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Abstract 
 
The traditional methods of PI tuning are based on trial and error, which can be inefficient for complex networks that have 
limited system information. To solve this problem, this paper makes use of a hybrid technique using Reinforcement 
Learning (RL) and black Widow Optimization (BWO). Development of a simulation model for a hydropower plant using 
PI control has been done in MATLAB Simulink & the tuning of PI parameters has been accomplished with the aid of a 
hybrid BWO-RL technique, thus utilizing BWO's capacity to tackle non-linear & non-convex optimization problems & 
potential of RL technique to allow the PI controller to adapt and learn from the system's real-time feedback. The purpose 
of this study is to evaluate how well the model of hydropower plant functions & voltage is stabilized while using the 
proposed controller. By utilizing the proposed technique, the model voltage profile succeeded in becoming better, and 
errors (MSE, MAE, MAPE, and RMSE) have been reduced to a significantly low range. Overall, this research informs 
practices for reliable, eco-friendly hydropower operation, benefiting the energy industry and the environment. 
 
Keywords: Reinforcement learning (RL), BWO (Black Widow Optimisation), PI controller, and a hydroelectric plant. 
 

 
1 Introduction 
 
Small Hydropower plant is the most cost-effective way to 
provide electricity to rural areas in underdeveloped nations. 
Hydroelectricity is a sustainable energy source. As in the 
winter & spring, pure mountains streams, & lakes can be used 
to create power. Hydropower plants provide low-cost 
electricity & have more durability [1] [2]. The main objective 
of this research is an enhancement of voltage stability of a 
hydropower plant, which is very important. Major potential 
Benefits and Implications of this work are as follows: 
 

1. To ensure a consistent energy supply, benefiting 
industries, businesses, and households. 

2. To make the hydropower plants operate at peak 
efficiency, maximizing energy output. 

3. To reduce the risk of equipment failures and 
associated environmental hazards. 

4. To reduce operational costs and downtime and 
decrease maintenance expenses, increasing overall 
economic benefits. 

5. To enhance the grid's resilience against disruptions, 
improving overall reliability. 

6. To delay the need for costly grid upgrades. 
7. To reduce backup power source usage during outages, 

minimizing environmental impact. 
  
 For controlling voltage, the majority of hydraulic power 
facilities are controlled by PI (Proportional-Integral) 
controllers. PI controller's function is to regulate the system's 
output by adjusting the input in response to the deviation from 
a desired value.  Water flow and turbine speed in hydro plants 
are controlled using PI controllers. This could be 
accomplished by regulating the flow of water into the turbine 

by opening or closing the turbine's gates. The wicket gates' 
opening is regulated by the PI controller, which receives data 
from sensors monitoring the water flow and turbine speed. 
Many more renewable sources are used day by day [3]. The 
performance of an isolated small hydropower plant using 
conventional control algorithms like Proportional, PI & PID 
control are depicted in some studies [4].  
 The creation of hydraulic power includes complicated and 
dynamic processes, necessitating the tunning PI controller. 
Tuning a PI controller primarily involves adjusting the 
proportional gain (KP) & integral gain (Ki). Different from 
integral gain, which affects the steady-state error, 
proportional gain affects the controller's response to changes 
in error output. Control performance objectives can only be 
reached by careful tweaking of these parameters. Integral 
control is useful for reducing steady-state error and speeding 
up reaction times. However, instability and oscillations could 
occur from the integral gain that is too high. Optimal control 
performance requires a combination of proportional and 
integral gain. PI tuning aims to fine-tune the controller's 
settings to produce the required response characteristics and 
maximize the system's performance. The use of PI tuning in a 
Hydropower plant gives the following advantages [2]; 
 

a) Because the water flow and turbine speed can be tuned 
using PI controllers, the efficiency of the hydro plant 
may be increased. This ensures the facility is running 
as efficiently as possible and reduces waste. 

b) The control system is secure and reliable since the PI 
controllers have been tuned to be accurate and can 
react rapidly to a variety of changes. This is crucial for 
ensuring the plant's security and avoiding costly 
repairs to machinery. 

c) Hydro plants must be able to adjust to a broad variety 
of operational circumstances and external influences, 
including weather and water level fluctuations. The 
plant's stability can be maintained by the use of 
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properly calibrated PI controllers that can respond to 
these variations. 

d) Since the unneeded or excessive movement of the 
turbine wicket gates may be mitigated with a well-
tuned PI controller. This has the potential to extend the 
lifespan of the machinery and reduce 
maintenance/operational expenses. 

  
 In brief, PI tuning is crucial for small hydro plant control 
system design and maintenance for dependable, efficient, and 
safe operation. A tuned PID controller employed in the 
excitation system has been proposed by [5]. Optimal PID 
Controllers for AVR systems considering Excitation Voltage 
Limitations Using a Hybrid Equilibrium Optimizer have been 
proposed in [6].  
 Rule-based, heuristic, & optimization-based (or model-
based) PID tuning approaches are the main categories [7]. 
Having a firm understanding of the function of each PI 
parameter is essential for achieving the intuitive tuning that 
may be attained via trial and error. Simple to construct, this 
method might be time-consuming and uncertain in its output 
[7]. To estimate processes from step tests based on rule-based 
tuning, Ziegler-Nichols, Cohen-Coon, Kappa-Tau, and 
Lambda tuning use simple models [8]. First-order plus dead-
time models are typical. Despite their popularity, these 
techniques are vulnerable to modifications for both the real 
process and the approximation model.  
 PID values may be optimized with the use of 
optimization-based methodologies if an exhaustive technical 
specification and accurate process model are available. 
However, to be effective, such strategies need a 
comprehensive model [8] [9], which may be challenging to 
develop in practice. The innovative PI tuning method 
described here was created by solving an optimization 
problem. However, it does not restrict the user from using any 
PID controller or process model of their preference. Using the 
water hammer effect as an example, [10] suggests a PID 
controller based on an improved Iterative Sliding Mode 
Control (IMC). It was discovered that the proposed tuning 
technique improved the hydraulic unit's steadiness. This 
research delves further into metaheuristic algorithms [11]. 
Parameter adjustment for a PID controller is described in 
detail, using the most advanced metaheuristic approaches, in 
[12]. Both traditional and state-of-the-art optimization 
methods were discussed at length, and their salient points 
were outlined in this paper's debate. Through the use of 
simulation results based on transient response characteristics, 
new optimization methodologies for the optimum tuning of 
PID controllers have been proven to provide better results 
than the traditional approach, as well as the other optimization 
strategies[13] [14] [15]. 
 Using PID and I-PD controllers, a multi-source, multi-
area linked power system achieves effective Automatic 
Generation Control (AGC) [16]. The Fitness Dependent 
Optimizer (FDO) algorithm helps these controllers work best. 
An FDO-PID & FDO-I-PD two-area reheat thermal, gas, 
along with a hydropower system evaluates FDO-based 
controllers. An electrohydraulic servo control system is 
stabilized by selecting PID controller settings utilizing Barrier 
Failure Analysis (BFA), PSO, GA, and ACO (Ant colony 
optimization) [17]. Step response uncertainty reduction led to 
the discovery of stability. In contrast to GA, this method 
necessitates the use of a high-end, current desktop or 
workstation PC-improved solution with faster response. To 
further improve computational efficiency, it is advised that a 

BFA technique be used instead of the PSO method, which 
suffers from premature convergence.  
Some of the optimization algorithms used to fine-tune PID 
controllers for artificial insulin regulation include BOMA 
(Brain Storm Optimization Algorithm), CTOA (Class Topper 
Optimization Algorithm), GA (Genetic Algorithm), GSA 
(Gravitational Search Algorithm), GWOA (Gray Wolf 
Optimization Algorithm), PSO (Particle Swarm 
Optimization), and SRA (Sequential Randomized Algorithm) 
[18]. It has been established that a GWOA technique works 
better when simulating in MATLAB-Simulink and then in 
real-time assessing the results. In [19], PID controller 
parameters for two processes are tuned using two different 
optimization techniques, and it is found that the PSO-based 
adjusted values outperform the GA-based values in a CSTR 
(Continuous Stirred-Tank Reactor). Despite some minor 
differences in peak overshoot values, the responses are 
indistinguishable between the two different QTP (Quick Test 
Professional) optimization techniques. In [20], GA, FA 
(Firefly Algorithm), and PSO algorithms optimize system 
parameters before using a PI controller. The importance of 
optimization methods in frequency and voltage regulations in 
power systems is well described in [21] [22] [23]. 
 Integral Time Square Error (ITSE) & Integral Time 
Absolute Error (ITAE) are two examples of cost functions 
that may be used to evaluate controller settings in 
optimization approaches. It has been shown [20], that 
analytical and conventional tuning methodologies for 
controllers were less effective than optimization tactics. 
 The recent optimization method Black Widow 
Optimisation (BWO) is inspired by black widow spider hunts. 
Meta-heuristic BWO can tune hydro plant PI controllers for 
global optimization. BWO's capacity to tackle non-linear & 
non-convex optimization problems that converge swiftly to 
global optimal provides it with a good choice for hydro plant 
PI tuning. Unlike other optimization approaches, BWO is less 
likely to remain stuck in local optima. 
 More recently, [24] [25] [26] [27], suggested Deep RL 
algorithms for the control of discrete-time nonlinear systems. 
A controller in each of these systems takes the form of a deep 
NN, making them actor-critic approaches. RL is based on the 
concept of learning through trial and error, where an agent 
interacts with an environment to learn an optimal policy that 
maximizes a reward signal. In the context of PI tuning in 
hydro plants, RL can be used to learn optimal controller 
parameters that minimize an error function, which is typically 
based on the performance metrics of a control system. 
Overall, RL approach for PI tuning in hydro plants, and has 
the potential to improve performance & efficiency of a control 
system, & ensure safe as well as reliable operation of a plant.  
 To take benefit of BWO as well as the RL technique, a 
hybrid method is used in this work to tune parameters of PI 
controller used for a small hydropower plant.  The following 
is an outline of the most significant contributions provided by 
this work: 
 

1. Development of MATLAB model of PI control 
Hydropower plant & tuning of PI controller by using 
conventional techniques and intelligent methods like 
Cuckoo, Firefly, Particle Swarm Optimization, and 
Grey Wolf Optimization.  

2. Tuning of the PI controller by using BWO algorithm, 
which effectively optimizes the controller's parameters 
by simulating the black widow concept. This 
optimization process ensures that the PI controller is 
tuned to the specific dynamics and operating conditions 
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of the hydropower plant, maximizing its effectiveness in 
voltage regulation. 

3. Incorporation of Reinforcement Learning techniques to 
allow the PI controller to adapt and learn from the 
system's real-time feedback. The controller can 
continuously update its control strategy based on the 
observed performance and the desired voltage targets, 
leading to improved response time and stability. 

4. Use of a hybrid approach of combining BWO and RL 
(for PI tuning) to benefit from the strengths of both 
algorithms. It results in enhanced performance, reduced 
computational effort, and increased robustness. This 
controller can effectively handle the nonlinearities, 
uncertainties, and disturbances present in hydropower 
plant systems, leading to improved voltage regulation 
and system stability. 

5. Comparison of performance of the proposed technique 
with other techniques in terms of error functions.  

 
 In rest of the paper, a complete methodology is explained 
in section 2. Performance measures used for the evaluation of 
the proposed method are described in section 3. Section 4 
briefly describes the simulation results followed by the 
conclusion and list of references. 
 
 
2. Methodology 
 
 The Black Widow Optimisation is the first step in the 
proposed method. This step determines the proportional and 
integral gains (KP and Ki, respectively) of the PI controller 
that is utilized in the hydropower plant. The initial population 
for BWO is the result of the classical Z-N method. MSE error 
is the fitness function. The best candidates from BWO are 
further tuned by using Reinforcement learning. The overall 
methodology is shown in Figure 1. The results of the hybrid 
method are compared with Black Widow Optimization & 
Reinforcement Learning when used independently as well and 
the comparison is also made for a few more nature-based 
optimization techniques. 
 The proposed BWO-RL-based PI Controller for voltage 
stability in hydropower plants uses two techniques in cascade, 
i.e.,  BWO for initial tuning and Reinforcement Learning 
(RL) for real-time adaptation & final tuning of PI controller 
parameters as shown in flowchart of Figure 1.  
 The BWO-optimized PI controller gains provide a strong 
starting point, while RL ensures the controller adapts to 
changing conditions and disturbances to maintain voltage 
stability. Properly designing the RL reward function and 
training the RL agent to optimize voltage stability are critical 
steps in this implementation. Details of BWO & RL for PI 
tuning are given in the following subsections.  
 
2.1. BWO (Black Widow Optimization) 
The BWO algorithm is intended to function in a manner that 
is analogous to the hunting strategy employed by black widow 
spiders. This strategy comprises searching for food in an 
environment that is packed full of limitations. To locate the 
most nutritious food, the spiders employ a methodology that 
is equal parts exploration and exploitation. These techniques 
are put to use in a BWO algorithm to investigate the search 
space and get closer & closer to the optimal solution. 
 The PI tuning process in hydro plants can be 
accomplished with the help of the BWO algorithm by treating 
controller settings as optimization decision variables. For 
purpose of determining how efficient a control system is, this 

method incorporates a fitness function. This is accomplished 
by the utilization of the metrics of ascent, settlement, 
overshoot, and steady-state error. A fitness function is used to 
measure how well each entity solution performs, and it also 
helps find the best possible solution globally 
 
 

 
Fig. 1. Flow chart of proposed hybrid optimization method 
  
 
 BWO algorithm is an excellent choice for both 
exploitation and exploration stages because it has a fast time 
to converge and can avoid issues that are related to problems 
with local optimization. It is also essential to keep in 
consideration that BWO may be able to strike an appropriate 
harmony between their exploratory and exploitative 
activities. BWO is a promising alternative since it can study a 
large region, which makes it applicable to several different 
optimization issues that might each have numerous local 
optimum solutions. Compared to existing meta-heuristic 
algorithms such as GA, PSO, BBO (Biogeography-Based 
Optimization), ALO (Antlion Optimization) [28], MFO 
(Moth Flame Optimization) [29], GWO [30], WOA (Whale 
Optimization Algorithm) [31], SHO (Spotted Hyena 
Optimizer) [32], MVO (Mean-variance optimization) [33], 
and HS (Head Space) [34], gathered data shows that BWO 
method provides improved results. Figure 2 illustrates a 
flowchart of a BWO process. 
 It aims to find the optimal values for the PI controller 
gains (`Kp` and `Ki`) that minimize a predefined objective 
function related to voltage stability. Here's a simplified 
representation of the BWO algorithm: The objective function 
used in BWO should be designed to represent the voltage 
stability problem, incorporating factors like voltage 
deviations and system  
constraints. 

Start 

Selection of initial values and ranges of Proportional 
and Integral gains by Z-N method and extensive hit 

and trial method 

Optimization methodology (BWO)  

Optimal process parameters 

Best individual 

Reinforcement Learning (RL) 
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Fig. 2. Flow chart of BWO Optimization technique 
 
 
Initialize a population of black wolves with random positions 
Evaluate the fitness of each wolf based on the objective 
function 
While the stopping criterion is not met: 
Sort the wolves by fitness 
Select alpha, beta, and delta wolves (the best, second best, 
and third best) 
Update the positions of other wolves using mathematical 
equations 
Apply constraints to the positions (e.g., within predefined 
bounds) 
Evaluate the fitness of the updated positions 
Update the alpha, beta, and delta wolves if necessary 
End While 
Return the best position found as the optimal PI controller 
gains 
 
 
2.2. RL (Reinforcement Learning) 
Some of the most prominent applications of Reinforcement 
Learning (RL), a branch of machine learning, are in the realm 
of control, namely in the calibration of PID controllers and 
other similar tasks. RL algorithms typically work by 
estimating the value function or the Q-function, which 
provides an estimate of the expected reward given a particular 
state and action. 
 The RL agent interacts with an environment by taking 
actions (i.e., adjusting controller parameters) and observing 
resulting state and reward. The agent then updates its policy 
based on the observed state and reward, using methods such 
as Q-learning, policy gradient methods, or actor-critic 
methods. One of the main advantages of RL for PI tuning is 
its ability to handle non-linear & non-convex optimization 
problems, which are common in control systems. RL can also 
adapt to changes in the system dynamics and environmental 
conditions, which makes it well-suited for complex and 
dynamic systems like hydro plants. The successful 
application of RL for PI tuning in hydro plants requires 
careful design and tuning of the RL algorithm, as well as 
careful consideration of the error function, the state 
representation, and the action space [35] [36].  

 Understanding the evolving two-way interaction between 
the agent and environment is crucial to RL. If an agent's 
actions are rewarded by the environment, it will be more 
likely to act. In RL, the concepts "agent," "environment," 
"action," "state," and "reward" are fundamental. To transform 
circumstances into actions, the learner functions as the agent 
interacting with the environment. The decision to complete 
the assignment is the agent's action. When we say something 
"returns to its state," we mean that the surrounding 
environment is put back into its original condition after an 
action is taken. In [37] [38], shows the result of the 
environment that provides feedback. The agent in real life 
does not know what to do ahead of time. The magnitude of 
the rewards increases as it gains knowledge. When evaluating 
the data collected from its surroundings, an agent is either 
rewarded or punished. The agent makes adjustments to its 
action policy to get closer to the optimal policy. State activity 
is represented through policy. One RL paradigm is trial and 
error. After making assessments of the environment at each 
time step T within a state St, the agent gets a credit or 
punishment according to the rules in force [39] [40]. A 
recognizable pattern of RL is shown in Figures 3 and, 4 and 
the comparison of conventional and RL-based controllers is 
shown in Figure 5. Table 1 shows the details of 
Reinforcement learning parameters. 
 The RL component complements the BWO-tuned PI 
controller by enabling real-time adaptation. Here's an 
overview of integrating with the PI controller: 
 

i. State Representation: Define the state space for the 
RL agent. It typically includes voltage 
measurements, system load, and other relevant 
variables that affect voltage stability. 

ii. Action Space: Define the action space, which 
corresponds to adjustments in the PI controller's 
output. Actions could involve changing `Kp`, `Ki`, 
or the reference voltage. 

iii. Reward Function: Design a reward function that 
quantifies the system's voltage stability. This 
function should encourage the RL agent to take 
actions that maintain stable voltage levels. A 
possible reward function could be based on 
minimizing voltage deviations or deviations from a 
desired reference voltage. 

iv. Real-Time Adaptation: During actual operation, the 
RL agent uses its learned policy to select actions 
based on current states. These actions are applied to 
the PI controller, allowing it to adapt to changing 
conditions in real time. 

 
Fig. 3. Working of Reinforcement Learning technique 
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Fig. 4. Classification of Reinforcement Learning Technique 

 

Fig. 5. Comparison of traditional and RL-based controller  
 

Table 1. Basic terms used in RL Model 
Terms Description 
Agent It behaves in a specific manner to gain 

something from its surroundings. 
Environment It's a hypothetical predicament that the 

agent must solve. 
Status The "state" of an entity describes its current 

surroundings. 
Action When anything happens in the world, that's 

action. 
Reward When anything is rewarded monetarily for 

doing a desirable behavior in its 
environment, we call that incentive. 

Policy It's the agent's plan for getting from where 
it is now to wherever it has to go to 
complete the next set of objectives. 

Value Value is an incentive that lasts a long time 
or comes at a lower cost. 

Value Function It is the sum of all benefits and is used to 
quantify a nation’s worth. 

 
 
3. Hydropower Plant PI Tuning & Performance 

Measures 
 
“PI tuning" refers to the process of adjusting the settings of a 
Proportional-Integral (PI) controller based on physical 
characteristics and characteristics of a system that are being 
controlled within the context of this study. The premise upon 
which this method rests is that both dynamics of a controlled 
system & interaction between the system & controller greatly 
affect the PI controller's performance. It is predicated on idea 
that performance of PI controller is significantly influenced 
by dynamics of system being regulated as well as by 
interaction that takes place between system & controller. 
Figure 6 depicts the PI Controller. 
 Tuning the PI requires creating a problem, which may be 
done by defining the optimization's objective function & 
constraints. The objective function is typically expressed in 
terms of some measure of the PI controller's performance, 
such as the settling time or the steady-state error of the 
variable under control [41]. Limits may be placed on the 

proportional and integral gains, as well as the other PI 
controller parameters. 
 

 
Fig. 6. Structure of PI controller 

  
 As shown below, this work used different optimization 
methods to determine hydropower plant PI controller 
proportional (Kp) and integral gain (Ki). Fitness function is 
MAE, MSE, MAPE, and RMSE errors. 

 
3.1.  MSE (Mean Square Error) 
Mean squared error, or MSE, is a common measure of 
performance for evaluating a model's predictive power in a 
regression setting. It is determined by taking the square root 
of the average discrepancy between a dataset’s expected and 
actual values [42]. Calculating MSE is as simple as: 
 
MSE=!

"
*Σ(desired o/p value–actual o/p value)2                  (1) 

 
 Where, n = number of items 

 
3.2.  MAE (Mean Absolute Error) 
Mean Absolute Error, abbreviated as MAE, is another 
common measure of performance used to assess the precision 
of regression models. Instead of measuring the squared 
difference between the expected and actual values in a 
dataset, as MSE does, MAE takes an absolute measure of the 
discrepancy [43]. A measure of the consistency between two 
independent accounts of the same event is the mean absolute 
error (MAE). When the average error is both zero and positive 
and negative, MAE is employed. The MAE, or average 
absolute error, is the average error when examining data from 
multiple periods. 
 
MAE=!

"
∑ |𝑒#|"
#$!                               (2) 

 
3.3. MAPE (Mean Absolute Percentage Error) 
It is usual practice to use a statistic known as Mean Absolute 
Percent Error (MAPE) to measure the precision of regression 
models, particularly when making predictions. Mean 
Absolute Prediction Error (MAPE) is a metric that is used to 
quantify the usual percentage difference that exists between 
the data that was expected and the data that was collected. 
One of the most widely used metrics for evaluating accuracy 
is the mean absolute percentage error, or MAPE, which is also 
commonly referred to as the average [43]. The formula for 
MAPE is: 
 
MAPE=!%%%

"
∑ | '!

(!
|"

#$!                  (3) 
 
3.4.  RMSE (Root Mean Square Error) 
Root Mean Square Error (RMSE) is another common 
measure of performance used to assess the robustness of 
regression models. A comparable measure to MSE, RMSE is 
calculated by taking the square root of the average squared 
difference between the anticipated and actual values in a 
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dataset, yielding a metric with the same units as the variable 
being forecasted. Predictions' accuracy is sometimes 
measured using a statistic called Root Mean Square Error 
[44], which is also known as Root Mean Square Deviation. 
To get the RMSE, we take the norm, mean, and square root 
of each data point's residual. In supervised learning 
applications, RMSE is often utilized since it relies on and 
needs exact measurements at every projected data point. The 
formula for RMSE is: 
 

RMSE=$!
"
∑ 𝑒)#"
#$!                      (4) 

 

 
4. Simulation Results of Hydro Power Plant 
 
A simulation model is a representation of the plant that was 
constructed to mimic its performance under various climatic 
and mechanical conditions. Typical power plant models 
comprise mathematical equations that describe the operation 
of the facility's turbines, generators, penstocks, and water 
storage reservoirs [41].  

 

 
Fig. 7. Basic Hydropower plant Simulink model 

 

 
Fig. 8. Hydropower plant with PI controller 
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Fig. 9. Hydropower plant with RL controller 

 
Hydropower plant production and efficiency can be 
forecasted using the simulation model as water flow rates, 
operational schedules, and maintenance needs are modified. 
The performance of a power plant can be improved by 
adjusting the operating parameters of turbines and 
streamlining the flow of water through penstocks. System 
layouts were simplified and recreated using subsystems. 
Subsystem 1 is the hydraulic turbine, Subsystem 2 is the 
excitation system, and Subsystem 3 is the synchronous 
generator. Figure 7 illustrates the interplay between three 
distinct systems.  

Figure 8 depicts a pi controller in operation to regulate 
the hydropower plant's production. The difference between 
the target and the actual water level is used to generate the 
actuator's input. In Figure 9, an RL controller is used for the 
same purpose. The proposed approach integrates PI control 
with Reinforcement Learning for use with a hydroelectric 
generator. Hydraulic transients are simulated for several 
scenarios using all available plant data. The specifications of 
these units are given in Table 2 [45]. 

Table 2. Hydropower plant Parameters 
Hydro Power Plant Parameters 

1. Parameters of Turbine & Governor • Tw= 3  
• ω𝑟𝑒𝑓 = 1p.u.  
• T𝑎 = 0.07,  

            K𝑎 =10/3  
• R𝑝 =0.05, T𝑑 =0.02, K𝑝 = 3, K𝑖 = 0.10, K𝑑 = 3.26 
• g𝑚𝑖𝑛 =0.01, g𝑚𝑎𝑥 =0.97518,  

            v𝑔𝑚𝑖𝑛 =-0.1, v𝑔𝑚𝑎𝑥 =0. 
2. Parameters of Exciter • Vref & Vter = 1  

• Tb and Tc = 0.00001, 0.00001  
• V𝑟𝑚𝑎𝑥 = -15, V𝑟𝑚𝑖𝑛 = 7.3  
• T𝑟=0.87  
• K𝑎 =200, T𝑎 =0.02  
• K𝑒 =1, T𝑒 = 0.08  
• K𝑓 =0.03, T𝑓 =1  
• V𝑓 =1.2911 

3. Parameters of Synchronous Generator • Pn= 1.3 MW,  
• L-L voltage=415V 
• f =50  
• Reactance’s; X𝑑 =0.911, X𝑑 ′ =0.408,  

            X𝑑 ′′ =0.329, X𝑞    =0.580, X𝑞 ′′ =0.350,  
            X1 =0.3.  

• T𝑑 ′ =0.7, T𝑑 ′′ =0.035, 
            T𝑞0 ′′ =0.033,  

• R𝑠 =0.03  
• H =1,  
• P =4, V𝑓 =1 

4. Parameters of PID Controller K𝑝 = 0.01, K𝑖 = -0.88, K𝑑 = 0. 

4.1.  Results Discussion 
Simulation results for the hydropower plant using several 
methods for PI tuning are given in this section. The load is 

connected to the plant's synchronous generator through a 
transmission line, as shown in Figure 7. The generator is 
highly potent, capable of taking on a 1.2 MW load. The gate 
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and mechanical input of the generator are disturbed by the 
massive oscillations that occur during the transient phase. 
PSO,  
 FA, CC, GWO, BWO, RL, and Hybrid BWO-RL are 
the seven approaches that are utilized in the process of 
modifying the KP and Ki parameters of the PID controller. 
This is done to reduce the number of errors that occur. 
Mean squared error, mean absolute error, mean absolute 
percentage error, and root mean square error are the four-
performance metrics used to evaluate and compare the 
various methods.  MAPE is returned as a percentage 
instead of an absolute value, as with MAE. RMSE gives 
more importance to the highest errors. RMSE and MSE 
work on the principle of averaging the errors while MAE 
calculation is based on the median of the error. The lower 
value of MAE, MSE, MAPE, and RMSE implies a better 
voltage profile and better performance of the controller. 
Table 3 represents the optimal valves of the proportional 
and integral gain obtained by using various methods, with 
initial values being the result of Z-N tuning method.  
 
Table 3. KP & Ki values from different optimization 
techniques 

Techniques Kp Ki 

PI 0.0100 -0.8800 
PSO 0.0361 -0.0257 
CC 7.5812 -3.0092 
FA 0.1260 -0.0934 

GWO 9.9851 -3.0086 
BWO 3.4620 -6.6867 

RL 0.0456 0.0119 
BWO-RL 0.0418 0.0248 

 
 
 Table 4 gives a comparison of the performance of 
various techniques in terms of 4 different error measures. 
Bar graphs given in Figures 10-13 give a representation of 
the same graphically.   
 
Table 4. Different errors Comparison results 

Techniques MAE MSE MAPE RMSE 

PI [Kp, Ki] 0.18082839 0.05377593 0.18082839 0.23189637 

PSO 0.00805725 0.00009674 0.01191551 0.00980553 

FA 0.00802079 0.00009549 0.00801867 0.00976469 

CC 0.02752624 0.00080418 0.02752262 0.02969827 

GWO 0.02752263 0.00080415 0.02752263 0.02835751 

BWO 0.00799788 0.00009485 0.00799787 0.00973888 

RL 0.00764117 0.00007146 0.00795024 0.00845309 

BWO-RL 0.00760912 0.00007063 0.00760911 0.00840441 

 
 

 
Fig. 10. Bar graph for MAE 

 
Fig. 11. Bar graph for MSE 

 
Fig. 12. Bar graph for MAPE 

 
Fig. 13. Bar graph for RMSE 
 
 
 When the plant was first connected to its load, there 
were several problems with the working of the gates and 
the mechanical power that was fed to the generator. The 
MSE, MAPE, MAE, and RMSE errors have been reduced 
to almost negligible levels by utilizing a PID controller 
with PSO, FA, CUCKOO, GWO, BWO, and BWO-RL. In 
comparison to the other methods (PI, FF, GWO, 
CUCKOO, PSO, and BWO), the Hybrid BWO-RL 
methodology produced the highest quality output, as is  
demonstrated in Table 4. While simulating the model, it 
was discovered that employing BWO-RL reduced the 
number of oscillations and errors that occurred during the 
period of transition.  
 
 
5. Conclusion and Future Directions 
 
This work uses a Hybrid BWO-RL (Black Widow 
Optimization-Reinforcement Learning) based PI 
(Proportional-Integral) controller to improve the voltage 
profile in hydropower plants. By combining the 
optimization capabilities of BWO and the RL, this 
controller has shown better performance as compared to 
traditionally tuned PI controllers. Its ability to optimize 
controller parameters and adapt in real-time makes it a 
valuable tool for improving voltage stability, ensuring 
efficient and reliable operation of hydropower plants. 
Enhancing voltage stability in hydropower plants using a 
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Hybrid BWO-RL-based PI Controller has made significant 
contributions to the field of hydropower plant control 
systems in following ways: 
 

1. Improved Reliability: The controller has improved the 
reliability of hydropower plants by maintaining stable 
voltage levels, reducing the risk of power outages, 
and ensuring continuous energy supply. 

2. Efficiency Gains: Voltage stability enhancements have 
led to increased energy efficiency, reducing energy 
losses during power generation and transmission. 

3. Environmental Impact Reduction: By preventing 
equipment failures and disturbances, the controller 
has contributed to a reduction in environmental 
impacts associated with power generation. 

4. Innovative Integration: Reinforcement Learning (RL) 
represents an innovative integration technique, 
paving the way for further AI-based control system 
developments in hydropower. 

5. Real-Time Adaptability: The controller's real-time 
adaptability to changing conditions and disturbances 
is valuable, ensuring stability during dynamic events. 

 
The Hybrid BWO-RL-based PI controller represents a 

significant advancement in the field of hydropower plant 
control systems.  In future, the performance of the hybrid 
controller can be tested for the hydro plant used as a source 
of a Hybrid microgrid system. Some other future research 
directions include: 

 
1. Complexity Management: Addressing the complexity 

introduced by  
the hybrid BWO-RL-based PI Controller to make it more 

manageable and efficient. 

2. Data Challenges: Overcoming challenges related to 
obtaining sufficient and representative training data for 
RL-based controllers, especially in real-world 
environments. 

3. Computational Resources: Finding ways to make RL 
training computationally more efficient and scalable for 
broader implementation. 

4. Generalization: Ensuring that the controller can handle a 
wide range of operating conditions and disturbances 
through improved generalization. 

5. Multi-Objective Optimization: Considering multiple 
objectives, such as voltage stability, grid integration, 
and economic factors, for more balanced control 
strategies. 

6. AI Integration: Exploring additional AI techniques 
beyond RL, such as deep reinforcement learning and 
neural network-based controllers. 

7. Real-World Validation: Extensive testing and validation 
of the controller in real-world hydropower plants to 
ensure its practical applicability and effectiveness. 

8. Robustness Testing: Rigorous testing of the controller's 
robustness to various disturbances and extreme 
scenarios. 
In summary, enhancing voltage stability in 

hydropower plants through innovative control systems 
represents a promising avenue for improving grid 
reliability, energy efficiency, and sustainability in the 
hydropower industry. Future research will continue to 
refine and expand upon these advancements. 

 
This is an Open Access article distributed under the terms 
of the Creative Commons Attribution License.  
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