 
SCADA big dataset of the transformer are estimated by the 
Γ-type equivalence algorithm to provide data support for the 
subsequent state identification. Taking the estimation results 
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as samples, the LSSVM model in big data mining 
technology is input to output the automatic identification 
results of the working state of the transformer through its 
high generalization performance and interpretability, which 
improves the identification accuracy. Compared with 
traditional methods, the automatic identification method 
designed in this study not only can handle large-scale data 
but also can complete data analysis and state identification in 
a shorter time, which provides important technical support 
for the operation and maintenance of transformers. 

 
 

2. State of art 
 
Automatic identification of transformer working status can 
timely detect potential faults or abnormal conditions, reduce 
equipment downtime, improve equipment reliability and 
stability, help ensure the safe and stable operation of the 
power system, and reduce power outages caused by 
equipment failures. Considerable relevant research has been 
conducted on the automatic identification of transformer 
working status.  

Some scholars use clustering to extract and classify 
features. For example, Yan et al. [6] first used the LIF 
spectrum technology to obtain the fluorescence spectrum 
information of dissolved gas in transformer oil. Then, the 
Multi-scale one-dimensional convolution neural network 
(MS-1DCNN) algorithm was used to extract and classify the 
spectral data. The improved wild horse optimizer (IWHO) 
algorithm was utilized to optimize the hyperparameters of 
the MS-1DCNN algorithm for improving its performance. 
The experimental results show that this method can 
effectively improve the accuracy and stability of transformer 
working status identification. However, the MS-1DCNN 
model in this method is usually considered to be a “black 
box” model, and its internal decision-making process is 
difficult to explain. As a result, in practical applications, 
finding the specific cause and solution of the misjudgment of 
the model is difficult. Li et al. [7] combined the signal 
decomposition capability of Variable Mode Decomposition 
(VMD) and the classification performance of LSSVM, 
extracted the characteristics of the transformer working state 
by optimizing VMD parameters, and used LSSVM to 
automatically identify the transformer working state. The 
experimental results show that this method can accurately 
and efficiently automatically identify the transformer 
working state. Although VMD can extract patterns in signals, 
features related to the transformer working state need to be 
selected and input into LSSVM for identification. The 
quality of feature selection directly affects the identification 
results. Bigdeli et al. [8] used the k-means clustering 
algorithm to cluster and analyze transformer operating data. 
It was combined with the generalized ordered weighted 
average operator to weight the clustering results, which 
realized the automatic identification of the transformer 
working state. This method can effectively handle the 
complexity and uncertainty of transformer operating data 
and improve the accuracy and reliability of state 
identification. However, methods based on clustering and 
weight processing have difficulty providing intuitive 
explanations and causal relationships. 

Some scholars have also integrated computer technology 
to conduct in-depth exploration of this issue. For example, 
Zhang et al. [9] used the Faster R-CNN (Region with CNN 
feature) model to detect and classify transformer images, 
which realized the automatic identification of the 

transformer working state. Experimental verification 
indicates that this method can accurately and automatically 
identify the working state of the transformer, which 
improves the efficiency and accuracy of transformer fault 
diagnosis. However, the Faster R-CNN model in this method 
is usually sensitive to the distribution of training data. For 
transformer monitoring data under different environments 
and conditions, its generalization ability will be challenged, 
which influences the automatic identification effect of the 
transformer working state. Gu et al. [10] used a cylindrical 
electromagnetic coupler to collect the working state signal of 
the transformer. They analyzed and classified the signal 
through signal processing and pattern recognition 
technology to realize the automatic identification of the 
transformer working state. The experimental results show 
that this method can accurately and automatically identify 
the working state of the transformer with high accuracy and 
real-time performance. However, in practical applications, 
the environment around the transformer will interfere with 
the signal, which affects the quality and stability of the 
signal. Accordingly, the accuracy of the automatic 
identification of the working state is influenced. Abbasi et al. 
[11] used statistical control charts to monitor and 
automatically identify the working status of transformers in 
real time. By constructing control charts and setting 
corresponding thresholds, abnormal data and potential faults 
can be discovered in time, and the working status of 
transformers can be accurately identified. The experimental 
results show that this method has high accuracy and real-
time performance, and it can provide strong support for 
transformer status monitoring and fault prevention. However, 
this method requires setting a suitable threshold to judge 
abnormal conditions. The setting of the threshold needs to be 
adjusted and optimized according to the actual situation. If 
the threshold is not set accurately, then misjudgment or 
missed judgment will occur. Lopes et al. [12] used the 
oversampling technology to process transformer monitoring 
data and built a data-driven model for automatically 
identifying the working status of the transformer. This 
method can effectively deal with the problem of unbalanced 
datasets and improve the accuracy and reliability of status 
identification. However, the data-based model is difficult to 
explain and is unsuitable for application scenarios that 
require clear explanations. Nguyen et al. [13] built a 
transformer digital twin model based on the digital twin 
technology to achieve real-time monitoring and automatic 
identification of the working status of the transformer. The 
digital twin model can accurately simulate the working state 
and performance of the transformer. The model can 
accurately identify the working state of the transformer by 
comparing and analyzing the actual monitoring data. 
However, the accuracy and reliability of the digital twin 
model depend on the accuracy and completeness of the input 
data to a large extent. If errors exist or data are missing, then 
the identification results of the model will be biased. Soni et 
al. [14] conducted a series of tests to evaluate the 
performance and state of the transformer. They used 
advanced machine learning algorithms to automatically 
analyze the test results for accurately identifying the 
working state of the transformer. This method is non-
invasive, fast, and highly accurate. It also provides a new 
solution for the condition monitoring and fault diagnosis of 
the transformer. However, some tests will cause certain 
impacts or risks to the transformer, which affects the normal 
operation and safety of the transformer. 
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Some scholars have integrated other theories to conduct 
research on this issue. For example, Soni et al. [15] used 
fuzzy logic control theory to automatically identify the 
working state of the transformer by constructing a fuzzy 
reasoning system. Experimental verification shows that this 
method can effectively identify the working state of the 
transformer with high accuracy and robustness. However, 
this method is sensitive to the noise of the input data. If 
noise exists or abnormal values are present in the input data, 
then the accurate identification of the working state will be 
affected. Soni et al. [16] used the critical characteristics of 
mineral oil and alternating medium to monitor the state 
changes of the medium inside the transformer for realizing 
the automatic identification of the working state of the 
transformer. This method has non-invasiveness, real-time 
characteristic, and high accuracy. It provides a new idea for 
the state monitoring and fault diagnosis of the transformer. 
However, this method is highly dependent on the critical 
characteristics of mineral oil and alternating medium, and 
the changes in these characteristics may be affected by many 
factors, such as temperature, pressure, and aging; this 
influence results in a decrease in the reliability of automatic 
identification of the transformer working state. Duan et al. 
[17] used spatial hybridization theory, and combined it with 
the working characteristics and state information of the 
transformer. They automatically identified the working state 
of the transformer by constructing a hybrid model. This 
method can effectively process multi-source heterogeneous 
data and improve the accuracy and reliability of state 
identification. However, this method is highly dependent on 
specific scenarios or datasets, and the generalization ability 
of the model is poor. Teymouri et al. [18] monitored the 
composition of CO, CO2, 2-furfural, and acetylene inside the 
transformer. They used the calculation index to analyze the 
changes in these components for achieving automatic 
identification of the transformer working state. This method 
can accurately reflect the operating state of the transformer 
and provide strong support for transformer fault diagnosis 
and prevention. However, changes in different gas 
compositions may correspond to different fault modes or 
working states, which increases the difficulty of interpreting 
changes in gas composition.  

In summary, significant progress has been made in the 
research of automatic identification of transformer operating 
states, and various methods such as cluster analysis, signal 
processing, deep learning, machine learning, and combining 
with specific theories such as fuzzy logic control have been 
applied in practice. Each of these methods has its own 
advantages, but they also face challenges, such as feature 
selection, model interpretability, and data distribution 
sensitivity. Therefore, considering the limitations of 
practical applications, such as data quality and 
computational resources, this study investigates the 
automatic identification method of transformer operating 
state based on big data mining. The proposed method 
considers not only the global features of the transformer 
SCADA big dataset but also the local features. The 
improved fast density peak clustering algorithm is utilized to 
perform the identification of the transformer. The SCADA 
big dataset is clustered using an improved fast density peak 
clustering algorithm to obtain more accurate classification of 
normal and abnormal state data. The identification accuracy 
is improved by integrating the big data mining technology. It 
is expected to promote the further development of 
transformer condition monitoring and fault diagnosis 

technology and provide a strong guarantee for the safe and 
stable operation of the power system. 

 
 

3.  Methodology  
 

3.1 Estimation of transformer working parameters based 
on big data mining  
The transformer working parameters are estimated by 
improving the fast density peak clustering algorithm and 
combining it with the Γ-type equivalent algorithm. The 
specific steps are as follows:  

Step 1: Use the improved fast density peak clustering 
algorithm to cluster the transformer SCADA big data [19] 
for obtaining the transformer working data of two categories: 
normal state and abnormal state.  

Step 2: Use the Γ-type equivalent algorithm to estimate 
the transformer working parameters based on the 
transformer working data in the two categories. If the 
relative error of the estimated parameters is less than 10%, 
then the algorithm ends and the parameter estimation results 
are output [20]. Otherwise, the number of clusters is 
increased by 1 and the process returns to step 1 until the 
parameter estimation accuracy is achieved.  

The specific steps of clustering the transformer SCADA 
big data using the K-nearest neighbor (KNN) improved fast 
density peak clustering algorithm are as follows:  

Step 1: The units of the parameters in the transformer 
SCADA big data are different. Thus, the parameter values 
are normalized to normalize all transformer parameter values 
to between 0 and 1 for eliminating the influence of 
inconsistent units on cluster analysis.  

Step 2: Input the normalized transformer SCADA big 
data sample X and solve the distance matrix D.  

Step 3: Solve the KNN samples between each 
transformer SCADA big data sample  and . The 
formula is as follows: 

 
     (1) 

 
Among them, the transformer SCADA big data sample 

of the distance is ; the Euclidean distance between 

and is .  
Step 4: Solve the local density of the transformer 

SCADA big data sample , and the formula is as follows: 
 

       (2) 
 

Among them, the number of transformer SCADA big 
data samples is N; the percentage of N is p.  

Step 5: Solve the KNN distance between transformer 
SCADA big data samples, and the formula is as follows: 

 
       (3) 

 
Step 6: Determine the cluster center.  
Step 7: Assign labels to all transformer SCADA big data 

samples.  
Step 8: Return the label vector, that is, normal state and 

abnormal state, to complete the clustering of transformer 
SCADA big data.  
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After clustering, the Γ-type equivalent algorithm 
estimates the transformer operating parameters based on the 
transformer SCADA big data in the two categories. The 
transformer power loss formula is: 

 

            

(4) 

 
Among them, the input and output active power of the 

transformer are  
 
and  ;  

The total conductance of the transformer is  ; the 
input voltages of the and nodes are and ; the input 

and output reactive powers of the transformer are  

and ; the resistance and reactance of the transformer are 
and ; the magnetic flux density is ; and the time 

is  .  
The current flowing through  and  is the same. 

Thus, 
 

           

 (5) 

 
According to the voltage drop formula:  
 

       (6) 
 
Among them, the horizontal and vertical components of 

the voltage drop are  
 
and . 

By ignoring , we can obtain 
 

           (7) 

 
We integrate Equations (4), (5), (6), and (7) to obtain 
 

      

       (8) 

 
Among them, and are all 

transformer SCADA big data clustered in normal or 
abnormal state. The transformer operating parameters 
corresponding to the normal and abnormal state categories 
are estimated using Formula (8). 

 

3.2 Automatic identification of transformer working 
state based on LSSVM  
Based on the two categories of transformer working 
parameter  and 

estimated in Section 3.1, a sample 

set for automatic identification of 
transformer working state is constructed. The transformer 
working parameter vector is ; the corresponding 
vector representing the automatic identification result of 
transformer working state is ; the number of samples is m.  

The optimal linear decision function for LSSVM 
automatic identification of transformer working state is: 

 
    (9) 

 
Among them, the weight is w; the error constant is b; the 

nonlinear mapping function is  .  

Let the insensitive loss function be , and  be the 
loss function of LSSVM. Then, the optimization goal of w is: 

 

           (10) 

 
where the penalty factor is C.  
Obtained by calculating the saddle point of the Lagrange 

function: 
 

   (11) 

 

Among them, the Lagrange multiplier is .  
According to the Kuhn–Tucker condition, we can derive 

Equation (11) and eliminate w and  to obtain 
 

                          (12) 

 
Among them, ; the transposed symbol is 

T; the nonlinear mapping matrix is 
; the transformer working 

state automatic identification result matrix is 
.  

By solving Equation (12) by the least-squares method 
and integrating Equation (9), the final result for automatic 
identification of transformer working state is obtained as 
follows: 

 

 (13) 

 
Among them, the kernel function is 
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4. Results Analysis and Discussion 
 
The SZ11-100000/220 transformer in the Jintai Substations 
was used as the experimental object. The working state of 
the transformer was automatically identified using the 
proposed method to improve the stability and safety of the 
power system operation. The relevant parameters of the 
SZ11-100000/220 transformer are shown in Table 1. In 
Table 2, light load, heavy load, and three-phase unbalanced 
state are all abnormal states. 
 
Table 1. Relevant Parameters of SZ11-100,000/220 
Transformer 

Parameter name Unit Value 
Rated capacity kVA 100000 
Rated voltage kV High pressure side 220 

 Low pressure side 10 
Rated current A High pressure side 251 

 Low pressure side 1649.6 
No-load current % High pressure side 0.17 

 Low pressure side 0.56 
Load loss kW High pressure side 565 

 Low pressure side 532 
No-load loss kW High pressure side 33 

 Low pressure side 48 
 
The corresponding values of the transformer working 

state automatic identification results output by the proposed 
method are shown in Table 2. 

 
Table 2. Corresponding Values for Automatic Identification 
of Transformer Working State 

Numerical value Identification state 
1 Normal state 
2 Light load condition 
3 Overloaded state 
4 Three-phase unbalanced state 

 
In the experiment, transformer SCADA big data in 2022 

were randomly selected in the power system as the 
experimental data sample, and these data were clustered 
using the proposed method. The clustering categories were 
normal state category and abnormal state category. The 
clustering results are shown in Figure 1. The figure shows 
that the clustering results of the transformer SCADA big 
data by the proposed method are very ideal. Through cluster 
analysis, we can divide the data into two categories, which is 
consistent with the actual situation. In the clustering results, 
no fuzzy or confused boundary is observed between the two 
categories, which shows that the proposed method has 
excellent performance and accuracy in processing the 
clustering problem of transformer SCADA big data. 

 

 
Fig. 1 Transformer SCADA Big Data Clustering Results 

 
The proposed method is used to estimate the working 

parameters of the transformer for the transformer SCADA 
big data in the abnormal state category. The estimation 
results for the transformer conductivity and magnetic flux 
density parameters are shown in Figure 2. As shown in 
Figure 2 (a), the proposed method can effectively estimate 
the conductivity parameters of the transformer. The value 
range of the transformer conductivity under normal 
conditions is between 100 and 200 μs. As shown in Figure 2 
(a), the transformer conductivity between 20 and 70 min 
always fluctuates between 200 and 300 μs, which indicates 
that the transformer is in an abnormal state at this time. This 
observation is consistent with the actual situation. Therefore, 
the proposed method proposed can accurately estimate the 
transformer conductivity parameters. As shown in Figure 2 
(b), the proposed method can effectively estimate the flux 
density parameters of the transformer. Under normal 
conditions, the value range of the transformer flux density is 
between 7,000 and 14,000 G. Figure 2 (b) shows that, the 
flux density of the transformer between 20 and 70 min 
always fluctuates between 14,000 and 20,000 G, which 
indicates that the transformer is in an abnormal state at this 
time. This observation is consistent with the actual situation 
and once again verifies the accuracy of the transformer 
parameter estimation of the proposed method. 
Comprehensive analysis shows that the estimation accuracy 
for transformer working parameters of the proposed method 
is high. 

 

 
(a) Results for the estimation of transformer conductance parameter 

 
(b) Results for the estimation of transformer flux density parameter 
Fig. 2 Estimation Results of Transformer Working Parameters 
 

In this power system, eight transformers are randomly 
selected, which contain four working states. The working 
states of the eight transformers are automatically identified 
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using the proposed method. The automatic identification 
results are shown in Figure 3. The figure shows that the 
proposed method can effectively automatically identify the 
working state of the transformer. Among them, the 
automatic identification results of most transformers are the 
same as the actual working state. Only the automatic 
identification result of the working state of the transformer 
number 5 is a light load state, while the actual working state 
is a heavy load state. Experiments have proven that the 
proposed method has a high accuracy for the automatic 
identification of the working state of the transformer. Thus, 
it ensures the stable operation of the transformer. 

 

 
Fig. 3 Results for the Automatic Identification of Transformer Working 
State 

 
The histogram showing the relative error frequency 

distribution is used to measure the automatic identification 
accuracy of the transformer working state of the proposed 
method. When the relative error is between [−0.04, 0.04], 
the automatic identification accuracy of the transformer 
working state is high. The analysis results of the histogram 
showing the relative error frequency distribution for the 
automatic identification of the transformer working state of 
the proposed method are shown in Figure 4. The figure 
shows that the relative error of the proposed method in 
automatically identifying the working state of the 
transformer is mainly concentrated in the small range of 
[−0.02, 0.02]. This result shows that the proposed method 
can automatically identify the working state of the 
transformer more accurately in most cases, and it can 
provide a more reliable decision-making basis for the power 
system. 

 

 
Fig. 4 Histogram of Relative Error Frequency Distribution 

 
On this basis, the traditional state identification method 

based on fuzzy logic control theory and the state 
identification method based on VMD and LSSVM are 
compared to further highlight the application advantages of 
the proposed method. The recall rate of the identification 
result is used as an indicator to compare the application 
performance of the three methods. The results are shown in 
Table 3. According to the table, the recall rate of the 
identification results of the proposed method for the four 
states of normal, light load, heavy load, and three-phase 
unbalance of the transformer is always higher than that of 
the two comparison methods. For the heavy load state, the 
recall rate of the identification results of the proposed 
method is as high as 0.986, which suggests that the 
identification of the proposed method is more effective. 

 
Table 3. Comparative Analysis of Recall Rate of 
Identification Results 

Status of the 
transformer 

Recall rate of identification results 

Method 
of this 
paper 

State 
identification 
method based 
on fuzzy logic 
control theory 

State 
Recognition 

method based 
on VMD and 

LSSVM 
Normal state 0.977 0.925 0.909 

Light load 
condition 0.982 0.936 0.941 

Overloaded 
state 0.986 0.921 0.935 

Three-phase 
unbalanced 

state 
0.971 0.927 0.922 

 
 

5. Conclusion 
 
This study proposes a method for automatic identification of 
transformer working status based on big data mining. By 
using the big data mining technology, the transformer 
SCADA big data are analyzed to accurately and 
automatically identify the transformer working status, 
including normal operation and overload operation. The 
following conclusions are obtained: 

(1) The proposed method has a good clustering effect on 
transformer SCADA big data, which is conducive to 
estimating transformer working parameters.  

(2) After estimating the transformer working parameters, 
the results obtained by the proposed method are consistent 
with the actual situation. This consistency verifies the 
accuracy of the transformer parameter estimation of the 
proposed method.  

(3) The relative error of the proposed method in 
automatically identifying the working state of the 
transformer is mainly concentrated in the small range of 
[−0.02, 0.02], which indicates that the proposed method can 
automatically identify the working state of the transformer 
more accurately in most cases.  

(4) The recall rate of the identification result of the 
proposed method can reach up to 0.986, which implies that 
the identification of the proposed method is more effective.  

While this study yielded certain results, there are evident 
shortcomings, notably insufficient diversity in data sources 
and a lack of depth in feature selection. Moving forward, it 
is imperative to explore the integration of multiple data 
sources and offer intelligent decision support to elevate the 
accuracy and breadth of automatic transformer operating 
condition identification. This approach will facilitate the 
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establishment of a robust scientific foundation for 
transformer maintenance and management decisions. 
 
 

This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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