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Abstract 
 

In the presence of stream periodicity, the electrohydrodynamic instability of three bounded liquid films with two interfaces 
is examined. It is considered that liquids have distinct physical characteristics and are immiscible. Under the influence of 
an electric horizontal field, these fluids travel through porous material. Applying the linear theory to the equations of motion 
and the associated boundary conditions led to two coupled Mathieu type equations with complex periodic coefficients. 
Approximate solutions were achieved by employing the multiple time scales technique, where the stability performance in 
resonance cases or not was discussed. An essential feature of this method is that transition curves are obtained analytically. 
It was discovered that all of the points inside these curves are unstable, whereas the regions outside of them promote the 
system's stability. A detailed analysis is conducted to determine how the different physical variables of the problem affect 
the interface stability. In the case of uniform speed, it is observed that the electric field stimulates the stability of the wave 
motion, while the porosity of the upper layer plays a dual role. In the presence of periodic speeds, it was observed that the 
speed of the top film works to destabilize the waves, while the dielectric constant gives brightness to the stability of the 
waves. It is also mentioned that the electric field has an important and effective role in stabilizing the fluid layers. 
 
Keywords: Electrohydrodynamics; Liquid layers; Porous media; Mathieu equations. 
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1. Introduction 
 
Stability is a significant and useful issue in many industrial 
applications, such as some areas of petroleum, chemical, and 
mechanical engineering. The manufacture of steel and alloys, 
as well as coating operations, demonstrate the significance of 
the stabilizing process. Additionally, it is preferable for some 
alloys to remain bubble-free throughout manufacturing 
because this adds to their worth and quality; otherwise, it 
could seriously impair the final product's quality. 
 The presentation of various pertinent studies that provide 
a useful summary of hydrodynamic stability is provided 
below. Ozen et al. [1] performed two layers of different fluids 
containing an interface. The imposed fluids are viscous and 
move under the influence of a perpendicular electric field. 
Investigations into the effects of various physical quantities 
on the stability of the interface revealed that, while the electric 
field helps to stabilize the movement, it sometimes works on 
the opposite. The method described in [2] involves examining 
the effect of an electric field that is perpendicular to a channel 
that contains various viscous fluids and confines an interface. 
The stability of the problem was achieved based on the long-
wave theory. It was indicated that the effect of the electric 
field depends on whether it is perfect or leaky dielectrics. 
 In article [3], the linear stability investigation of pressure-
driven flow under viscous heating effect via a channel is 
carried out. A modified coupled Orr–Sommerfeld equation 
was obtained with a linearized energy equation. It was 
mentioned that viscous heating has a destabilizing impact. 
DiCarlo [4] has theoretically investigated the stability of the 
standard multiphase flow equations. However, he has 
demonstrated experimentally that the instability is associated 
with saturation or pressure overshoot occurrences in 1-D 

infiltrations. The effect of fluid characteristics and flow was 
examined in the research of the movement of multi-layered 
fluids under the influence of fields in porous media, which 
can be found in the work of [5-7]. 
 The linear stability theorem is applied in the work of [8] 
to describe the motion of two layers of Herschel–Bulkley and 
immiscible Newtonian fluids. It has been suggested that the 
applied electric field can either play a stable or unstable 
function for the channel motion, depending on the electrical 
properties of the fluids. The linear stability analysis for an 
electrically charged fluid sheet sandwiched between two 
symmetric dielectric moveable ambient gases has been 
examined in [9]. The findings show that, for the sinuous type, 
the tangential field stabilizes the system over the complete 
range of the gas speed ratio, and that, for the varicose mode, 
the electric field marginally improves the stability 
performance. Finally, good accounts of the subject under 
study can be discerned in the literature [10-20]. 
 Drawing on the previously given information, we 
examine in this study, the linear stability of a sheet made up 
of three distinct fluid films enclosing two interfaces. Fluids 
flow through porous media while being subjected to a 
periodic velocity in the direction of the fluid layers and a 
horizontal electric field. The results obtained here may be of 
interest in some scientific issues related to industries and 
modern technology such as plastics manufacture lubricants, 
as well as many spray coating processes. It is worth noting 
that the concept of stability is of great importance in the 
process of painting surfaces and walls, as the paints remain 
adhered to the walls and does not peel off them, even in 
different weather conditions such as temperature and 
humidity. 
 The current article is prepared as follows. In the 
subsequent section, the problem statement is evidently 
covered, and the important equations of motion and the linked 
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boundary requirements have been analyzed. The third section 
is devoted to the perturbed motion and solutions to the 
problem. In the fourth section, the characteristic equations 
and stability performance is covered. The notable results are 
presented in the last section. 
 
 
2  Problem statement  
 
In the current model, two bounded electrical fluids with 
different physical properties for each of the three fluids are 
sandwiched between an electrical layer of a fluid sheet. It is 
assumed that all fluids move in an infinite horizontal direction 
with a periodic velocity through porous media. Fig. 1 depicts 
a geometric visualization of the hypothesized model for the 
study, where gravity acts downward. 

 
Fig. 1. Geometrical representation of the imposed system. 
 
 Initially, the separating surfaces between the fluids are 
undistributed, and we have a middle region −𝐻 < 𝑦 < 𝐻, 
moreover, two bounded regions, the upper confined between 
𝐻 < 𝑦 < 𝐻 + 𝐿! and the other is the lower layer in the range 
−𝐻 < 𝑦 < −(𝐻 + 𝐿") . The periodic form of the velocity 
through the fluid sheet is given as 𝑈#

(%)cosΩ𝑡 growing in the 
𝑥 − axis direction, where 𝑈#

(%) , Ω  are constants. The 
superscript 𝑟 = 1, 2, 3 distinguishes the three layers from top 
to bottom. If ℎ'(𝑥, 𝑡)	  indicates the height above the 
undisturbed plane and based on visualizing motion in two 
dimensions, the resulting distortion at the two interfaces can 
be expressed as follows: 
 
𝑦(𝑥, 𝑡) = (−1)('(!)𝐻 + ℎ'(𝑥, 𝑡), 𝑙 = 1, 2.   (1) 
 
 The equations of motion and the suitable boundary 
conditions for the imposed system can be mentioned as 
follows. Fluids are assumed to obey Darcy's law, and 
therefore the governing equation results from the combination 
of this law and the momentum equation, so that [21-27]: 
 
𝜌(%)𝐷)𝒖(%) = −∇𝑝(%) + 𝜂(%)𝑄(%)*!𝒖(𝒓) − 𝜌(%)(𝑔, 0),  (2) 
 
the continuity equation of homogeneous liquid reads: 
 
∇ ⋅ 𝒖(%) = 0.       (3) 
 
 Here, 𝐷) = 𝜕) + D𝒖(%) ⋅ ∇E states the material differential 
operator, and the subscripts 𝑡, 𝑥 and 𝑦 identify the partial 
derivatives. The parameter ∇≡ (𝜕𝑥, 𝜕𝑦)  distinguishes the 
horizontal gradient operator. The quantity 𝜂(%)𝑄(%)*! is the 
resistance parameter, where 𝑄(%)  characterizes the 
permeability of the porous medium and 𝜂(%) denotes the fluid 
viscosity. The value 𝑝(%) indicates the fluid pressure and the 
symbol 𝜌(%) indicates the density of the lquids films.  

 Given that the assumed fluids are inviscid and therefore 
irrotational, then it is possible to talk about a streaming 
potential for the perturbed motion, and the total velocity is 
intended based on following relationship: 
 
𝒖(") = #𝑈$

(")cosΩ𝑡	 − 𝜕%𝜙(")(𝑥, 𝑦, 𝑡) −𝜕&𝜙(")(𝑥, 𝑦, 𝑡)3 4
5̂
7̂8,  (4) 

 
where, Ĝ and I ̂ are unit vectors in 𝑥 − and 𝑦 − directions. 
In this case, 𝜙(%) will fulfill Laplace equation  
 
∇"𝜙(%)(𝑥, 𝑦, 𝑡) = 0.      (5) 
 
 If there are no free currents, Maxwell’s equations have the 
form 
 
∇. (𝜀(%)𝑬(%)) = 0		and		∇ × 𝑬(%) = 0,     (6) 
 
where, the parameter 𝜀(%)  indicates the dielectric constant 
and 𝑬(%) = (𝐸,

(%), 𝐸-
(%)) designates the electric field vector. 

From the previous two field equations, a scalar field potential 
𝜓(%) can be formulated in the form: 
 

𝑬(%) = D𝐸#
(%) − 𝜕,𝜓(%)(𝑥, 𝑦, 𝑡) −𝜕-𝜓(%)(𝑥, 𝑦, 𝑡)E S

Ĝ
ÎT,   (7) 

 
 Given that we have a constant permittivity, the zero curl 
holds, and consequently the electrostatic potential matches 
Laplace’s equation so that: 
 
∇"𝜓(%) = 0.       (8) 
 
 Now we are dealing with the boundary conditions, which 
are information at the dividing surfaces and the upper and 
lower boundary [28-32]. At the upper and lower surfaces, we 
discuss the kinematic condition, which results from the fact 
that the separating surface always includes the same fluid 
particles. 
 
𝐷)[𝑦 − D−1)('(!)𝐻 − ℎ'V = 0     (9) 
 
 Alongside this condition, another important condition 
appears, which is the continuity of the perpendicular 
component to the speed at the separating surfaces, where: 
 
𝒏' ∙	∥ 𝒖(','(!) ∥= 0			     (10) 
 
 Here, 𝒏' indicates the exterior normal unit vector to the 
dividing surfaces which is linearly typified by 𝒏' =
−𝜕,ℎ' Ĝ + Î.  The representation ∥ ⋯ ∥  indicates a jump in 
any measure through the separated surfaces. 
 Another condition that can be noted is the lack of speeds 
at the upper and lower plates due to the border being fixed and 
rigid. This is recorded at the upper and lower bounds, 
respectively: 
 
𝑢(!) = 0			at			𝑦 = 𝐿!,			
𝑢(") = 0			at			𝑦 = −𝐿".

]     (11) 

 
 In light of Maxwell's conditions, the perpendicular and 
tangential components of the field are connected and can be 
formulated as: 
 
[𝜀(')𝐸#

(') − 𝜀('(!)𝐸#
('(!)]𝜕,ℎ(𝑥, 𝑡) = 𝜀('(!)𝜕-𝜓('(!) −

𝜀(')𝜕-𝜓('),      (12) 
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𝜕,𝜓(') − 𝜕,𝜓('(!) = 0.     (13) 
 
 Finally, due to the effect of surface tension, the normal 
stresses are balanced through it, where: 
 
 𝒏' ∙		∥ −𝑝I+𝛕/

(%) ∥'
('(!)	∙ 	𝒏' = −𝛾'('(!)	∇ ∙ 	𝒏' ,				  (14) 

 
 Here, the quantity 𝛾'('(!) indicates the surface tension of 
the fluid interfaces surface tension, and τ/

(%) is the Maxwell 
stress tensor as a result of electrostatic forces 
 
𝛕/
(%) = 𝜀(%)(𝑬(%)𝑬(%) − !

"
	(𝑬(𝒓) ∙ 𝑬(𝒓))𝐼),   (15) 

 
where, the symbol 𝐼 denotes the identity tensor. The dynamic 
condition (14) is important for obtaining the characteristic 
stability equation later, therefore we will write this condition 
in terms of 𝜙(%)  and 𝜓(%) .  To do this, we obtain the 
pressure by interpolating Equation (4) by (2) to be: 
 
𝑝(") = 𝜂$

(")𝜙(") + 𝜌(")(𝜕'𝜙(") + 𝑈$
(")cosΩ𝑡𝜕%𝜙(") − 𝑔𝑦),  (16) 

 
 Therefore, the balance at the separating surfaces can be 
outlined in the form: 
 
𝑘"𝛾','(!ℎ' + 𝜌(')𝜕)𝜙(') − 𝜌('(!)𝜕)𝜙('(!) +
cosΩ𝑡{𝜌(')𝑈#

(')𝜕,𝜙(') − 𝜌('(!)𝑈#
('(!)𝜕,𝜙('(!)} −

{𝜀(')𝐸#
(')𝜕-𝜓(') − 𝜀('(!)𝐸#

('(!)𝜕-𝜓('(!)} + 𝜂#
(')𝜙(') −

𝜂#
('(!)𝜙('(!) − 𝑔(𝜌(') − 𝜌('(!))ℎ' = 0.   (17) 

 
 
3  Lines of solutions 
 
At this stage, we would like to study the stability of the 
hypothesized model since the dividing surfaces undergo a 
slight perturbation around their equilibrium position. The 
normal mode approach is employed to analyze linear stability 
performance (see Chandrasekhar [13]), where the occurrence 
of the disruption of the dividing surfaces can be indicated as: 
 
𝑦 = (−1)('(!)𝐻 + 𝜉(')(𝑡)exp(𝑖𝑘𝑥) + 𝑐. 𝑐.   (18) 
  
 Here, we assume that the influence of small wave 
disturbances on the allocating surfaces propagates in the 
positive x-direction, where only the linear limits are preserved 
and the higher degrees are neglected based on the linear 
stability theory [24, 26]. In the above equation, 𝜉(') 
represents an arbitrary time-dependent quantity that controls 
the performance of the amplitude of the instabilities on the 
inner surfaces. Furthermore, 𝑘  identifies the real wave 
number and the letter 𝑖  denotes √−1 , while c.c. denotes 
complex conjugate. 
 In the same vein, as discussed for interface deflection in 
Eq. (18), the stream and field functions in a fluid bulk can be 
expressed as follows: 
 
(𝜙(%), 𝜓(%)) = D𝜙n(%)(𝑦, 𝑡), 𝜓n(%)(𝑦, 𝑡)	E	exp(𝑖𝑘𝑥) + 𝑐. 𝑐. (19) 
 
 Inserting Eq. (19) into Laplace’s Eqs. (5), (8); the 
following solutions can be obtained: 
 
0𝜑

(")

𝜒(")
3 = 0

𝐴$
(")(𝑡)exp(−(−1)%𝑘𝑦) + 𝐴&

(")(𝑡)exp((−1)%𝑘𝑦)
𝐵$
(")(𝑡)exp(−(−1)%𝑘𝑦) + 𝐵&

(")(𝑡)exp((−1)%𝑘𝑦)
3 exp(𝑖𝑘𝑥) + 𝑐. 𝑐.  (20) 

 

 Noting that the upper and lower plates are at rest, it means 
that the constants 𝐴!

(!), 𝐴!
(D), 𝐵!

(!)and 𝐵!
(D) must be equal to 

zero, and in terms of 𝜉('), the other measures are determined 
in view of the previous conditions at the interfaces. 
 
 
4. Characteristic equations 
 
The goal of this section is to investigate the influence of 
general surface distortions on the onset of a periodic speed 
applied to the liquid layers. As mentioned earlier, the normal 
stress tensor (17) is employed to obtain the characteristic 
equations, which are the relations that describe the behavior 
of the interfaces. By interpolating Eqs. (20) in the previous 
dynamic condition, we obtained in terms of the amplitude 𝜉(') 
, two coupled Mathieu relations. These equations have 
damping terms and complex coefficients and can be 
expressed as: 
 
𝐹((𝜉))

(*)(𝑡), 𝜉)(*)(𝑡), 𝜉(*)(𝑡), 𝜉))(+)(𝑡), 𝜉)(+)(𝑡), 𝜉(+)(𝑡)) = 0.  (21) 
 
 Based on these relationships, the stability of the interface 
and thus the stability of the system as a whole is controlled.  
 
Uniform Stream: Dealing with these equations, we will first 
discuss the case of uniform velocity. This is in the absence of 
periodicity of speed, and for this reason, Ω degenerates to 
zero in the above analysis. Accordingly, Mathieu equations 
turn into linear differential equations with constant 
coefficients.  Therefore, we can impose the solution in the 
form of a growth rate as follows: 
 
 𝜉(') = Α(')exp(𝑖Θ𝑡),     (22) 
 
where Α(') indicates the constant of integration. With the aid 
of this solution and in the light of the previous Mathieu 
equations, we can reach a dispersion equation that designates 
the perturbed motion, which is: 
 
ΘE + (𝜍!! + 𝑖𝜍!")ΘD + (𝜍"! + 𝑖𝜍"")Θ" + (𝜍D! + 𝑖𝜍D")Θ +
𝜍E! + 𝑖𝜍E" = 0,      (23) 
 
where the measurements 𝜍’s are obvious from the context. In 
terms of Θ  and 𝑘 , we find that Eq. (23) is labeled as a 
dispersion equation with complex coefficients describing 
linear motion of uniform velocity. It is important to discuss 
here that the system represented by this equation is stable only 
if all the roots of this equation are real, or that there are at least 
two conjugate complex roots and thus we obtain unstable 
motion. 
 In the following, we will carry out a numerical study to 
clarify the concept of stability for some physical variables 
under study. For this purpose and to better understand the 
stability performance, all physical quantities have been placed 
in a non-dimensional form based on the following 
hypotheses. The dielectric constant and the density ratios are 
created dimensionless through 𝜀̂(!) = 𝜀(!)/𝜀("), 𝜀̂(") = 𝜀(D)/
𝜀(") and 𝜌u(!) = 𝜌(!)/𝜌("), 𝜌u(") = 𝜌(D)/𝜌("), while the speed 
and its potential function are created by v𝐻𝑔 and 𝐻v𝐻𝑔. 
Furthermore, the field and the electric potential are ended 
dimensionless by v𝐻𝑔𝜌(")/𝜀(")  and 𝐻v𝐻𝑔𝜌(")/𝜀(") , and 
the permeability of the media by 𝐻"𝑄. Finally, the Weber 
number is defined as 𝑊' = 𝛾'/𝐻"𝑔𝜌("), ( 𝑙 = 1,2). 
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 Fig. 2 displays the effect of the applied electric field on 
the stability performance of the fluid layers. All other physical 
quantities are kept constant as indicated in the caption of this 
graph. As earlier discussed, the four roots of the characteristic 
Equation 23 versus the wave number were established in the 
parts of this figure, which represent the case of uniform 
velocities. 
 The field's value of 0.1 was selected in Fig. 2(a). It was 
shown that in the range 0 < 𝑘 < 0.3, all the roots of the 
dispersion equation are real, indicating that we are working 
with a steady motion.  On the other hand, one complex root 
in the interval 0.3 < 𝑘 < 3.5 indicates unstable waves. We 
found that the stable zone, which is characterized by the 
appearance of all four roots, grew to include the distance 𝑘 <
0.33 by expanding the value of the field to 0.4 in the second 
part of Fig. 2. This indicates that the stability of the wave 
motion is stimulated by the electric field. The field was 
increased once more in the third and last section of this graph 
to validate its stabilizing effect. As a result of this expansion, 
the unstable region contracted and the stable distance 
increased to reach 𝑘 ≈ 0.35, indicating that we are dealing 
with stable waves. This implies that a portion of the kinetic 
energy wave motion has shifted to the field, improving 
stability, and this is a plausible physical explanation [1, 27]. 
 

 
Fig. 2. Plot of roots of (23) against the wave number 𝑘 , related to a 
system with 𝐿! = 0.5 , 𝐿" = 0.8 , 𝑈#

(!)= 0.5, 𝑈#
(") = 0.3 , 𝑈#

(&) = 0.6 , 
𝜀̂(!) = 0.6, 𝜀̂(") = 0.5, 𝜌.(!) = 0.6, 𝜌.(") = 0.7 𝑄(!) = 0.5, 𝑄(") = 0.8, 
𝑄(&) = 0.4, with 𝐸#

(!)= 0.1, 0.4 and 0.7 of the partitions (a), (b) and (c), 
respectively. 
 
 Fig. 3 was created in a three-dimensional system from the 
perspective of the height of the surface wave, where the 
horizontal direction of the waves' movement and the elevation 
of the upper interface were plotted against time. The parts of 
this figure represent three different values of the upper porous 
permeability for comparison while preserving the values of 
other variables as mentioned in the previous figure. A general 
inspection of this figure demonstrates that increasing the 
upper permeability 𝑄(!) to a value of 0.4 in Fig. 2(b) leads to 
a contraction of the crests and troughs of the waves. However, 
another increase in 𝑄(!) to become 0.7 in the third part of this 
graph leads the waves to return in expanding of troughs and 
crests. Zakaria et al [9] in their study of the instability of a 
viscous liquid sheet under the influence of a tangential electric 
field. 
 

 
Fig. 3. Upper interface elevation at 𝑦 = 1, such that the upper 
permeability 𝑄(!) = 0.1 = 0.4, and 0.7 are indicated for (a), (b), and 
(c), respectively. 
 
Periodic Velocity: Returning to the general case when the 
oscillatory speed is operating. In this regard, the study of 
stability criterion changes radically, and dispersion Equation 
(21) is again the focus of the study. It isn't easy to obtain an 
exact solution to such equations; therefore, we need to deal 
with one of the approximate methods. One of these successful 
approaches is the method of multiple time scales [26]. 
 In the procedures of this method, the time scale is 
expressed in the independent quantities 𝑡F = 𝜖𝑡 ,𝑛 = 0,1,2, 
where the small amount 𝜖 describes the steepness ratio of the 
wave. Here, 𝑡# is discussed as the slower variable, which is 
appropriate for the faster ones 𝑡!, and 𝑡". In the light of this 
hypothesis, the differentials with respect to time are 
formulated in the form of the following expansions: 
 
 𝜕) ≡ 𝜕)' + 𝜖𝜕)(+. . .				and			𝜕))

" ≡ 𝜕)')
" + 2𝜖𝜕)')(

" +. . ., (24) 
 
 Reliant on the smallness of the arbitrary dimensionless 
quantity 𝜖 , the amplitude of the periodic forces can be 
designated as 𝑈#

(%) = 𝜖𝑈}#
(%). The investigation then obeys the 

standard perturbation technique and refrains from using 
secular terms, which is now more appropriate for expressing 
the outcome in a complex formula. 
 It is now preferable to express 𝜉(') as an expansion in the 
following feature: 
 
𝜉(')(𝑡, 𝜖) = 𝜉#

(')(𝑡#, 𝑡!) + 𝜖𝜉!
(')(𝑡#, 𝑡!)+. . . , 𝑙 = 1,2.  (25) 

 
 By inserting the expansions (24) and (25) into Equations 
(21) and knowing that 𝜉(')  is independent of 𝜖 , we can 
compare the coefficients of the similar powers of 𝜖. In this 
case, we obtain inhomogeneous equations, which are solved 
successively based on the solution of the previous order. 
Eliminating the secular terms from specified uniform 
solutions generates what is known as the solvability 
conditions, which correspond to the terms containing the 
expression exp(𝑖Θ𝑡#). 
 These solvability requirements are divided into two 
categories: non-resonance, which occurs when the frequency 
Ω is far from the frequency Θ, and resonance, which occurs 
when Ω is approaching Θ. The non-resonant case is subjected 
to the following solvability condition: 
 
(𝑓!

(!) + 𝑖𝑓"
(!))𝜕)(𝐴! + (𝑠!

(!) + 𝑖𝑠"
(!))𝐴! = 0.   (26) 
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 This specification shows that the sheet is stable if: 
 
 𝑓!

(!)𝑠!
(!) + 𝑓"

(!)𝑠"
(!) ≥ 0     (27) 

 
 In the case of resonance, the closeness between Ω and Θ 
can be expressed by defining a detuning factor 𝜆(!), where: 
 
Ω = 2𝜛 + 2𝜖𝜆(!),     (28) 
 
and so the solvability conditions reads 
 
(𝑓!

(!) + 𝑖𝑓"
(!))𝜕)(𝐴' + (𝑠!

(!) + 𝑖𝑠"
(!))𝐴' + (ℎ!

(!) +
𝑖ℎ"

(!))𝐴̅!exp(2𝑖𝜆(!)𝑡!) = 0.    (29) 
 
 Herein, 𝐴̅!  is the complex conjugate of 𝐴! .  The 
solution of the above equation as can be resolved as: 
 
𝐴! = (𝑚!

(!) + 𝑖𝑚"
(!))exp[(Θ} + 𝑖𝜆(!))𝑡!]   (30) 

 
 Inserting Eq. (30) into (29), and keeping in mind that Θ} 
and 𝜆(!)  are real, the real and imaginary terms can be 
expressed as 𝑚!

(!)  and 𝑚"
(!)  which are proportional to 

exp(Θ}𝑡!). At this stage, a dispersion equation is produced 
where the coefficient matrix must be zero for non-trivial 
solutions. This relation has the form: 
 
Θ}" + 2𝑓(!)*!(𝑓!

(!)𝑠!
(!) + 𝑓"

(!)𝑠"
(!))Θ} + 𝜆(!)" +

2𝑓(!)*!(𝑓!
(!)𝑠!

(!) − 𝑓"
(!)𝑠"

(!))𝜆(!) + 𝑓(!)*!(𝑠!
(!)" + 𝑠"

(!)" −
ℎ!
(!)" − ℎ"

(!)") = 0,    (31) 
 
where, 𝑓(!) = (𝑓!

(!)" + 𝑓"
(!)") . Eq. (31) is the desired 

dispersion relation according to which the stability in the 
resonance state is investigated. It is important to note that the 
sign of Θ} directly influences the wave's growth or decay [24, 
26]. Therefore, the stability of the system associated with Eq. 
(31) is achieved under two conditions. The first is the same as 
the previous condition in the case of non-resonance, and the 
second can be formulated in the form: 
 
𝜆(!)" + 2𝑓(!)(𝑓!

(!)𝑠"
(!) − 𝑓"

(!)𝑠!
(!))𝜆(!) + 𝑓(!)(𝑠!

(!)" + 𝑠"
(!)" −

ℎ!
(!)" − ℎ"

(!)") ≥ 0     (32) 
 
 The two roots for solving the quadratic Eq. (32) signify 
transition curves that can be drawn with the wave number, for 
example, to formulate ( 𝜆(!) − 𝑘 ) plane. These branches 
appear as 𝜖 approaches zero in Eq. (28) and divide the plane 
into stable and unstable regions. Matching Fleque’s theory 
[26], the space confined between these two roots has an 
unstable feature;on the contrary, the spaces outside it express 
the stability of the system. 
 To discuss the effect of some physical variables in the 
current problem, a numerical representation of the previous 
resonance cases is formulated. Eq. (32) controls the stability 
performance of the fluid system, which requires numerical 
simulation of the same inputs handled in the case of uniform 
velocity referred to in the previous item. Numerical 
applications of the transition borders 𝜆!,"

(!), given by the roots 
of Eq. (32) in the case of Ω ≈ Θ, are constructed in Figs. 4-6. 
The instability is due to the equilibrium between the quantity 
Ω and the parameter Θ. In these figures, numerical research 
was organized to determine the stable regions and their 
unstable counterparts. The stable areas are subject to the 

validity of inequalities (27) and (32). The spaces that express 
the stability of waves are denoted by the letter 𝑆, while the 
unstable zones are marked by the symbol 𝑈. 
 

 
Fig. 4. The system in Fig. 2 is repeated, but for 𝑈#

(!)= 2, 5, and 8 of the 
pictures (a), (b), and (c), respectively. 
 

 
Fig. 5. Plot in the (𝜆(!) − 𝑘) plane, in view of the root of Eq. (32), at 𝜀̂(&)= 
0.6, 1.4 and 1.8 of the parts (a), (b) and (c), respectively. 
 

 
Fig. 6. Stability picture 𝜆(!) as a function of 𝑘, for the identical system 
specified in Fig. 2, with 𝐸#

(!)= 0.3, 0.5 and 0.7 of the panels (a), (b) and 
(c), respectively. 
 
 To investigate the effect of velocity on the stability of the 
fluid sheet, the three parts of Fig. 4 were constructed at three 
different values of speed in the upper layer for comparison. 
These values 2, 5, and 8 correspond to Figs. 4(a), 4(b), and 
4(c), respectively and the remaining values are left as they 
appear in Fig. 2. As previously mentioned, the images of these 
graphs, which are represented by the 𝜆!,"

(!) − k plane, are the 
area confined between characteristic curves 𝜆!,"

(!)  which are 
areas subject to an unstable system. On the other hand, all the 
points outside these curves encounter waves that have a stable 
nature. 
 Now, by progressing from Fig. 4(a) to (b), and comparing 
the stable regions with their unstable counterparts, it is 
evident that the increase in the speed of the upper film led to 
the reduction of the stable regions at the expense of the 
unstable spaces. From here, it can be concluded that 
increasing the speed, interferes with the stability of the 
system. Moreover, as the velocity continues to increase in 
part(c), we discovered that the unstable role of this velocity 
continues. Therefore, it can be concluded that the speed of the 
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upper layer works to destabilize the waves and thus the fluid 
sheet becomes completely unstable. 
 Below, we want to elucidate how the fluid sheet stability 
is affected by the ratio of the dielectric constants between the 
middle film and the upper layer. 
Fig. 5, which shows the transition curves as a function of the 
wave number, was made for this purpose. As was mentioned 
in the case of Fig. 2, all physical quantities were held to 
schedule, and the dielectric constant was converted into three 
appropriate values corresponding to the three images in this 
figure, which are in the order of 0.6, 1.4, and 1.8. In the 
images of this figure, it can be seen that each part contains 
two unstable regions that correspond to the rest of the stable 
space, and by matching the three sections of the figure, we 
discovered that the stable voids increase due to an increase in 
the dielectric constant.On the other hand, a noticeable 
shrinkage appears in the unstable regions, which proves that 
the dielectric constant gives brightness to the stability of the 
waves. 
 In Portions(a), (b), and (c) of Fig. 6, we seek the impact 
of the electric field on the movement of waves inside the fluid 
sheet. Numerical applications similar to those in Fig. 2 have 
been carried out. The values 0.3, 0.5, and 0.5 of the electric 
field were chosen to illustrate the extent of the change in the 
construction of these parts. Based on an analysis of the 
unstable regions and areas expressing system stability, the 
following conclusion can be drawn, which is consistent with 
earlier discussions: the electric field plays a significant and 
useful function in stabilizing the fluid layers. One explanation 
for the field performance may be physically interpreted as 
some kinetic energy has been absorbed into the liquid sheet, 
thereby assisting in the stabilization of fluid layers. Similar 
significances for the electric field impact were drawn in [7, 
9]. 
 
 
5. Concluding remarks 
 
The aim of this work is to investigate the linear stability of a 
fluid sheet moving in porous media. The sheet consists of 
three non-viscous, non-miscible fluids with different physical 
properties. These fluids are bounded from above and below 
by two fixed plates and contain two interfaces. The liquid 
sheet is exposed to a horizontal electric field in the presence 
of a periodic velocity in the direction of fluid movement.  

 Depending on the theory of linear stability, the system of 
equations governing the system and the associated boundary 
and interface conditions lead to two Mathieu type equations. 
These coupled equations have damping complex coefficients 
and employed to restrain the stability of the system. Since it 
is challenging to find exact solutions for these kinds of 
equations, we are searching for a method to find approximate 
solutions. Approximate solutions were achieved by means of 
method of multiple scales, where the stability presentation in 
resonance situations or not was examined. An essential 
characteristic of this approach is that transition curves are 
accomplished analytically. The characteristic curves 
separating stable zones from all unstable points are 
recognized. 
 In locating all the physical quantities utilized in a non-
dimensional form, a numerical examination was conducted to 
investigate the stability of the imposed system. In the absence 
of periodicity of speed under the influence of the regular 
electric field, and having obtained the numerical survey, it 
was noted that the electric field enhances the stability of the 
fluid sheet, while a dual performance is established for the 
porosity of the top film. As the periodicity of the stream is 
switched on, the stable and unstable regions delineated by the 
characteristic curves are traced. It was observed that the speed 
of the top layer works to destabilize the waves, while the 
dielectric constant gives a boost to the stability of the waves. 
It is also shown that the electric field plays an important and 
useful role in maintaining the fluid layer stability. 
 Finally, in future analyses, our research can be enlarged 
to discuss motion through porous substrates as well as wavy 
and slippery planes. Also, viscoelastic liquids are useful 
materials to investigate the impact of both relaxation and 
retardation times as well as electric or magnetic fields with 
surface charge. 
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