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Abstract 
 

Drone delivery is expected to improve operations by enhancing flexibility and reducing congestion effects induced by last-
mile deliveries. With rising digitalization and urbanization, however, flight routing of drones is constantly grappling with 
the challenge of uncertain demand. In this study, an opportunity-constrained model that considered both the endurance and 
payload capacity of drones and stochastic customer demand was developed to solve the drone delivery planning problem 
for E-commerce in urban areas. Considering the challenging solvability of the model, historical customer demand data 
were leveraged to linearly transform opportunity constraints with unknown true distribution. In addition, a constructive 
heuristic algorithm was used to solve the established opportunity-constrained model, and an effective strategy was 
developed to generate the quality of initial flight paths. The experimental results based on various scales of classic cases 
demonstrate that an effective drone delivery route scheme can be generated by the proposed heuristic algorithm compared 
to traditional savings algorithm, allowing drones to complete tasks in shorter flight distances at the same payload rate, thus 
reducing overall costs. Compared to deterministic models, more robust flight path schemes for addressing continuously 
changing customer demands can be obtained. The model and insights in this study could be used as a reference for the 
application of drone delivery in urban areas to promote logistics efficiency. 
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1. Introduction 
 
With the rapid development of electronic commerce (E-
commerce), urban logistics distribution is facing 
unprecedented challenges and opportunities. Traditional 
distribution methods are gradually exposing their limitations 
in terms of efficiency, cost, and timeliness, and innovative 
solutions in the field of urban logistics distribution are being 
provided through the constantly advancing development of 
drone technologies. As a novel distribution method, drone 
distribution effectively circumvents the restrictions of ground 
transportation, significantly improves distribution efficiency, 
reduces labor costs, and gradually becomes a strong candidate 
for solving the last-mile distribution problem in urban areas.  

Recently, researchers have conducted extensive research 
into the drone routing problem across various application 
scenarios. These studies mainly explore the reasonable 
assignment of distribution tasks to drones and optimizing 
their flight paths simultaneously, such as the collaborative 
assignment problem of drones in joint operation tasks and the 
logistic optimization problem of drones in the distribution of 
medical supplies [1-2]. Most of these studies have been based 
on optimization theories, constructing route optimization 
models for drone distribution under different application 
scenarios, and then developing accurate or intelligent 
optimization algorithms for the solutions, which provide 
strong theoretical references for the practical applications of 
drones. Restricted by technical difficulties such as limited 

battery and load capacity, existing studies have mainly 
focused on the ground-air cooperative distribution mode 
based on drone technology. However, in real scenarios, urban 
areas, which are important carriers of economic activities, are 
characterized by dense buildings, narrow roads, and heavy 
foot traffic. For this type of closed, specific, and relatively 
complex distribution environment, a stand-alone drone-
delivery mode is the optimal distribution solution. 
Additionally, in an E-commerce environment, logistics 
distribution demand in urban areas is characterized by 
diversification and high frequency. Route optimization of 
drone distribution is required not only to possess a high 
degree of flexibility and real-time capability but also to 
adequately consider factors such as the urgency of the 
distribution task, the density of the customer distribution, and 
the heterogeneity of the goods. The route optimization of 
drone distribution presents new challenges due to the 
uncertainty of distribution demand. Therefore, under the 
realistic constraints of limited drone load capacity and battery 
capacity, planning drone distribution route schemes to 
efficiently solve the problem of the uncertainty of customer 
demand in urban areas and realize a reduction in drone 
distribution costs are of important significance to engineering. 

This study investigated a drone distribution route 
optimization problem under the uncertainty of customer 
demand, considering limited battery and load capacities. A 
constructive heuristic algorithm was also designed. Example 
tests were conducted using the drone models used by China 
Post, JD.com, and SF Express. Finally, a reliable drone 
distribution route path scheme was obtained, which provides 
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a reference for research on the optimization of drone 
distribution. 
 
 
2. State of the art  
 
A considerable number of research achievements in drone 
distribution route optimization have been achieved by 
researchers and industry experts. These studies primarily 
focused on the algorithm design for distribution route 
optimization and minimization strategies for cost or energy 
consumption. Arafat et al. [3] considered the factors of 
charging station layout and drone flight range, established a 
joint routing and charging strategy (JRCS) model, and 
developed a mixed integer linear programming (MILP)-based 
method for optimized solution of distribution routes, to 
address the problem that logistics drones are limited by 
battery life and flight function when undertaking long-
distance distribution tasks. In addition, in urban logistics 
distribution, Shao et al. [4] considered the factors of service 
benefit and risk cost, established a cost-benefit assessment 
model and a global heuristic path search rule, and proposed a 
path planning method based on risk mitigation and customer 
service to address the problem, which effectively reduced the 
risk cost of the paths while guaranteeing service quality. 
These studies provide valuable references for the 
optimization of drone distribution routes in different 
scenarios. 

Aiming at the short endurance and limited distribution 
range of drones, several researchers have proposed a new 
distribution pattern for truck-drone cooperative distribution: 
the truck-drone routing problem (TDRP) [5]. Schermer et al. 
[6] developed a mixed-integer programming model for drone 
path planning and derived multiple sets of valid inequalities 
to improve solver performance. Kuo et al. [7] considered the 
joint truck-drone distribution problem with a time window 
and designed a variable neighborhood search algorithm to 
solve it. Zhou et al. [8] proposed a two-echelon vehicle that 
allows drones to make multiple round trips from customer 
nodes where the vehicles are parked and used an accurate 
branch-and-bound algorithm to solve it. Tamke and Buscher 
[9] considered the effect of drone speed on power 
consumption. Subsequently, Montemanni, Amico, and 
Corsini [10] studied the problem of parallel distribution with 
multiple trucks and drones and developed an energy-
consumption model for drones during distribution. Stodola 
and Kutěj [11] proposed a multi-warehouse drone vehicle 
distribution problem and designed an improved ant colony 
algorithm. In addition, Kim, Ko, and Moon [12] considered 
the factors of cooperative work of drones and trucks as well 
as constraints on time windows. They developed a model for 
the vehicle routing problem with time windows and drones 
(VRPTW-D) and developed a three-stage savings-based 
heuristic (TSH) method to solve the problem. Their approach 
enhances the efficiency of the distribution system and reduces 
operating costs. These studies provide theoretical references 
for practical applications of the truck-drone cooperative 
distribution patterns. 

Drone distribution is affected by factors such as 
uncertainty in distribution time and customer demands. 
Recently, researchers have paid more attention to the impact 
of these uncertainties on drone delivery to obtain more 
reliable and robust solutions. Han, Liu, and Li [13] considered 
time windows and dynamic customer demands and proposed 
a two-stage optimization model based on different demand 
response strategies, which provided a useful reference for 

handling dynamically changing customer demands in the 
actual distribution process. Ghiasvand et al. [14] adopted a 
data-driven robust optimization approach to effectively deal 
with the uncertainty in a multi-trip truck-drone distribution 
problem by developing a two-phase clustering algorithm and 
a dimensional separation technique to construct the 
uncertainty set. This approach reduces the conservatism and 
computational complexity of the model and provides a new 
solution for drone distribution route optimization under 
uncertainty. Gu, Liu, and Poon [15] proposed a framework 
combining a Markov decision process and a heuristic 
algorithm to address the uncertainty of the pick-to-order 
problem in a dynamic truck-drone routing problem to 
improve the total profits of the logistics system and the 
acceptance rate of customer requests. Yin et al. [16] 
considered the uncertainty of customer demand and travel 
time, studied a class of collaborative transportation problems 
between drones and trucks in humanitarian logistics, 
proposed a framework combining robust optimization and a 
branch-and-price algorithm to solve the problem, and verified 
the superiority and practicability of this method through a real 
case analysis. Zhao et al. [17] proposed a robust multi-drone 
traveling salesman problem (TSP) to address parcel delivery. 
Their approach involves trucks coordinating a heterogeneous 
fleet of drones in uncertain navigation environments. They 
constructed a temporal-based robust model to minimize the 
desired travel time and limit the standard deviation to balance 
the delivery efficiency and synchronization risk. Pugliese, 
Guerriero, and Scutellá [18] investigated the last-mile 
delivery problem using trucks and drones in urban areas. They 
considered the uncertainty in drone energy consumption and 
managed drone energy consumption through a multi-
commodity flow model and time segmentation. To prevent 
energy disruptions in the worst case, they applied robust 
optimization and used the Benders decomposition method to 
obtain a solution. Faiz, Vogiatzis, and Noor-E-Alam [19] 
utilized drones to address the problem of uncertainty in post-
disaster humanitarian logistics, particularly in situations 
where infrastructure damage has resulted in unclear demand 
information. They effectively handled demand uncertainty by 
first deploying communication drones to provide 
communication coverage, followed by supply distribution. 
Zhang et al. [20] proposed a new variant of the drone arc 
routing problem in the context of humanitarian logistics. 
Their approach addressed the challenge of rapid assessment 
of ground transportation networks after a disaster by 
considering the uncertainty in assessment time. The aim is to 
maximize the arc informative profits collected within a 
predefined time limit. They achieve this by adopting a graph 
transformation technique and a robust optimization method. 
Tadić, Krstić, and Radovanović [21] proposed a novel hybrid 
fuzzy multi-criteria decision-making model. This model 
effectively analyzed and evaluated the barriers in the 
application of drones in last-mile logistics by combining 
fuzzy Delphi-based fuzzy factor relationship (Fuzzy D-FARE) 
and fuzzy comprehensive distance-based ranking (Fuzzy 
COBRA) methods. Additionally, they proposed 
corresponding strategies to overcome these barriers, 
especially in dealing with the uncertainty associated with the 
conflicting goals of multiple stakeholders. These studies 
provide insights into solutions to uncertainty problems. 

Based on the review of the studies related to drone 
delivery problems, the following findings are presented.  

(1) Existing studies have conducted extensive and in-
depth research on drone logistics scheduling problems; 
however, most studies have focused on deterministic drone 
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distribution scheduling problems, that is, it was assumed that 
the distribution time and customer demand were known and 
fixed. Moreover, there were very few studies that considered 
uncertainty in customer demand or differences in the 
distribution time. 

(2) For technical problems, such as the short endurance of 
drones and limited distribution range, most of the existing 
studies considered the ground–air collaborative distribution 
pattern. However, with the rapid development of E-commerce, 
the speed of ground (i.e., truck) distribution falls behind the 
distribution demands of logistics parks, especially when faced 

with an increasingly congested traffic environment, and 
complete drone distribution is often used to solve this problem.  

(3) In existing studies that consider the uncertainty of 
customer demand, robust optimization models are usually 
built to deal with uncertainty by constructing uncertainty sets 
of distribution of customer demand. However, with this 
modeling approach, the complexity is relatively high or there 
would be difficult to solve. Table 1 compares this study with 
existing related studies to demonstrate the differences 
between this study and the existing drone distribution 
scheduling studies more intuitively. 

 
Table 1. Review of the relevant papers in routing optimization of drone delivery problem 

Literature Uncertainty 
in demand 

Research object Constraint 

Model Drone 
distribution 

Truck-
drone 
distribution 

Load 
capacity 

Battery 
capacity 

[7] Kuo et al.   √ √ √ Mixed integer programming 
model 

[8] Zhou et al.   √ √ √ Mixed integer linear 
programming model 

[9] Tamke and Buscher   √ √ √ Mixed integer linear 
programming model 

[10] Montemanni, 
Amico, and Corsini   √ √ √ Chance-constrained model 

[11] Stodola and Kutěj   √ √ √ Mixed integer linear 
programming model 

[12] Kim, Ko, and Moon   √ √ √ Three-stage optimization model 
[13] Han, Liu, and Li √  √ √  Two-stage optimization model 
[14] Ghiasvand et al. √  √ √  Robust optimization model 
[15] Gu, Liu, and Poon √  √ √  Markov decision process model 
[16] Yin et al. √  √ √ √ Robust optimization model 
[17] Zhao et al. √ √  √  Robust optimization model 
[18] Pugliese, Guerriero, 
and Scutellá   √ √ √ Robust optimization model 

[19] Faiz, Vogiatzis, and 
Noor-E-Alam √ √  √  Two-stage optimization model 

[20] Zhang et al. √  √ √  Robust optimization model 
[21] Tadić, Krstić, and 
Radovanović √ √   √ Hybrid fuzzy multi-criteria model 

The present study √ √  √ √ Chance-constrained model 

Therefore, in this study, a drone route planning problem 
with uncertain customer demand was investigated to 
minimize the total mileage of the drone and reduce the cost 
when considering both the capacity and range of the drone. 
For this purpose, an integer programming model was 
developed. Based on this deterministic model, the model was 
further linearly transformed by considering uncertain 
customer demands and introducing chance constraints. 
Finally, a constructive heuristic mileage-saving algorithm 
based on load capacity and battery capacity constraints was 
designed to solve the model, resulting in an effective logistics 
drone distribution route planning scheme. 

The remainder of this study is organized as follows. In 
Section 3, the characteristics of drone logistics distribution 
scheduling problem are described, a mathematical model is 
established, and the chance constraints are transformed for 
linearization. In Section 4, the effectiveness of the proposed 
model and algorithm is verified using classical examples of 
different scales. In final section, the study is summarized, 
along with prospects for future research. 
 
 
3. Methodology 
 
3.1 Problem description 
In E-commerce, the logistics delivery network within urban 
parks is represented by a directed graph consisting of a 
goods distribution center and . The set  

represents the customer points with demands. The demands 
of customers are independent, and their distribution is 
unknown. The total demand at any customer point does not 
exceed the maximum payload of one drone, and the total 
demands at any customer point are satisfied by one drone in a 
single delivery. The set of drones, denoted by , comprises 
drones of identical models, payload, and battery capacities. 
All drones depart from the distribution center, complete 
delivery tasks, and return to the distribution center. During 
delivery, drones only unload goods and do not load new ones. 
The power consumption coefficient of drones is constant , 
and the power consumption of drones is directly proportional 
to the flight mileage. The question is how to plan the number 
of drones and their routes to minimize the total flight mileage 
of all drones for completing all delivery tasks within 
constraints on drone payload and battery capacity. 

To clearly express the research question, this study 
defines the symbols and variables shown in Table 2. 

 
Table 2. Definitions of symbols and variables 
Symbols 

 Goods distribution center; 
 Set of customer demand points, ; 
 Set of drones, ; 

 Power consumption per kilometer for drones; 
 Battery capacity of drones; 
 Maximum flight mileage for one drone in a single delivery; 
 Maximum effective payload weight of drones; 

G
O N {1, 2, ..., }N n=

K

e

O
N ,i j N" Î

K k K" Î
e
Q
L
q
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 Distance between node and node ; 

 A sufficiently large positive integer; 
Variables 

 Demand at customer demand point , a random variable; 

 Remaining battery level of drone  upon arrival at node ; 

 
Remaining battery level of drone  upon departure from 
node ; 

Decision Variables 

 If drone  traverses arc , it takes 1; otherwise, 0. 

 if drone  visits node , it takes 1; otherwise, 0. 

 
To ensure the rigor of the problem formulation, basic 

assumptions were made based on previous studies. 
(1) The influences of the drone flight resistance on the 

power consumption were neglected, and the drone power 
consumption was proportional to the flight mileage. 

(2) All drones departed from the same center or 
warehouse, and the starting point was the same. 

(3) All the drones maintained a fixed and stable flight 
speed during delivery. 

(4) All the drones were assumed to avoid obstacles and 
hazardous areas. 

(5) The demand at any demand point is less than the 
payload capacity of one drone, considering only the weight of 
the goods and not their volume. 

(6) The positions of the demand points are known. The 
demands at each demand point are served by only one drone, 
and the demands are indivisible. 

 
3.2 Model establishment 
First, a drone delivery route optimization model was 
established under demand uncertainty as follows: 
 

                             (1) 

 

s.t.                                    (2) 

 
                   (3) 

 

                   (4) 

 
       (5) 

 

       (6) 

 
                       (7) 

 
                  (8) 

 
 (9) 

 
                        (10) 

 
              (11) 

 
                 (12) 
 

Equation (1) is the objective function, which represents 
the minimum sum of the flight distances of all drones 
involved in the delivery. Equation (2) indicates that each 
demand point is visited once by a single drone. Equations (3) 
and (4) ensure that each arc is traversed only once and that all 
drones return to the distribution center after visiting the last 
node. Equation (5) eliminates the sub-circuit constraints. 
Equation (6) imposes an opportunity constraint on drone 
payload capacity, where  is the feasibility of the event , 
that is, the probability that the event of a drone’s payload not 
exceeding its maximum payload capacity is not less than the 
confidence level given by the decision-maker . 
Equation (7) defines the initial battery-level constraint for the 
drones, which should not exceed the maximum battery 
capacity. Equations (8), (9), and (10) represent the battery-
level constraints for drones when each demand node is 
reached. Equation (8) indicates that the drone’s battery level 
remains unchanged before and after visiting node i. Equation 
(9) shows that the battery level decreases when a drone passes 
from nodes i to j. Because the maximum battery capacity of 
the drones is  and , replacing  with  can 
significantly reduce the solution space. Equation (10) requires 
that the drones have battery power upon reaching any node. 
Equations (11) and (12) specify the range of decision variable 
values. 
 
3.3 Deterministic equivalent treatment of opportunity 
constraints 
Customer demands are independent and their distribution is 
unknown. For any customer  , the demand  is a set 

of independent random variables with a mean  and 

standard deviation . The mean and standard deviation of 
the total customer demand for the drone ’s flight path is 
given by: 
 

                                 (13) 

 

                                 (14) 

 
If there exists a constant τ such that: 

 

            (15) 

 
Constraint (6) can be represented by the following 

deterministic constraint: 
 

                          (16) 
 

Expanding (16) yields: 
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                     (17) 

 
Theorem 1. If the demand satisfies (1) the probability 

distribution of the demand  is independent; (2) for , 
and  have the same 

distribution; (3)  is a constant multiple of (i.e., ,
: a constant multiple), then there exists a constant  in 

which the linear constraint (18) and the opportunity constraint 
(6) are equivalent. 

 
                                 (18) 

 
Proof: The decision variable  in this study is a 0-1 

decision variable. Thus, . Therefore: 
 

(19) 

 
Substituting Eq. (19) into Eq. (16) yields: 

 
                                       (20) 

 
This yields Eq. (21): 

 

                    (21) 

 
3.4 Design of constructive heuristic algorithm 
The problem considered in this study was NP-hard. It cannot 
be effectively solved using traditional approaches, such as 
genetic and savings algorithms. Therefore, we proposed an 
improvement strategy, namely, prioritizing the insertion of 
arcs with larger savings values, to obtain high-quality initial 
solutions. A heuristic savings algorithm that integrates the 
problem characteristics was constructed. 
 
3.4.1 The classic savings algorithm 
The savings algorithm proposed by Clarke and Wright [22] 
was used to solve the traveling salesman problem (TSP), 
where a traveler starts from a city, visits n cities only once, 
and returns to the starting point, to plan the route with the 
lowest travel cost or the shortest distance. When there are 
multiple travelers and each city can only be visited by one 
traveler, the problem becomes a vehicle routing problem 
(VRP). Therefore, the saving algorithm can also be employed 
to solve the VRP. The principle of the traditional heuristic 
saving algorithm is to consider n visit locations as nodes, with 
one of the nodes selected as the depot (starting point). For 
example, taking node 1 as the depot, connecting each node to 
the depot forms round-trip routes 1→j→1 , an 
initial path scheme comprising  routes were obtained. 
The total distance traveled by the traveler is expressed as: 
 

 

 

where  is the distance of the route from the depot 

and we assumed that . When 
connecting nodes  and , if the traveler no longer passes 
through arcs  and  on the arc , the savings 
value  of the route segment caused by this can be 
calculated as follows. 
 

 
 
3.4.2 Improved savings algorithm 
Based on the principle of the traditional savings algorithm, for 
different point  and point , if the value of  is greater, 
the distance saved by the drone when passing through the arc 

 will be greater. Therefore, to minimize the drone’s 
flight mileage, the arc corresponding to the larger 
values should be prioritized in the route, allowing the drone 
to pass through these arcs as much as possible. The traditional 
savings algorithm was improved by this study through the 
addition of insertion conditions for the arc , to generate a 
higher-quality initial solution. Subsequently, the arc in the 
initial route were evaluated to determine whether each route’s 
distance and payload were within the drone’s maximum 
distance and payload constraints. If not, the arc was removed. 
Finally, it was verified whether the routes within the 
maximum distance and payload constraints of the drone could 
meet all demands. Thus, a feasible set of routes was obtained. 

This improved heuristic approach not only generated a 
better initial solution but also enhanced the efficiency and 
quality of problem-solving. By prioritizing routes with greater 
distance savings, the algorithm is more likely to find optimal 
route plans during the initial solution generation phase, 
reducing the search space in the subsequent optimization 
processes and accelerating algorithm convergence. Moreover, 
the proposed algorithm avoids generating solutions that are 
not in line with the actual flight capabilities of the drone, 
thereby improving the solution quality and feasibility. Thus, 
ensuring solution quality, the improved savings algorithm 
proposed in this study minimizes the search space and 
enhances the algorithm efficiency, providing an effective 
method for solving drone delivery scheduling problems. 

The algorithm flowchart of the constructive heuristic 
savings algorithm is shown in Fig. 1 to provide a more 
intuitive presentation of the algorithm designed in this study. 
 
 
4. Result Analysis and Discussion 

 
To validate its feasibility and effectiveness, the proposed 
drone delivery route model considering customer-demand 
uncertainty was tested using randomly generated simulation 
examples. The solution results and scheduling schemes were 
compared with those of a deterministic drone delivery 
scheduling model. In addition, to assess the effectiveness of 
the constructive heuristic savings algorithm designed in this 
study, multiple classical examples of varying scales were 
tested, and the results were compared with those of traditional 
savings algorithms. The algorithm was developed in 
MATLAB 2018b. All test cases were independently run 10 
times on a computer equipped with a Core i9 3.50 GHz 
processor and 31.7 GB RAM. 
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Fig. 1. Algorithm flowchart of the constructive heuristic algorithm 

 
 

4.1 Parameter settings and case generation 
Classical examples of various scales were tested. Table 3 lists 
the relevant information for these examples. In these 
examples, the numbers of customer demand points for the 
small-, medium-, and large-scale cases were 22, 45, and 78, 
respectively. Node 1 served as the distribution center in all 
cases, with coordinates (145, 215), (61, 99), and (46, 12), 
respectively. 

In addition, to obtain more applicable drone delivery route 
schemes, three locations of logistics distribution centers were 
tested: at the center of the demand points, away from the 
center of the demand points, and at the edges of the demand 
points. Fig. 2 illustrates the location maps. 

Currently, there are five main types of drones used for 
logistics delivery. These cases test utilized drone models 
employed by three major Chinese logistics companies, 
including China Post, JD.com, and SF Express, as listed in 
Table 4. Considering the constraints of drone quantity and 
cost, the China Post Jie Yan TR5 drone model, which has a 
relatively lower payload capacity, was employed for the 
small-scale case with 22 demand points. For the medium and 
large-scale cases, the JD Y-3 and SF Express XAIRWAY 
drone models were utilized. Additionally, the unit flight cost 
of the drones was set at 1 CNY per kilometer, and the energy 
consumption coefficient was set at 1 kWh/km. In all cases, the 
demand at each point was considered as a set of independent 
random variables: , and , following a normal 
distribution with a mean and a variance of . The 
risk level  of drone overload was set to 0.1. 
 

Table 3. Data for different scale examples 
 Node No. X Y Demand Weight (g) Node No. X Y Demand Weight (g) 
Small 
Scale 

1 145 215 0 12 128 231 1200 
2 151 264 1100 13 156 217 1300 
3 159 261 700 14 129 214 1300 
4 130 254 800 15 146 208 300 
5 128 252 1400 16 164 208 900 
6 163 247 2100 17 141 206 2100 
7 146 246 400 18 147 193 1000 
8 161 242 800 19 164 193 900 
9 142 239 100 20 129 189 2500 
10 163 236 500 21 139 182 1800 
11 148 232 600 22 139 182 700 

Medium 
Scale 

1 61 99 0 24 93 33 1700 
2 95 7 1400 25 39 45 2200 
3 45 87 100 26 89 33 800 
4 15 47 1600 27 47 77 1600 
5 39 75 2300 28 29 19 2000 
6 55 23 1200 29 13 65 1200 
7 29 71 600 30 33 9 2200 
8 87 79 500 31 63 9 2000 
9 75 63 100 32 41 13 1200 
10 65 61 1300 33 67 75 1400 
11 73 35 2000 34 41 27 2500 
12 17 35 1400 35 49 77 1700 
13 39 99 1800 36 57 81 1900 
14 75 77 700 37 45 5 2000 
15 49 37 800 38 83 7 1500 
16 85 31 2100 39 81 61 200 
17 89 71 800 40 57 81 900 
18 89 43 2400 41 93 89 1000 
19 79 81 2000 42 17 13 600 
20 45 5 1900 43 89 27 1100 
21 93 69 1300 44 7 25 2100 
22 49 69 300 45 35 35 2400 
23 63 25 2600     

Large 
Scale 

1 46 12 0 40 23 86 2600 
2 51 4 1400 41 8 18 500 
3 52 30 1700 42 0 74 200 

1 2, ,..., nd d d  
id

iu
2

ii us p=

a
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4 80 70 1700 43 20 44 1400 
5 18 90 1600 44 56 7 1100 
6 59 39 1900 45 14 10 2100 
7 23 59 1700 46 88 40 2000 
8 77 48 500 47 96 38 1800 
9 82 30 1200 48 59 31 200 
10 18 82 400 49 22 87 1900 
11 11 41 200 50 59 36 1200 
12 7 9 200 51 24 83 2200 
13 88 33 2600 52 83 37 1400 
14 23 88 200 53 53 5 2300 
15 0 76 700 54 0 37 2500 
16 85 34 1800 55 84 78 800 
17 17 46 600 56 27 93 300 
18 52 10 600 57 61 12 900 
19 13 45 1800 58 69 43 2100 
20 19 85 200 59 54 9 300 
21 86 77 1400 60 20 98 2200 
22 54 6 500 61 18 50 600 
23 83 32 900 62 25 84 2200 
24 15 10 400 63 31 69 2000 
25 53 5 300 64 58 36 2000 
26 14 42 1500 65 0 11 500 
27 13 10 400 66 61 36 1300 
28 57 32 2300 67 18 49 600 
29 20 85 700 68 57 8 1400 
30 65 46 2100 69 0 49 1600 
31 61 42 400 70 56 8 1200 
32 87 52 100 71 62 45 2300 
33 79 51 600 72 83 32 500 
34 25 91 1600 73 53 10 1200 
35 89 34 400 74 82 53 1500 
36 26 100 2000 75 21 85 2100 
37 0 88 500 76 64 41 400 
38 63 43 1400 77 80 50 2300 
39 55 10 1400 78 16 10 1900 

 

 
Fig. 2. Locations of logistics distribution centers 
 
 

Table 4. Specifications of the drones 
Drone Model Payload (kg) Endurance (kWh) 
China Post Jie Yan TR5 6 20 
JD Y-3 10 20 
SF Express XAIRWAY 10 20 

 
4.2 Algorithm performance testing 
To assess the performance of the heuristic algorithm proposed 
in this study, it was compared with the traditional savings 
algorithm. Actual cases of different scales were used for 
testing, and for set to 0.5, the results obtained by the two 
methods are presented in Table 5. Additionally, the average 
payload rate was introduced as a metric to indicate the 
capacity of the drones to perform delivery tasks. The average 
payload rate  is given. 
 

 

 
where (  ) is the actual payload of drone  that 

is performing the delivery tasks.  represents the total 
number of drones in the fleet. To better illustrate the 
differences in solution quality between the two methods, the 
objective function value was compared with the average 
payload rate, as shown in Fig. 3. 

As shown in Table 5 and Fig. 3: 
(1) The average payload rates of the drone delivery routes 

obtained using the two methods are the same. This means that 
the total payload capacity of the drones required to fulfill all 
customer delivery demands was also the same. 

(2) In all tested cases, the heuristic algorithm produced 
better drone delivery routes, fulfilling demands with shorter 
distances and cutting costs, despite the same payload rate. 

(3) Flight routes obtained through the two methods 
differed. The flight routes obtained by the two methods were 
distinct for different case scales and positions of the logistics 
distribution centers, as illustrated in Fig. 4. 
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Fig.3. Comparison of solution quality between traditional savings 
algorithm and the heuristic method 
 

Table 5. Comparison of results between traditional savings 
algorithm and the heuristic method 

Case Drone 
Quantity Method 

Objective 
Function 
Value 

Payload 

Small 
Scale 6 

Heuristic 
Algorithm 488.83 [4.1, 3.4, 3.9, 

3.9, 4.0, 3.2] 
Traditional 
Algorithm 488.83 [3.9, 3.9, 4.1, 

3.2, 4.0, 3.4] 

Medium 
Scale 9 

Heuristic 
Algorithm 1431.69 

[7.4, 7.3, 7.0, 
7.3, 7.1, 7.2, 
7.1, 6.1, 6.9] 

Traditional 
Algorithm 1448.3 

[7.3, 7.3, 7.5, 
7.2, 7.5, 7.4, 
6.3, 7.4, 5.5] 

Large 
Scale 14 

Heuristic 
Algorithm 1557.92 

[7.4, 6.0, 7.4, 
6.3, 7.1, 6.0, 
7.5, 7.5, 6.1, 
7.2, 6.5, 7.0, 
7.2, 4.5] 

Traditional 
Algorithm 1584.0 

[7.4, 6.5, 7.5, 
7.0, 6.8, 7.1, 
4.4, 6.9, 7.4, 
7.1, 7.0, 6.0, 
7.4, 5.2] 

 
This study compared and analyzed the optimal drone 

delivery schedules generated by deterministic model and 
opportunity-constrained model considering demand 
uncertainty. Table 6 and Fig. 5 present the experimental 
results and the drone flight routes generated using the 
deterministic model. Table 7 lists the comparison results of 
the deterministic and opportunity-constrained models. 

 

 
Fig. 4. Flight routes generated by the traditional savings algorithm and heuristic method 
 

Table 6. Experimental results of the deterministic model 
Case Objectiv

e Value 
Drone 
Quantity Payload 

Small 
Scale 488.83 4 [5.7, 5.3, 5.9, 5.6] 

Medium 
Scale 1431.69 7 [9.9, 9.4, 9.9, 9.7, 9.8, 8.5, 

6.2] 
Large 
Scale 1557.92 10 [9.8, 9.8, 7.9, 9.5, 9.4, 9.4, 

9.9, 9.2, 9.6, 9.2] 
 

Table 7. Comparison of results of deterministic and 
opportunity-constrained models 

Case Model Drone 
Quantity 

Objective 
Function 
Value 

Average 
Payload 
Rate 

Small 
Scale 

Deterministic 
Model 4 488.83 95.75% 

Chance-
constrained 
Model 

6 488.83 62.5% 

Medium 
Scale 

Deterministic 
Model 7 1431.69 90.57% 

Chance-
constrained 
Model 

9 1448.3 70.44% 

Large 
Scale 

Deterministic 
Model 10 1557.92 93.7% 

Chance-
constrained 
Model 

14 1584.0 66.93% 

 
From Tables 6 and 7, for the three different case scales 

with varying demand points, the payload rate of the drones 
was above 90%, with an average payload rate of up to 93.34%. 
Compared with the results obtained by opportunity-
constrained model considering uncertain customer demands, 
the payload rates of the deterministic model were higher by 
33.25%, 20.13%, and 26.77%, with an average increase of 
26.72%. Although the deterministic model’s drone flight 
routes more efficiently use the drone capacity, they could not 
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accommodate sudden increases in customer demand due to 
the absence of spare payload space. Therefore, the drone 
deployment schemes of deterministic model may not be 
suitable for continuously changing customer demands in E-
commerce. 
 

 
Fig. 5. Schematic diagram of drone flight paths under examples of 
different scales 
 
4.3 Parameter sensitivity analysis 
In previous studies, customer demands are fixed and assumed 
to be the mean . By contrast, our opportunity-constrained 
model considers random customer demands , with known 
mean  and covariance . The difference lies in the 
maximum payload constraint of the drones. Given that the 
probability of the drone payload not exceeding the capacity 
limit is not less than , the value of  is determined by 
parameter ， Therefore, different values of  led to 

different solutions produced by the opportunity-constrained 
model, as shown in Table 8 and Fig. 6. 
 

Table 8. Results for different  values 
Case   Obj Load(kg) 
1 0.0 6.00 375.28 [5.4, 5.6, 5.9, 5.6] 

0.1 5.09 427.40 [4.9, 4.8, 3.4, 4.5, 4.9] 
0.2 4.75 449.52 [4.5, 4.0, 4.6, 3.6, 4.5, 1.3] 
0.3 4.51 457.75 [4.5, 4.5, 4.0, 3.8, 3.6, 2.1] 
0.4 4.31 469.29 [3.2, 3.4, 3.5, 4.3, 4.2, 3.9] 
0.5 4.15 488.83 [4.1, 3.4, 3.9, 3.9, 4.0, 3.2] 

2 0.0 10.0 1169.40 [9.8, 9.9, 7.9, 9.9, 9.3, 9.1, 7.5] 
0.1 8.80 1294.82 [7.6, 8.7, 7.7, 8.4, 8.4, 8.6, 7.9, 

6.1] 
0.2 8.34 1312.36 [7.6, 7.9, 8.3, 7.7, 8.3, 7.3, 8.3, 

8.0] 
0.3 8.01 1364.99 [7.7, 8.0, 8.0, 7.3, 7.5, 8.0, 7.2, 

7.9, 1.8] 
0.4 7.74 1396.69 [7.7, 6.0, 7.3, 7.7, 7.4, 7.3, 7.6, 

6.3, 6.1] 
0.5 7.52 1431.69 [7.4, 7.3, 7.0, 7.3, 7.1, 7.2, 7.1, 

6.1, 6.9] 
3 0.0 10.0 1251.81 [9.7, 9.9, 9.6, 9.4, 9.8, 9.7, 9.9, 

9.8, 9.9, 6] 
0.1 8.80 1369.79 [8.4, 8.0, 8.7, 8.5, 6.7, 8.4, 7.2, 

8.7, 8.7, 8.7, 8.2, 3.5] 
0.2 8.34 1447.74 [8.2, 8.0, 8.3, 8.2, 8.0, 8.0, 8.3, 

7.8, 8.2, 7.9, 7.6, 5.2] 
0.3 8.01 1495.67 [8.0, 7.3, 7.1, 7.8, 7.9, 7.9, 7.9, 

6.7, 8.9, 6.0, 6.6, 7.4, 5.1] 
0.4 7.74 1547.51 [6.8, 7.2, 7.3, 7.1, 7.7, 6.4, 7.6, 

7.6, 7.7, 6.4, 7.1, 7.7, 7.1] 
0.5 7.52 1557.92 [7.4, 6.0, 7.4, 6.3, 7.1, 6.0, 7.5, 

7.5, 6.1, 7.2, 6.5, 7.0, 7.2, 4.5] 
 

Fig. 6 illustrates the following: 
(1) The drone’s flight distance gradually increased as  

increased, implying a continuous increase in the total cost. 
This could be because the increase in  corresponds to a 
larger covariance of customer demands  that is, 
greater volatility of random customer demands. To satisfy all 
customer demands, more drone resources and longer flight 
distances are required, resulting in higher transportation costs. 

(2) When , the problem is transformed into a 
deterministic problem, where customer demands are known 
to be . Consequently, the opportunity-constrained model is 
aligned with the deterministic model, resulting in identical 
drone flight costs and route schemes. 

(3) The payload rate of drones decreased as  increased. 
This was because as the volatility of random customer 
demands increased, reducing the actual payload of drones 
could increase the spare payload to meet all uncertain 
customer demands, improving the robustness of the scheme. 

 

 
Fig. 6. Variation in the objective function values for different values 
 

iu

id

iu is

1 a- q

p p

p
p q

p

p
2

i i
us p=

0p =

iu

p

p



Feifei Huang, Xinyang Zhang and Xiaoli Su/Journal of Engineering Science and Technology Review 17 (2) (2024) 165 - 174 

 174 

5. Conclusion 
 
An integrated drone delivery route optimization model was 
carefully crafted to tackle the complexities and uncertainties 
inherent in urban E-commerce logistics, particularly those 
posed by fluctuating customer demands. Recognizing the 
need for efficiency and flexibility in delivery routes, this 
model aims to optimize drone deliveries, ensuring faster, 
more reliable service. To rigorously evaluate its effectiveness, 
the model's performance underwent extensive testing through 
a series of experiments on classical cases of varying scales. 
These cases encompassed a wide range of scenarios, from 
small-scale residential deliveries to large-scale commercial 
shipments. The results were promising, highlighting the 
model's versatility and potential for widespread application. 
The key findings from these experiments are summarized 
below: 

(1) The proposed model, incorporating deterministic 
integer linear programming and opportunity constraints, 
effectively handles demand uncertainty. It maximizes drone 
payload and minimizes total flight mileage, optimizing 
resource allocation under limited drone endurance and 
payload constraints. 

(2) The effectiveness of the drone delivery route 
optimization model was validated through experiments on 
classical cases. Compared to traditional savings algorithms, 
our approach achieved better route schemes, demonstrating 
its superiority in addressing uncertain customer demands. 

(3) From a managerial perspective, this model provides 
practical insights for businesses to make wiser decisions in 
resource allocation and utilization, enhancing service quality, 
customer satisfaction, and gaining a competitive edge in the 
market. 

This study leveraged historical customer demand data to 
linearize opportunity constraints, facilitating the solution 
process. A heuristic algorithm tailored to the problem's 
characteristics was designed, along with a strategy for 
generating high-quality initial solutions. Future research 
directions include exploring alternative methods for 
transforming opportunity constraints, considering uncertain 
delivery times, and developing precise algorithms for more 
accurate drone delivery route schemes. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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