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Abstract 
 

Wax deposition in oil wells reduces oil production efficiency, increases maintenance costs, and raises the occurrence rate 
of accidents. Traditional methods have difficulty accurately predicting wax deposition in oil wells, and oil fields typically 
adopt a passive response mode, resulting in decreased efficiency. Hence, this study proposed a wax deposition prediction 
method for oil wells based on the long short-term memory (LSTM) neural network to effectively extract and utilize the 
information content of historical dynamic monitoring data of oil wells and achieve real-time prediction and early warning 
for wax deposition. A predictive indicator system for predicting failures caused by wax deposition in pumping wells was 
established, and a wax deposition prediction dataset was prepared by integrating and normalizing collected operational 
data of oil wells and conducting sensitive parameter analysis. The Grey Wolf Optimization (GWO) algorithm was used to 
optimize the constructed LSTM prediction model, and the optimized LSTM model was trained and tested using data from 
the prediction dataset. The accuracy of the model was confirmed through experiments. Results demonstrate that the 
proposed LSTM-based wax deposition prediction method in this study achieves R-squared values of 0.8453 and 0.9439 
on the test set before and after optimization, respectively, effectively improving the accuracy of wax deposition trend 
prediction in oil wells. This study can assist in predicting wax deposition trends in oil wells, enabling oil field workers to 
formulate preventive measures in advance, thereby reducing production costs and the occurrence rate of accidents. 
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1. Introduction 
 
Wax deposition in oil wells is one of the most common 
issues in petroleum extraction [1-3]. Wax deposition has 
numerous negative impacts on the daily production of oil 
wells. Wax deposition can lead to blockages in the oil flow 
channels, increased flow resistance, reduced oil well output, 
and even motor shutdown and maintenance owing to wax 
blockage and combustion, ultimately resulting in the closure 
of oil wells and increased oil extraction costs. The early and 
accurate prediction of wax deposition in oil wells is a highly 
challenging research direction. On the one hand, oil wells 
typically reach depths of several kilometers, and many 
important equipment components, such as sucker rods and 
pumps, are difficult to monitor for wax deposition directly. 
On the other hand, wax deposition processes are influenced 
by various factors, including underground temperature, 
pressure, fluid properties, and flow velocity. Moreover, a 
clear and effective physical theory prediction model has not 
been established. 

However, with the continuous deepening of oilfield 
informatization, numerous sensors installed on pumping 
units can collect real-time data on well temperature, pressure, 
and electric current, among others. These data are 
continuously transmitted to the oilfield data center. After 
years of operation, considerable real-time monitoring data 
on wax deposition in oil wells have been recorded and saved. 
Fully mining and utilizing the valuable information 
contained in the real-time monitoring data of wax deposition 

in oil wells has become a promising research direction and 
has surpassed the limitations of existing wax deposition 
prediction methods. Currently, a new generation of artificial 
intelligence technologies represented by deep learning has 
achieved a series of breakthroughs, triggering a new round 
of technological revolution. Deep learning excels in 
identifying complex relationships in large-scale 
multidimensional data and has achieved breakthrough 
applications in various fields, such as image recognition, 
speech processing, autonomous driving, and handwriting 
recognition. Owing to its reliability in data analysis and 
interpretation, many intelligent methods, including support 
vector machines (SVM) [4], genetic algorithms (GA), 
artificial neural networks, and fuzzy logic [5], have been 
widely employed in the petroleum and natural gas industry 
as data-driven predictive tools [6-8]. 

Based on the above analysis, scholars have conducted 
studies using big data and deep learning–related methods to 
solve the problem of wax deposition (waxing) prediction in 
oil wells [9]. However, the current study lacks the ability to 
continuously predict the future development trend of 
paraffin deposition in oil wells or suffers from insufficient 
prediction accuracy, which still necessitates reliance on 
expert experience to solve this problem. Therefore, 
developing a prediction method with high accuracy for 
forecasting wax deposition trends in oil wells is an urgent 
issue. 

To address this issue, this study utilizes deep learning 
technology to solve the wax deposition prediction problem 
in pumping unit wells. Deep learning technology 
preprocesses oil well operational data, conducts sensitivity 
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analysis, prepares a sample set and comprehensive 
evaluation index for waxing prediction, constructs a deep 
learning-based prediction model, optimizes the model using 
optimization algorithms, and aims to predict the wax 
deposition trend in pumping unit wells to provide references 
for implementing anti-wax measures in oil fields ahead of 
time. 
 
 
2. State of the art  
 
Currently, scholars have conducted extensive studies on 
prediction problems, such as well failure and oilfield 
production data. Nazar et al. proposed an optimized 
multiphase thermodynamic model for predicting the 
deposition of paraffin in paraffin-rich crude oil [10]. The 
reliability of the model was verified by simulating 
crystallization experiments of paraffin in oil and crude oil 
samples. In addition, they integrated the energy equation, 
paraffin deposition kinetics equation, and thermodynamic 
equation to handle two different flow states in pipelines, 
namely, laminar and turbulent flow. This integration resulted 
in a paraffin deposition kinetics prediction model suitable 
for simulating indoor annular experimental tests. Svendsen 
et al. specifically developed a wax deposition model for 
transverse oil pipelines [11]. However, the model was 
sensitive to changes in oil pipe height, and its accuracy error 
was significant in areas where the height differences change 
rapidly. Magnini Mirco et al. conducted a basic analysis of 
wax management mechanisms in oil wells and used fluid 
volume methods and chemical equilibrium models to locally 
simulate petroleum deposits [12]. They proposed a 
predictive method for steady-state deposition thickness. 
Jiang et al. proposed a relatively simple equation to predict 
the sedimentation of mud [13]. They described and 
summarized mechanisms for paraffin and asphaltene 
sedimentation from microscopic and macroscopic 
perspectives. Based on an analysis of the factors affecting 
wax deposition, Li established a CS-SVM wax deposition 
degree prediction model [14] with an average relative error 
of less than 5%, which could provide a practical reference 
for establishing a washing well operation cycle. Bhaskaran 
et al. used time series forecasting and data clustering 
methods to predict the failure rate of oil transport pipelines 
[15], achieving an effective rate of 91.9% on the historical 
dataset. Kumar et al. proposed an attention-based long short-
term memory network-assisted oil field production time 
series prediction model [16] with a root mean square error 
(RMSE) of 0.0102, significantly lower than the RMSE of 
other models in the same study. Wu et al. developed a 
pumping unit fault diagnosis model based on deep learning 
algorithms and the DenseNet model using transfer learning 
methods [17]. The model was applied to classify and test 
various site conditions, including wax deposition in oil wells, 
pump leakage, and inadequate liquid supply. In evaluating 
the testing dataset, the model had an average accuracy rate 
of over 95% in identifying various conditions. Ahmadi et al. 
introduced a wax deposition prediction method by 
combining FL and GA [18], obtaining an R2 value of 0.9449, 
demonstrating high robustness. Manshad et al. combined 
neural networks with improved GA to propose a correlation 
model between the wax content and deposition amount of 
crude oil in a certain temperature range. The accuracy of the 
method was evaluated by predicting the wax precipitation 
volume of various reservoir fluids not used in the 
development of the prediction model [19]. Behbahani et al. 

applied ANN algorithms to calculate the amount of wax 
crystallization, achieving higher accuracy than traditional 
mechanical models, with an average absolute error of 
approximately 1% [20]. Wang et al. proposed an ensemble 
learning method (SCRF) for non-equilibrium data-oriented 
sample datasets [21], using the SMOTE method to 
oversample the minority class in the original dataset to 
increase the number of minority cases and balance the 
dataset, followed by the CLUSTER clustering method to 
generate training datasets. Finally, the random forest 
algorithm based on bagging technology was used for 
integrated learning on the training dataset to address wax 
deposition rate calculations, accuracy of wax deposition 
status determination, and other issues. The AERF algorithm 
was proposed by Chang et al., who combined the ADASYN 
and ENN algorithms to handle imbalanced datasets and then 
used the random forest algorithm for training and learning 
on balanced sample datasets [22]. For wax deposition rate 
calculation, Ai et al. fitted the calculation coefficients of 
different moisture contents based on experimental data and 
simplified empirical formulas to establish a wax prediction 
model [23]. The model’s accuracy was verified by actual 
wax deposition data from 10 wells in the field, with an 
accuracy rate of 87.7%. The changes in the timing indicator 
diagram can reflect the degree of oil well paraffin deposition. 
Tan et al. used a residual convolutional neural network to 
extract the characteristic features of the paraffin deposition 
well [24], determined the paraffin deposition level using a 
clustering algorithm, and established a sample set by 
combining the extracted indicator diagram characteristics 
and 12 production parameters. The neural network algorithm 
was used to establish a paraffin deposition-level prediction 
model and quantitatively predict the paraffin deposition 
trend of the pumping unit well. 

The above studies mainly focused on fault diagnosis and 
failure rate prediction during oil well operation, oil well 
production data prediction, handling of imbalanced samples, 
and prediction of wax deposition time and severity. However, 
studies on wax deposition trend prediction in oil wells are 
relatively limited. In this study, real-time monitoring data of 
wax deposition wells were collected and preprocessed to 
form a dataset. Feature engineering was performed to 
analyze the changes in various indicators before and after 
wax deposition in oil wells and determine the sensitivity of 
these indicators to wax deposition. Then, the indicators with 
high sensitivity were selected as inputs for wax deposition 
prediction. A comprehensive evaluation index for wax 
deposition severity was calculated by combining the highly 
sensitive indicators. The wax deposition prediction problem 
was transformed into a time series prediction problem in the 
field of machine learning, and a time series prediction 
sample set was prepared. Finally, a neural network structure 
based on LSTM was designed for prediction, and the Grey 
Wolf Optimization algorithm was used to optimize its 
hyperparameters to obtain the optimal network architecture f 
or predicting wax deposition trends in oil wells. 

The rest of this study is organized as follows. Section 3 
introduces data collection and preprocessing, neural network 
design, and optimization methods. Section 4 presents the 
training optimization and performance analysis of the neural 
network. Finally, Section 5 concludes the study and provides 
relevant recommendations. 
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3. Methodology  
 
3.1 Data Collection and Data Cleaning 
According to the oil well accident report of the oil field, a 
total of 100 records of oil well shutdowns owing to wax 
deposition were sorted out. Based on the well name and 
shutdown time, the real-time monitoring database of each 
wax deposition well was queried to obtain all data within 30 
days before the shutdown day, and a total of 76 wax 
deposition wells with data records were obtained. 

The original data of each wax deposition well contained 
356 data indicators. Further analysis showed that there were 
150 indicators with a null value rate of less than 5%, 
accounting for 46%, and 172 indicators with a null value rate 
of more than 95%, accounting for 53%. In the subsequent 
data analysis, only data indicators with a null value rate of 
less than 5% were retained. Interpolation was used to fill the 
remaining null values. 

Among the 150 indicators retained, there were 
differences in the data sampling frequency. For example, the 
displacement and the load were 30 min/time, the current and 
the power were 1 min/time, and the production rate was 1 
d/time. In addition, some static indicators, such as crude oil 
viscosity, exist. The data were standardized to 30 min/time 
to facilitate subsequent data mining needs. 

For the conversion from low- to high-frequency data, the 
nearest neighbor interpolation, linear interpolation, and 
cubic spline interpolation algorithms were compared.     
Moreover, linear interpolation was selected for conversion. 
For the conversion from high- to low-frequency data, the 
downsampling method was selected. 

After the above processing, the standardized data set of 
wax deposition wells was obtained, covering 150 indicators 
of 76 wells, with a total of 109,000 data records. 

 
3.2 Feature Engineering 
Not all of the 150 data indicators have an indicative 
significance for wax deposition prediction. If all of them are 
used directly for oil well wax deposition prediction, it will 
not only cause excessive computational load owing to a 
large amount of data but also introduce noise interference 
and affect the accuracy of the model prediction. Therefore, 
feature engineering studies should be conducted to identify 
indicators with strong sensitivity to wax deposition 
prediction. 

A manual analysis of the data of each wax deposition 
well is conducted to determine the start time of wax 
deposition. The period before and after wax deposition is 
defined as the healthy and wax deposition states, 
respectively. If a certain indicator undergoes significant 
changes in the wax deposition and healthy states, it is a 
highly sensitive indicator of wax deposition. 

For example, Figure 1 shows the variation curve of the 
indicator diagram area (GTMJ) of the pumping unit of a wax 
deposition well in the past month. The well began to 
experience wax deposition on March 19. The red and blue 
areas in the figure represent the wax deposition and healthy 
states, respectively. After the wax deposition began, the area 
of the pumping unit showed a significant upward trend. 

For each time series parameter, the healthy interval and 
the wax deposition interval are selected. The median (value), 
linear regression slope (slope), and standard deviation (STD) 
of each indicator under the healthy state and the wax 
deposition state are calculated to characterize the numerical 
level, evolution rate, and volatility characteristics of each 
indicator under the healthy state and the wax deposition state. 

 
Fig. 1.  Healthy state and wax deposition state for an oil well 

 
The characteristic parameters of each index were 

calculated in healthy and waxing states. Figure 2 shows the 
results of two typical indicators, including the indicator 
diagram area and voltage. In this figure, the healthy state is 
represented by red circles, while the wax deposition state is 
represented by blue circles. 
 

 
Fig. 2. Comparison of the characteristic indexes of the healthy state and 
the wax deposition state of oil wells 
 

From Figure 2(a), the absolute value of the indicator 
diagram is generally greater than that in the healthy state 
when waxing occurs. When in a healthy state, the numerical 
value of the indicator diagram area is stable. When waxing 
occurs, the numerical value of the indicator diagram area 
generally increases positively. When in a healthy state, the 
numerical value of the indicator diagram area fluctuates 
slightly. When waxing occurs, the fluctuation of the 
numerical value of the indicator diagram area generally 
increases. Therefore, the indicator diagram area is 
considered an indicator with high sensitivity. 

From Figure 2(b), the absolute value, evolution rate, and 
fluctuation of the voltage are not significantly distinguished 
when waxing occurs, indicating that the sensitivity of the 
voltage to waxing prediction is low. 

Based on this, the comprehensive significance of each 
index in wax deposition prediction was calculated, and 
Figure 3 shows the top-ranking indicators. In this diagram, 
the variables corresponding to each abbreviation are as 
follows: GTMJ: area of the indicator diagram; YGGL: active 
power; GGGL: light rod power; ZXZH: minimum load; 
ZDZH: maximum load; HDL: power consumption; ZBX: 
overall pump efficiency; CC1: frequency of stroke; HS: 
water cut; GLYS: power factor; RCYL1: daily liquid 
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production; XXDL: downstream current; JK_WD: wellhead 
temperature. Based on this figure, six indicators with a 
comprehensive significance greater than 20% were selected 
for wax deposition prediction, including the area of the 
indicator diagram, active power, light rod power, minimum 
load, maximum load, and power consumption. 
 

 
Fig. 3. Top-ranking indicators with high comprehensive significance in 
wax deposition prediction 
 
3.3 Comprehensive Evaluation Index for Wax Deposition 
Degree 
For each indicator related to wax deposition failure 
prediction, the indicator value of each well in the healthy 
state was set to 0, and the value of each well from wax 
deposition to well shutdown was set to 100. The time series 
of each indicator was transformed into a value between 0 
and 100 through function transformation. Considering each 
sensitive indicator, a weighted average was performed to 
construct a comprehensive evaluation index of wax 
deposition degree. Table 1 shows the weights of each 
indicator in the comprehensive evaluation index of wax 
deposition degree. 
 
Table 1. Weights of each indicator in the comprehensive 
evaluation index of the wax deposition 

Indicator Significance Weight 
GTMJ 89.547 0.367 
YGGL 44.566 0.183 
GGGL 30.370 0.124 
ZXZH 29.273 0.120 
ZDZH 28.093 0.115 
HDL 22.223 0.091 

 
The constructed comprehensive evaluation index of wax 

deposition degree has a value of 0 in the healthy state and a 
value of 100 in the most severe wax deposition that leads to 
well shutdown. 
 
3.4 Introduction to the Principle of LSTM 
The LSTM network is currently one of the most widely used 
and effective methods for addressing time series problems 
[25]. This network improves upon the gradient vanishing 
issue and can deal with long-term dependencies, making it 
highly efficient when processing time series data [26-27]. 
Given that data on wax deposition in oil wells also exhibit 
temporal characteristics, this study opts to utilize the LSTM 
neural network to establish a predictive model to yield 
superior results. 

At its core, the LSTM introduces a “cell state” to store 
historical information. It leverages a “forget gate” to control 
the extent of forgetting this historical data, an “input gate” to 
manage the incorporation of new information, and an 
“output gate” to regulate data output. The specific formulas 
are as follows: 

The forget gate is responsible for determining which 
information in the cell state needs to be forgotten based on 
the current input and the previous hidden state. Its 
calculation can be represented using Eq. (1): 
 

       (1) 
 
where denotes the weight parameter, denotes the bias 
term, and σ denotes the activation function. 

The input gate, which determines the degree of influence 
of the new input data based on the current input and the 
previous hidden state, plays a role in the process. Its 
calculation can be represented using Eq. (2):  
 

       (2) 
 
where denotes the weight parameter and denotes the 
bias term. 

The cell state update, which updates the cell state based 
on the calculations of the input gate and the forget gate, 
serves the purpose, which can be represented using Eq. (3): 
 

        (3) 
 
where denotes the new candidate value, and the formula 
for its computation is as follows: 
 

       (4) 
 
where denotes the weight term, denotes the bias term, 
and  denotes the hyperbolic tangent function. 

The output gate, which determines which information 
needs to be output from the cell state based on the current 
input and the previous hidden state, serves the purpose. Its 
calculation can be represented using Eq. (5): 
 

       (5) 
 
where denotes the weight parameter and denotes the 
bias term. 

The hidden state, obtained based on the calculations of 
the output gate and the current cell state, represents the 
hidden state at the current time step. Its calculation can be 
represented using Eq. (6): 
 

        (6) 
 
3.5 Design of the Wax Deposition Prediction Model 
Based on LSTM 
The detailed model architecture is as follows: First is an 
LSTM layer, which is based on feature engineering from 
Section 3.2. The input for this study includes six features, 
with each feature having a dimension of 1. Therefore, the 
input shape of this LSTM layer is (number of samples, 
timesteps, 6). To prevent overfitting, a dropout layer is 
added after the first LSTM layer, followed by a second 
LSTM layer to further capture the correlation of the time 
series, thereby enhancing the performance of the model. 
Subsequently, two dense layers are introduced: the first 
dense layer employs a Relu activation function, which 
assists in greatly fitting the model. The second dense layer 
contains only a single neuron, used for outputting a solitary 
prediction value; therefore, the output shape of the model is 
(number of samples, 1). Figure 4 shows the precise model 
structure. 
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Fig. 4. LSTM model architecture designed for wax deposition 
prediction 
 

The model employs mean squared error (MSE) as the 
loss function for compilation and utilizes the Adam 
optimizer for training. This study evaluates the prediction 
accuracy of the model using MSE and R squared as the 
evaluation metrics. The expression for MSE can be 
represented as Eq. (7): 
 

       (7) 

 
Where denotes the true value associated with sample i, 

whereas denotes the respective predicted value. 
The specific expression for R squared can be found in Eq. 

(8): 
 

       (8) 

 
where  denotes the sample mean, denotes 
the discrepancies between predicted and actual values, 

and denotes the errors attributed to the mean 
value. 
 
3.6 Methodology for Hyperparameter Optimization 
This study employs the Grey Wolf Optimization algorithm 
to fine-tune the hyperparameters of the model. Specifically, 
the algorithm is leveraged to optimize the number of neurons 
in the LSTM layer, the dropout rate in the dropout layer, and 
the quantity of neurons in the dense layer. The designated 
search window spans from (128,0.1,32) to (256,0.5,128). 

The principle of the GWO algorithm is as follows: 
Within the GWO framework, the wolves’ ensemble 

(comprising various hyperparameter permutations) evolves 
its position according to the optimal coordinates of the three 
lead wolves (i.e., alpha, beta, and delta). The positional shift 
of the wolves, represented as D, from iteration t to t + 1, can 
be articulated using Eqs. (9) and (10): 

 
       (9) 

 
where denotes the grey wolf’s coordinates and denotes 
the spatial separation between the grey wolf and its target 
prey. 
 

     (10) 
 
where denotes the position of the prey, equivalently, the 
coordinates of the alpha, beta, and delta wolves. The 

calculation methods for and in the above equation are 
represented by Eqs. (11) and (12): 
 

      (11) 
 

       (12) 
 
where and denote random numbers within the interval 
from 0 to 1, respectively. Concurrently, denotes a linear 
decrement from an initial value of 2 to a final value of 0 
proportional to the increasing count of iterations. 

We independently determine the values of Dalpha, Dbeta, 
Ddelta, , , and . Consequently, 
the position, denoted by , which requires adjustment 
by each wolf individual, is as follows: 

 

   (13) 

 
The procedure for enhancing the model is elaborated as 

follows: 
Initially, based on the LSTM prediction model 

delineated in Section 3.5, we establish an evaluation 
function catering to model performance. This function 
incorporates the number of neurons within the LSTM layer, 
the rate of dropout within dropout layers, and the neural 
count within the dense layer as input parameters. As an 
output, this function bestows the model error as a 
performance score. 

Subsequently, we construct the GWO algorithm that 
stipulates the dimensions concerning the wolves and the 
iterative count, along with defining the range of exploration 
for the hyperparameters. Initialization of the population, the 
values represented by the hyperparameter combinations, 
including objective function values, occurs. An ongoing 
update facilitated by the algorithm influences the values of 
the hyperparameter combinations and the objective function 
until it reaches the pre-set limit of iterations. Eventually, the 
result comprises the optimal combination of 
hyperparameters and ends with a model score. 

In the final phase, we implement the acquired optimally 
suited hyperparameter combination into the LSTM model, 
facilitating the evolution of an enhanced predictive model. 

 
 

4. Result Analysis and Discussion 
 
4.1 Parameters and Environments for Training 
During training, we randomly apportioned 10% of the total 
samples as a validation dataset, with the remaining 90% 
forming the training dataset. Seventy epochs of training were 
completed, wherein each epoch incorporated 300 samples 
for its neural network processing. The training environment 
was facilitated through Keras 2.13.1. 

Concerning the workstation architecture, the hardware 
framework comprised a 13th Gen Intel® Core™ i9-
13900HX 2.20 GHz processor coupled with 32GB RAM. 
Regarding the software infrastructure, we utilized the 64-bit 
Windows 11 operating system along with PyCharm 
Community Edition 2023.1.3. 
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4.2 Analysis of Training Outcomes 
Employing the training conditions delineated in Section 4.1, 
well operational data were fed into the model for training 
purposes. On average, the entire process required 
approximately 8 seconds per training epoch. The resulting 
predictions were visualized and scrutinized, with key 
observations outlined below: 

An analysis of the model’s error rates with respect to 
variations in training epochs was conducted (Figure 5). 
During the preliminary epochs, substantial discrepancies 
existed between the validation and training losses, thereby 
signaling inadequate model training. Nonetheless, 
commencing from the 20th epoch, no considerable 
distinction was observed between the two, thereby indicating 
the absence of overfitting or underfitting issues and, 
subsequently, effective training outcomes. Additionally, a 
steady decline in training and validation losses was observed 
as the number of training epochs escalated, ultimately 
converging to a significantly low error rate, which further 
attested to the model’s effectiveness. 

 
Fig. 5. Loss values of the pre-optimized model on the validation set and 
the training set 
 

Concurrently, the predictive performance of the model 
prior to optimization was visually represented. Figure 6 
provides an illustration of the model’s performance based on 
the predictions made on the training dataset, whereas Figure 
7 delineates the predictive outcomes on the test dataset. 

 
Fig. 6. Prediction performance of the pre-optimized model on the 
training set 
 

The refined model was applied to the same data used for 
pre-optimization predictions to compare the predictive 
performance of the model before and after optimization. 
Subsequently, Figure 8 shows the loss values pertaining to 
the validation and training datasets. Figures 9 and 10 present 
the enhanced model’s predictive performance on the training 
and test datasets, respectively. 
 

 
Fig. 7. Prediction performance of the pre-optimized model on the test 
set 
 

 
Fig. 8. Loss values of the optimized model on the validation and 
training sets 

 
Fig. 9. Prediction performance of the optimized model on the training 
set 

 
Fig. 10. Prediction performance of the optimized model on the test set 
 

From the visualizations drawn after optimization, the 
refined model manifests an improved predictive 
performance on the training and test datasets, outperforming 
its initial state. With an expedited rate of convergence, the 
optimization has indeed enhanced the model’s performance. 

Table 2 catalogs the variations in the model’s 
hyperparameters before and after the optimization process. 
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Notably, the hyperparameters prior to optimization were 
empirically established through manual configuration. 

 
Table 2. Variations in the model’s hyperparameters pre- and 
post-optimization 

Hyperparameters Pre-optimization Post-optimization 

LSTM neurons 128 256 
Dropout rate 0.1 0.2 

Dense neurons 128 64 
 

This study employs R-squared as an illustrative measure 
of the predictive efficacy of the model, pre- and post-
optimization, with the nuanced findings explicated in Table 
3. An in-depth examination of the results presented in Table 
3 elucidates that the post-optimization model yields high 
performance across the training and testing sets. This result 
corroborates the premise of the optimization methodology 
posited in this manuscript and underscores its capacity to 
improve prediction precision. 

 
Table 3. Efficacy of the model’s predictions prior to and 
subsequent to the process of optimization 

Data set Pre-optimization Post-optimization 

R-squared 
(training set) 0.8769 0.9570 

R-squared (test 
set) 0.8453 0.9439 

 
 

5. Conclusions 
 
This study first preprocessed the operational data of oil wells, 
performed feature analysis, and constructed a comprehensive 
evaluation index of wax deposition severity using highly 
sensitive features. The objectives are to effectively mine and 
utilize the information contained in historical dynamic 
monitoring data of oil wells and achieve real-time prediction 
and advance warning of wax deposition. Then, a predictive 
algorithm based on the LSTM network was developed and 

applied to the dataset. Finally, the GWO algorithm was used 
to optimize the hyperparameters of the predictive algorithm, 
and the prediction performance of the model was validated 
on the test set. The following conclusions could be drawn: 

(1) The comprehensive significance of each indicator in 
wax deposition prediction was calculated, and six indicators 
with a comprehensive significance greater than 20% were 
determined: pump card area, active power, polished rod 
power, minimum load, maximum load, and power 
consumption. 

(2) The proposed LSTM-based wax deposition 
prediction method in this study can predict the wax 
deposition trend in oil wells using the dataset used in this 
study, and it has good prediction performance. 

(3) The optimization algorithm used in this study can 
further improve the performance of the prediction model. 

This study proposes a feasible prediction method by 
applying neural network methods to wax deposition 
prediction in oil wells. The developed algorithm exhibits 
high accuracy in prediction, providing a reference for 
oilfield managers in formulating anti-wax measures. This 
study only uses the LSTM neural network to construct the 
predictive algorithm, and LSTM networks have certain 
limitations. Therefore, ensemble learning is being 
considered in future studies to improve the predictive model 
and further enhance its performance. 
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