

Journal of Engineering Science and Technology Review 16 (4) (2023) 180 - 187

Research Article

Word Level Sign Language Translation using Deep Learning

Vighnesh Pathrikar1, Tejas Podutwar1, Akshay Siddannavar1,*, Akash Mandana1, K. Rajeswari1, S.R.

Vispute1 and N.Vivekanandan2

1Department of Computer Engineering, Pimpri Chinchwad College of Engineering, India
2Department of Mechanical Engineering, Pimpri Chinchwad College of Engineering, India

Received 21 November 2022; Accepted 26 June 2023

Abstract

Sign language is an interactive language through which deaf-mute people can communicate with ordinary people. There
are two ways to translate sign language: contact-based recognition and vision-based recognition. The contact-based method
depends on external electrical devices, such as sensors, to identify the movements made by the person and translate them
into text. The real-time motion of a person is caught via a web camera in the case of the vision-based technique and is
subsequently converted to text using image processing and deep learning algorithms. In this paper, we try to compare and
contrast various techniques for Sign Language Recognition and Translation. From our review, we came to a conclusion
that the models that were trained on custom datasets were more accurate than the one’s which were trained on datasets
accumulated by researchers like WLASL. And most of the literature used CNN or a form of RNN, like GRU, LSTM and
Transformers. From our study, we found that LSTM outperformed all the models with an average accuracy of 85.4% when
data augmentation is utilized.

Keywords: Deep Learning, Sign language, American Sign Language, Sign Language Recognition, Classification.

1. Introduction

Speech is the most common form of communication;
however, some people have trouble hearing or speaking. For
those with these difficulties, communication presents a big
challenge. In India, roughly 1 to 2 percent of the population
constitutes deaf and dumb people. Communicating with the
mute and deaf has always been a challenge for everyone
unfamiliar with any type of Sign Language. The visual form
of communication known as sign language uses structured
hand motions to communicate thoughts. This is the only way
to communicate with people with hearing and speaking
impairments. Sign Language refers to a language that implies
signs made with the hands and other movements, including
facial expressions and postures of the body for
communication in order to communicate with those people
who can’t interpret traditional languages of communication
due to some disability of senses or other reasons [19].

Sign Language is mostly used by deaf community as they
are unable to hear. This leads to a communication gap
between deaf and normal people because most of the normal
people community don’t understand Sign Language.

According to the World Health Organization (WHO)
nearly 500 million people worldwide suffer from hearing loss
[11]. Eliminating barriers to communication that exist for
both the general public and the hard-of-hearing group has
gained more attention [12]. An assistive technology that
automatically transforms an input gesture into its equivalent
voice or text is called sign language recognition (SLR) [13].
As a result, the SLR system helps close the communication
gap between the hearing and deaf-mute communities and
opens up new opportunities for applications based on human-
computer interaction [14–18].

2. Literature Survey

Previous researchers have used a wide range of techniques,
these included hardware-based technique, which used some
combinations of sensors to identify the gestures, used by the
authors of [7] and [9], vision based deep learning on images,
which used a collection of images to identify the sign, used
by the authors of [1, 2, 5], and vision based deep learning on
the pose of the sign, which extracts the landmarks of the
gestures and uses that information to identify the sign, used
by the authors of [2, 3, 4, 6, 8, 10]. Furthermore, authors of
[2, 3] used the common dataset of word level American sign
language, authors of [1, 6, 7, 8] created a custom dataset for
sign language, authors of [4] used the publicly available
Phoenix-2014T dataset, authors of [7] used a sentence level
Chinese Language Dataset and authors of [5] used a custom
dataset for alphabet level prediction as depicted in Fig. 1.

2.1. Hardware Based Approaches
Z. Wang T. Zhao et al. used multi-channel CNN to account
for multiple features in sign language recognition in real-time
[7]. They focused on reducing the communication between
deaf-mute and ordinary people by sending the recognition
results in a text format to a mobile as well as converting that
text into speech by using a text-to-voice dictionary in
Chinese. Their approach was highly accurate with an
accuracy of 89.2%. They proved that their approach has good
scalability and was effective in real-time. Their uniqueness
was also in part because their model was trained to predict
sentences with 4 words and not just restricted to single letters.
Though this approach had the prerequisite that the person
communicating in sign language had to wear two arm sensors,
one for each arm. Their approach could be further improved
and modified for longer sentences. This work resulted in the

JOURNAL OF
Engineering Science
and Technology Review

 www.jestr.org

Jestr

r

*E-mail address: aeonic619@gmail.com
ISSN: 1791-2377 © 2023 School of Science, IHU. All rights reserved.
doi:10.25103/jestr.164.22

Vighnesh Pathrikar, Tejas Podutwar, Akshay Siddannavar, Akash Mandana, K. Rajeswari, S.R. Vispute and N.Vivekanandan/
Journal of Engineering Science and Technology Review 16 (4) (2023) 180 - 187

 181

contribution of a sign language database with 20000 samples
for further use by researchers.
 A hardware glove containing sensors, an accelerometer,
and a microcontroller was utilized by Lance Fernandes,
Prathamesh Dalvi et al, to interpret the motions based on
predetermined values of ranges for each gesture. With this
gesture, the text that was provided to an Android application
to be converted to speech is translated. The glove's accuracy
was initially not very great because of various conflicts
between the sensor values, which led it to forecast some
values inaccurately. The photos from the dataset were then
converted to grayscale images using a random appropriate
threshold value, and then further converted to binary images
using a software consisting of code to capture images. The
accuracy of this model was found to be 99.8% as the dataset
was made versatile [9].

2.2. Pose Based Approaches
Pose-based methods rely on localizing key points or joints in
the human body from a single shot or video and analysing the
posture trajectories. These methods typically use techniques
such as pose estimation and keypoint detection to identify the
location and movement of the body parts involved in a sign
language gesture.
 M. Boháek and M. Hrz developed a robust pose
normalization scheme that took into account the signing space
and processed the hand poses in a separate local coordinate
system, independent of the body pose, and based recognition
on estimation of the pose of the human body in the form of
2D landmark locations. They also included a number of
enhancements to the body posture that increased its accuracy,
such as a brand-new augmentation for sequential joint
rotation. With 54 joint positions as the input, each picture
produced a 108-dimensional posture vector. In the self-
attention module, they employed transformers with 6
encoding layers and 9 heads. Once more, they employed 6
decoder layers and 9 heads for decoding. They were able to
effectively identify 63.18% of sign recordings in the 100-
gloss subset for Word Level American Sign Language
(WLASL), an increase of 5% over the previous state of the
art. They attained a recognition rate of 43.78% for the 300-
gloss subgroup, a 3.8% relative improvement. They reported
a test recognition accuracy of 100% using the LSA64 dataset
[3].
 The problems of low learning efficiency and short-term
memory problems of large and complicated approaches [8]
were addressed by B. Subramanian, B. Olimov, B. Naik,
S.M., et al. They chose mediapipe and adjusted GRU as an
approach. They improved the screening of irrelevant data by
multiplying the GRU update gate with the reset gate. In
comparison to straightforward RNN and other models built
on top of RNN, namely, LSTM, regular GRU, BiGRU, and
BiLSTM deep learning models, this approach demonstrated
greater accuracy. Very low MAE and MSE values as well as
strong R-squared values were present in their proposed GRU
neural network model. The recommended technique had the
advantages of improved prediction accuracy, very effective
learning, and information processing capacity. Though the
proposed model provides better accuracy it can’t be said with
certainty that it is always better than other approaches since
the study was conducted on a limited dataset.
 S. B. Abdullahi and K. Chamnongthai used FFV-Bi-
LSTM (Fast Fisher Vector Bi-LSTM) to bring Spatio-
temporal prosodic as well as angular features into
consideration for prediction of the given gesture for
distinguishing similar sign language gestures in a better

manner [6]. The advantage that FFV-Bi-LSTM displayed was
its high accuracy in the range of 91% to 98%. They
considered rhythmic movement making their approach
unique. The limitations were that choosing an FV (Fisher
Vector) is a trial-and-error process, and FFV-Bi-LSTM was
unable to detect small changes in hand trajectory. The result
was that they found a new way to classify similar hand
gestures. They concluded that sign language recognition
should be dealt with as a multi-feature problem in the future.
They also contributed to the creation of a large 3D hand-
skeletal dataset.
 Kayo Yin and Jesse Read, introduced a Spatial-Temporal
Multi-Cue (STMC) Transformer which was used in the
translation of sign language gloss notation to spoken language
translations. Through their findings, they concluded that
transformers outperformed recurrent networks in this setup
and STMC-Transformer improved the state-of-the-art video-
to-text translation by 7 BLEU. Additionally, they
accomplished cutting-edge outcomes on several translation
assignments using the PHOENIX-Weather 2014T and
ASLG-PC12 datasets [4].

2.3. Appearance Based
Appearance-based methods involve analysing the visual
appearance of sign language gestures using computer vision
and deep learning techniques. This approach focuses on
extracting the features of the hands and other body parts and
recognizing sign language based on their texture, colour, or
shape. Appearance-based methods utilize the visual
information obtained from images or videos and often rely on
feature extraction techniques.
 Sakshi Sharma and Sukhwinder Singh proposed a
convolutional neural network for sign language recognition
using gestures. The proposed CNN model was termed G-
CNN. In this work, a dataset consisting of 2150 images of the
gestures of the Indian Sign Language (ISL) was collected
using an RGB camera, and a publicly accessible dataset of
ASL was used. In the data preparation phase, initially, the
samples of the images were collected from the camera, and
then they were resized to a size of 256x256. After the images
were ready, they were labelled with the appropriate tags
which provided a learning basis for the classifier. Once the
data was labelled, it was trained against the proposed model.
For the classification of sign language hand gestures, VGG-
11 and VGG-16, two other architectures, had been explored
and modified. The self-collected 43 unique ISL motions were
tested to evaluate the performance of the work. For ISL and
ASL, respectively, the G-CNN model obtains the highest
accuracy of 94.83% and 100% respectively. The evaluation
was done using the 10-fold cross-validation method. The
suggested vision-based model removes the need for external
technology and user dependence, making it easier to operate
[1].
 Shagun Katoch, Varsha Singh, et. al offered a method for
creating an extensive, diversified, and trustworthy real-time
Indo-Arabic digits (0-9) and English alphabets (A-Z)
identification mechanism for ISL. Their main goal was to
create a more universal recognition tool that would improve
real-time recognition. A method was proposed that recognizes
alphabets (A-Z) as well as Indo-Arabic digits (0-9) in a live
video stream using the Bag of Visual Words model (BOVW),
and outputs the anticipated labels as both text and speech. For
classification, CNN and SVM are employed. With an
accuracy of 99%, the system was successfully trained on all
36 ISL static alphabets and digits. SVM and CNN both
produced high accuracy classifications of the photos, however

Vighnesh Pathrikar, Tejas Podutwar, Akshay Siddannavar, Akash Mandana, K. Rajeswari, S.R. Vispute and N.Vivekanandan/
Journal of Engineering Science and Technology Review 16 (4) (2023) 180 - 187

 182

CNN outperformed SVM with fewer features. For superior
results, skin colour segmentation and background subtraction
were also used [5].
 For the challenge of motion gesture recognition, Yanqiu
Lao, Pengwen Xiong, and colleagues suggested the B3D
ResNet model, which is built on 3D Residual ConvNet and
Bi-directional LSTM networks. It is suggested that the B3D
ResNet model be used to assess long-term temporal dynamic
feature sequences and capture spatiotemporal feature
information for video representation. Seventeen
convolutional layers, two Bidirectional-LSTM layers, one
fully connected layer, and one soft-max layer make up the
majority of the B3D ResNet model architecture. This model
incorporates video sequences to derive the spatiotemporal
properties of the video sequence, which are then applied to
the recognition of motion gestures. For the contrast test, two
testing datasets, the DEVISIGN-D dataset and the SLR
dataset were chosen in order to successfully demonstrate that
the proposed network can recognize motion gestures. The
B3D ResNet model excelled in extracting context-specific
information from a sequence [10].
 For the purposes of categorizing sign language, Dongxu
Li, Cristian Rodriguez Opazo, et al. employed two standard
approaches. The first kind used purposefully chosen
characteristics to describe the spatial-temporal information
from picture frames and combine them into a higher
dimensional code. The first hidden layer was created with 64
neurons and the subsequent layers with 96,128 and 256
neurons respectively and GRU's number of layers was set to
2. They started with a pre-trained VGG16 model for this
method and then fine-tuned it using a stacked GRU model.
They also used the I3D, three-dimensional convolutional
network as another method for appearance-based techniques.
The second method was pose-based techniques, which were
aimed at localizing the key points or human body joints from
a single shot or video. For this method, they used OpenPose
to extract 55 body and hand 2D key points from a frame.
Which included 13 upper-body joints and 21 joints for both
the left and right hands. This was fed to a stack of 2 GRUs
with hidden sizes of 64, 64, 128, and 128 for the four subsets
respectively. They also proposed their own Temporal Graph
Convolution Networks (TGCN), which stacks many residual
graph convolutional blocks and uses the average pooling
result throughout the temporal dimension as the feature
representation of posture trajectories. 3D Convolutional
Networks (I3D) trained on appearance-based images had the
highest accuracy of 86.98%. And their proposed Temporal
Graph Convolutional Network trained on pose-based frames
had the 2nd highest accuracy of 79.64% [2].

Fig. 1. Comparative Analysis of Datasets chosen.

Table 1. Analysis of various sign language detection
algorithms.

Reference
No.

Models Compared Best Model

[2] Pose-GRU, Pose-
TGCN, VGG-GRU,

I3D

I3D

[3] I3D, TK-3D ConvNet,
Fusion-3, GCN-BERT,

Pose- TGCN, Pose-
GRU, SPOTER

TK-3D ConvNet

[8] standard GRU, BiGRU,
simple RNN, LSTM,

and BiLSTM

MOPGRU

[1]

G-CNN, VGG-11,
VGG-16

G-CNN

[5] SVM and CNN CNN

[10]
Bi-LSTM, HMM-DTC,

DNN, C3D and B3D
ResNet

B3D ResNet

Researchers had used various deep learning algorithms for
sign language detection. Some of which include CNN, RNN,
LSTM, GRU etc. Other algorithms that are used by the
researchers are the modifications to these base algorithms. For
example, Pose-GRU and VGG-GRU are the models derived
from the GRU model. Similarly, G-CNN, VGG-11, I3D,
HMM-DTC, C3D are the other algorithms.

Table 2. Analysis of the accuracy of the best models.

Reference No. Model Accuracy
[1] G-CNN 94.83%
[2] I3D for WLASL300 86.98%
[3] TK-3D ConvNet for

WLASL300
 68.75%

[5] CNN 99.64%
[6] FFV-Bi-LSTM 91% to 98%
[7] Multi-Channel CNN 89.2%
[8] MOPGRU 95%
[9] CNN+hardware

glove
99.98%

[10] B3D ResNet 86.9% to 89.8%

The above table shows the accuracies of the best models
in each study. Some of the researchers used the custom dataset
for training their models. In such studies, the accuracy
achieved by the models was high, but they were not able to
perform well in real-time sign language detection. While the
models trained on public datasets are less biased and tend to
provide better results. Amongst the given models, CNN used
with the hardware gloves gave the highest accuracy of
99.98%.

3. Methodology

3.1. Feed Forward Neural Networks (FNN)
FNN are indeed the least complex neural networks, which is
composed of one or more layers of neurons [27]. Which
performs some mathematical functions on a given set of
inputs and produces a given set of outputs. The output from
each layer is forwarded to the next layer which again performs
their own set of mathematical operations on it. The initial
layer of neurons is called the input layer, the final layer is
named the output layer and any intermediary layers are
termed as the hidden layers. In feedforward networks, the
information only moves ahead from the input layer, through
the hidden layers and to the output layer [26]. The downside

Vighnesh Pathrikar, Tejas Podutwar, Akshay Siddannavar, Akash Mandana, K. Rajeswari, S.R. Vispute and N.Vivekanandan/
Journal of Engineering Science and Technology Review 16 (4) (2023) 180 - 187

 183

of the Feed forward layers is that it can only deal with data,
which is sequential, it only takes into account the current input
and it is impaired of the capacity to entirely memorize the
information of the past. This is solved by using Recurrent
Neural Networks [23].

3.2. Recurrent Neural Networks (RNN)
RNN are an extension of traditional neural networks, having
the capability of storing the outcome of a specific layer and
passing it back as the input in order to foretell the outcome of
the layer. Feed FNNs have a disadvantage, that is, the output
can only be propagated in the forward direction.
 Thus, RNNs solve this problem by using its “memory”,
which captures information about what has been calculated so
far [24]. Whose equation is given by.

z(t) = b + W1(h(t-1)) +W2x(t) (1)

h(t) = tanh (z(t)) (2)

r(t) = c + V(h(t)) (3)

Where h(t) represents the hidden state, which depends on the
current input state x(t), and the previous hidden state h(t-1). And
the output, r(t), is given by a combination of the hidden state
and the input state.

 The significance of these equations lies in their ability to
process sequential data. The intermediate state z(t) combines
information from the previous hidden state and the current
input, providing a context for the current time step. The
hidden state h(t) captures the current representation of the
input sequence, incorporating information from previous time
steps through the recursive nature of the RNN. The output r(t)
is derived from the hidden state and can be used for various
tasks such as classification, prediction, or further processing.
 The downside of using RNNs is the Vanishing Gradient
Problem, that is, the gradient, which carries information
becomes smaller and smaller, thus its updates keep becoming
more insignificant [25]. This is solved by using LSTM [23].
 Recurrent Neural Networks (RNNs) are a type of neural
network specifically designed for processing sequential data
by maintaining internal memory. RNNs are capable of
capturing temporal dependencies and have several use cases
where they outperform other neural networks. RNNs are
particularly useful for tasks involving sequential data, where
capturing and modelling temporal dependencies is critical.
RNNs enable the modelling of sequential context, making
them valuable in various applications across different
domains.

3.3. GRU
Gated Recurrent Neural Networks were designed to solve the
issue regarding long-term dependency in the traditional RNN.
The gated recurrent neural network is similar to the long-short
term memory network with a slight variation in the internal
architecture. GRU does not maintain the internal cell state like
the LSTM and has the hidden state only. Due to this change,
the training of the GRU network is faster compared to the
LSTM units. The architecture of the GRU cell composes two
gates namely: reset gate and the update gate. The reset gate
can also be called the short-term gate while the update gate
can be called a long-term gate.
 The importance of the previous cell state in order to
calculate the current cell state is given by the equation:

r(t) = 𝜎 (W(r) · [h(t-1), x(t)]) (4)

where r(t) denotes the output value of the reset gate, W(r)
denotes the corresponding weight associated with the cell, h(t-

1) denotes the cell state at the previous step and x(t) denotes the
current input given to the model.

 The update gate decides how much part of the updated cell
state should be considered to form the new cell state for the
current cell state and it is given as:

z(t) = 𝜎 (W(z) · [h(t-1), x(t)]) (5)

 Now, when the outputs of the reset gate and the update
gate are calculated, they are used to calculate the current cell
state of the GRU cell, which is the output of the cell. The
current cell state is calculated as follows:

q(t) = tanh (W · [r(t) * h(t-1), x(t)]) (6)

h(t) = (1- z(t)) * h(t-1) + z(t) * q(t) (7)

where h(t) denotes the output of the GRU cell which is
calculated using the z(t) and r(t).

 GRU is less CPU intensive compared to the LSTM model
providing approximately similar accuracy compared to the
LSTM model.
 Gated Recurrent Unit (GRU) networks are a type of
recurrent neural network (RNN) that, like LSTM networks,
can effectively capture and model sequential dependencies.
GRUs have a simplified architecture compared to LSTMs,
making them computationally more efficient and easier to
train. GRU networks are used in video analysis tasks, such as
action recognition, gesture recognition, and video captioning.
GRUs can process sequential frames of a video and capture
the temporal dependencies between different frames,
enabling accurate recognition of actions or generation of
descriptive captions. GRUs offer a balance between
computational efficiency and modelling capacity, making
them particularly useful in scenarios where training time or
model complexity needs to be optimized.

3.4. LSTM
RNNs bring with them the issue of long-term reliance. LSTM
is built to overcome the same. Results from the previous
LSTM cell are passed onto the succeeding cell at each
iteration [22]. Issue of vanishing gradient is addressed by
LSTM [21]. Components of an LSTM cell [23]:

1. Output gate
2. Forget gate
3. Cell state
4. Input gate

 Forget gate inputs are previous hidden state & current
input, it is later on refined by an activation function as per
configuration. If this function’s outcome is in proximity of
one the information is stored or else it is discarded. The input
gate's function is to contribute information to the cell’s state.
Responsibility of the forget gate is to bring the cell’s state up
to date. The output gate specifies the value of the following
hidden state[23]. The equation for forget gate of LSTM is
given as:

ut = σ (mi [lt-1 , ht]+ ri) (8)

Vighnesh Pathrikar, Tejas Podutwar, Akshay Siddannavar, Akash Mandana, K. Rajeswari, S.R. Vispute and N.Vivekanandan/
Journal of Engineering Science and Technology Review 16 (4) (2023) 180 - 187

 184

ct = tanh (mi [lt-1 , ht]+ ri) (9)

Input gate has the responsibility of bringing the cell state up
to date.

vt = σ (mf [lt-1 , ht]+ rf) (10)

The forget gate decides which information from the 𝑙!"1 and
ℎ! is to be forgotten by supplying it to the sigmoid (σ)
activation function.

wt = σ (mo [lt-1 , ht]+ ro) (11)

The next hidden cell state’s value is specified by the output
(wt). Here ut illustrates forget gate, vt illustrates input gate, wt

illustrates output gate, σ illustrates the sigmoid activation
function, mx illustrates weight associated with neurons in
respective gates, lt-1 is the output of the time step (t-1), input
supplied for the current time step is depicted by ht , and rx is
the value of bias for the gates.
 The significance of these equations lies in the LSTM's
ability to selectively update, forget, and output information,
thus enabling the network to capture and retain long-term
dependencies in sequential data.
 Long Short-Term Memory (LSTM) networks are a type
of recurrent neural network (RNN) that are specifically
designed to address the vanishing gradient problem, allowing
them to effectively capture and remember long-term
dependencies in sequential data. LSTM networks are well-
suited for time series forecasting, anomaly detection, and
pattern recognition tasks. They can capture temporal
dependencies and learn complex patterns in the data.
Applications of LSTM in this domain include stock market
prediction, weather forecasting, energy load forecasting, and
predicting customer behaviour.

3.5. Bi-LSTM
The Bidirectional-LSTM RNN is mostly employed in natural
language processing. Unlike traditional LSTM, the input
travels in both directions, and it may use information from
both sides. It's also an effective tool for simulating the
sequential relationships between words and sentences in both
directions.
 To summarize, BiLSTM adds an additional LSTM layer
that reverses the direction of information flow. In a nutshell,
the input sequence flows backwards in the extra LSTM layer.
The outputs of both LSTM layers are then combined in a
variety of methods, including average, sum, multiplication,
and concatenation. The equation for forward input gate of Bi-
LSTM is given as:

�⃗�t = σ (mf [lt-1 , ht]+ rf) (12)

 The equation for backward input gate of Bi-LSTM is
given as:

�⃗�t = σ (mf [lt+1 , ht]+ rf) (13)

where vt illustrates input gate, σ illustrates the sigmoid
activation function, mx illustrates weight associated with
neurons in respective gates, lt-1 is the output of the time step
(t-1), input supplied for the current time step is depicted by ht
, and rx is the value of bias for the gates.

 Bidirectional Long Short-Term Memory (Bi-LSTM)

networks are a type of recurrent neural network (RNN) that
have the ability to process sequential data in both forward and
backward directions. This bidirectional nature makes them
suitable for a variety of applications where the context from
both past and future inputs is important. Natural Language
Processing is one of the most important applications of Bi-
LSTM. The bidirectional nature of Bi-LSTMs allows them to
capture dependencies in both directions, making them
effective for tasks where the meaning of a word or phrase
depends on its surrounding context.

3.6. Mediapipe
A tool called Mediapipe is used to build machine learning
pipelines for time series data, including audio and video, and
so on [8]. This multi-platform framework is compatible with
Android, Desktop Server, embedded devices, and iOS such as
the Raspberry Pi and Jetson Nano.
 A specific pre-trained TensorFlow or TFLite model serves
as the foundation for solutions, which are open-source pre-
built examples. The Framework serves as the foundation for
MediaPipe Solutions. To find the critical spots, we used the
Face, Hand, and Pose solutions from the sixteen solutions it
currently offers.
 Since MediaPipe provides pre-trained models and APIs
for pose estimation, which can accurately detect and track
landmarks on human bodies, facial expressions, hand gestures
and it is designed to efficiently process video and image data
in real-time, it makes it the best framework to go with.

4. Implementation

4.1. Data Collection
The WLASL dataset contains over 2,000 unique ASL
gestures corresponding to a vocabulary of 2,000 words. These
gestures were recorded from diverse signers in a controlled
environment with consistent lighting and background
conditions. The dataset provides a wide range of variations in
sign language gestures, allowing for robust training and
evaluation of models [2].
 Each video in the dataset is labelled with the
corresponding word it represents, enabling the development
of algorithms for automatic recognition and classification of
ASL gestures [2].
 The data is in MP4 video format, consisting of a collection
of videos capturing ASL gestures. The videos have durations
ranging from 0.3 to 0.8 seconds, providing concise
representations of the sign language gestures. The dataset
includes a JSON file that serves as a mapping reference,
associating words with their corresponding video IDs. In
some cases, multiple video IDs may be linked to a single
word. This JSON mapping provides a convenient way to
access and organize the videos based on the specific words
they represent [2].
 This data was collected by previous researchers from
multiple sign language educational websites and YouTube
tutorials [2].
 Using RNN-based neural networks (RNN, LSTM, GRU,
Bi-LSTM) is highly beneficial for video data processing in
sign language prediction due to their ability to capture
temporal dependencies and sequential patterns in the data.
 Using CNNs for video data processing in sign language
prediction offers several advantages. CNNs excel in capturing
spatial patterns making them suitable for analysing individual
frames of sign language videos. CNNs can detect features,
such as hand shapes, facial expressions, and body movements,

Vighnesh Pathrikar, Tejas Podutwar, Akshay Siddannavar, Akash Mandana, K. Rajeswari, S.R. Vispute and N.Vivekanandan/
Journal of Engineering Science and Technology Review 16 (4) (2023) 180 - 187

 185

which are crucial for interpreting sign language gestures.
 Since we wanted to build a system which satisfies a real-
world use case, we decided to use the WLASL dataset, instead
of creating our own. Fig. 3 showcases an overview of the
proposed architecture, we capture a frame from the video,
extract the landmark coordinates using mediapipe, then using
a collection of such coordinates for a video, we label it. In this
way the labelled dataset was prepared, which was further
expanded using scaling. This data was then used to train four
different models, RNN, LSTM, GRU and Bi-LSTM, since
these models were common in the reviewed literature.

Fig. 3. Overview of proposed architecture.

4.2. Data Pre-processing
We used Word Level American Sign Language, WLASL, the
largest video dataset for Word-Level American Sign
Language (ASL) recognition, which features 2,000 common
different words in ASL [2].
 On this dataset, we used Mediapipe, and marked 468 face
landmarks, 21 hand landmarks, per hand and 33 full body
landmarks [20].
 For the words chosen, we chose the first 15 words with
the greatest number of videos, i.e., "book", "drink",
"computer", "before", "chair", "go", "clothes", "who",
"candy", "cousin", "deaf","fine","help","no" and "thin".
 Since LSTM requires input sizes to be the same, we took
the least number of frames, 23 in our case, from the chosen
videos, and uniformly chose the same number of frames, 23,
from all the videos.

4.3. Data Transformation
For Evaluating the Models, we decided to Augment the 23
frames using Scaling, this increases the training data and
helps us in getting better results.
 We also found out that face landmarks make most of the
input data, but only some of the key points contribute towards
the prediction of the sign, hence we decided to also test the
models without the face key points as an input. Fig. 4 depicts
the two classes of the chosen landmarks and the points which
are marked by them.
 This left us with four permutations on which we will train
our models:

1. With face landmarks and without data augmentation.
2. With face landmarks and with data augmentation.

3. Without face landmarks and without data augmentation.
4. Without face landmarks and with data augmentation.

 After deciding which data to use, we fixed the test size to
0.2 and proceeded with our implementation.

Fig. 4. Comparison between chosen landmarks.

4.4. Modelling and Results
4.4.1. RNN
For RNN, we used a hidden layer with size 128, followed by
a dense layer of size 10, followed by a dense layer of size 15.
The results for the permutation of the inputs were as follows.

1. For just face landmarks, an accuracy of 22.22% was

attained after 450 epochs of training the model on the
filtered key points.

2. For face landmarks with data augmentation, an accuracy
of 83.33% was attained after 450 epochs of training the
model on the filtered key points.

3. For just hand and pose landmarks, an accuracy of 18.15%
was attained after 180 epochs of training the model on the
filtered key points.

4. For hand and pose landmarks with data augmentation, an
accuracy of 83.33% was attained after 150 epochs of
training the model on the filtered key points.

4.4.2. GRU
For GRU, we used a three hidden layer with size of 64, 128
and 64 units respectively followed by two dense layers of size
64 and 32 units respectively. The results for the permutation
of the inputs were as follows.

1. For just face landmarks, an accuracy of 18.51% was

attained after 176 epochs of training the model on the
filtered key points.

2. For face landmarks with data augmentation, an accuracy
of 81.481% was attained after 163 epochs of training the
model on the filtered key points.

3. For just hand and pose landmarks, an accuracy of 18.52%
was attained after 186 epochs of training the model on the
filtered key points.

4. For hand and pose landmarks with data augmentation, an
accuracy of 87.04% was attained after 97 epochs of
training the model on the filtered key points.

Vighnesh Pathrikar, Tejas Podutwar, Akshay Siddannavar, Akash Mandana, K. Rajeswari, S.R. Vispute and N.Vivekanandan/
Journal of Engineering Science and Technology Review 16 (4) (2023) 180 - 187

 186

4.4.3. LSTM
For LSTM, we used three hidden layers with size 32, 128 and
64 units respectively followed by two dense layers of size 64
and 32 units followed by a dense layer of size 15 units. The
results for the permutation of the inputs were as follows.

1. For just face landmarks, an accuracy of 22.22% was

attained after 375 epochs of training the model on the
filtered key points.

2. For face landmarks with data augmentation, an accuracy
of 83.33% was attained after 324 epochs of training the
model on the filtered key points.

3. For just hand and pose landmarks, an accuracy of 25%
was attained after 150 epochs of training the model on the
filtered key points.

4. For hand and pose landmarks with data augmentation, an
accuracy of 87.5% was attained after 100 epochs of
training the model on the filtered key points.

4.4.4. Bi-LSTM
For Bi-LSTM, we used one hidden layer with size 128,
followed by two dense layers of size 32 and 15. The results
for the permutation of the inputs were as follows.

1. For just face landmarks, an accuracy of 22.22% was

attained after 400 epochs of training the model on the
filtered key points.

2. For face landmarks with data augmentation, an accuracy
of 72.22% was attained after 500 epochs of training the
model on the filtered key points.

3. For just hand and pose landmarks, an accuracy of 25.95%
was attained after 125 epochs of training the model on the
filtered key points.

4. For hand and pose landmarks with data augmentation, an
accuracy of 83.33% was attained after 105 epochs of
training the model on the filtered key points.

4.4.5. Results
From the experiments, it is observed that the addition of face
landmarks usually led to a decrease in the accuracy of the
models. Furthermore, data augmentation played an important
role in increasing each model's accuracy as depicted in Fig. 5.
 Among the models, LSTM performed the best when data
augmentation was in play, with an average accuracy of
85.41%, followed by GRU at 84.25%, RNN at 83.33% and
finally Bi-LSTM at 77.77%. When data augmentation was not
utilized, Bi-LSTM performed the best with an average
accuracy of 24.08%, followed by LSTM at 23.61%, RNN at
20.18% and finally GRU at 18.155%.

Fig. 5. Comparison of each model for the permutation of the input data.

5. Conclusion

In this study, the results of various approaches for Sign
language recognition are compared.
 This research discovered the following limitations after
reviewing the relevant literature. First, the dataset used by the
previous literature wasn't the same, making it difficult to
conclude from the literature. Second, the sign languages
chosen for prediction were different. Third, some papers rely
on datasets built by the researchers themselves either directly
or with the help of volunteers, hence the data itself in the
dataset might be improper due to the lack of expertise of the
signer and may introduce bias depending on different features
used for SLR. Furthermore, from the previous literature, we
conclude that the models that were trained on custom datasets
were more accurate than the ones which were trained on
accumulated datasets from professional signers, like WLASL.
And most of the literature used CNN or a form of RNN, like
GRU, LSTM, and Transformers.
 Thus, we opted to utilize a general dataset WLASL. We
first extracted the coordinates for pose, hand, and face from
the WLASL dataset for a few chosen words. These were then
used to model RNN, LSTM, GRU, and Bi-LSTM, in which
LSTM on average outperformed the rest of the models. The
proposed architecture can be effectively used to translate a
signers gesture in real-time.
 Further iterations of this work should use a publicly
available dataset for the benefit of society, so that the results
may be used by a wide range of individuals in everyday life.
They should also consider a better image processing method
to map the key features of the face and the body. Also,
developing a low-latency architecture solution for common
use of sign language detection is an aspect which requires
extensive research and experimentation.

This is an Open Access article distributed under the terms of
the Creative Commons Attribution License.

References

[1] S. Sharma and S. Singh, “Vision-based hand gesture recognition using
deep learning for the interpretation of sign language,” Exp Sys Appl,
vol. 182, p. 115657, Nov. 2021, doi: 10.1016/j.eswa.2021.115657.

[2]D. Li, C. R. Opazo, X. Yu, and H. Li, “Word-level Deep Sign
Language Recognition from Video: A New Large-scale Dataset and
Methods Comparison,” 2019, doi: 10.48550/ARXIV.1910.11006.

[3] M. Bohacek and M. Hruz, “Sign Pose-based Transformer for Word-
level Sign Language Recognition,” in 2022 IEEE/CVF Winter
Conference on Applications of Computer Vision Workshops

(WACVW), Waikoloa, HI, USA: IEEE, Jan. 2022, pp. 182–191. doi:
10.1109/WACVW54805.2022.00024.

[4] Y. Kayo and R. Jesse, “Better Sign Language Translation with
STMC-Transformer,” in Proceedings of the 28th International
Conference on Computational Linguistics, Barcelona, Spain:
International Committee on Computational Linguistics, Dec. 2020,
pp. 5975–5989. [Online]. Available:
https://aclanthology.org/2020.coling-main

Vighnesh Pathrikar, Tejas Podutwar, Akshay Siddannavar, Akash Mandana, K. Rajeswari, S.R. Vispute and N.Vivekanandan/
Journal of Engineering Science and Technology Review 16 (4) (2023) 180 - 187

 187

[5]S. Katoch, V. Singh, and U. S. Tiwary, “Indian Sign Language
recognition system using SURF with SVM and CNN,” Array, vol.
14, p. 100141, Jul. 2022, doi: 10.1016/j.array.2022.100141.

[6] S. B. Abdullahi and K. Chamnongthai, “American Sign Language
Words Recognition Using Spatio-Temporal Prosodic and Angle
Features: A Sequential Learning Approach,” IEEE Access, vol. 10,
pp. 15911–15923, 2022, doi: 10.1109/ACCESS.2022.3148132.

[7] Z. Wang et al., "Hear Sign Language: A Real-Time End-to-End Sign
Language Recognition System," in IEEE Trans. on Mobile Comput,
vol. 21, no. 7, pp. 2398-2410, 1 July 2022, doi:
10.1109/TMC.2020.3038303.

[8] B. Subramanian, B. Olimov, S. M. Naik, S. Kim, K.-H. Park, and J.
Kim, “An integrated mediapipe-optimized GRU model for Indian
sign language recognition,” Sci Rep, vol. 12, no. 1, p. 11964, Jul.
2022, doi: 10.1038/s41598-022-15998-7.

[9] L. Fernandes, P. Dalvi, A. Junnarkar, and M. Bansode,
“Convolutional Neural Network based Bidirectional Sign Language
Translation System,” in 2020 Third International Conference on
Smart Systems and Inventive Technology (ICSSIT), Tirunelveli,
India: IEEE, Aug. 2020, pp. 769–775. doi:
10.1109/ICSSIT48917.2020.9214272.

[10] Y. Liao, P. Xiong, W. Min, W. Min, and J. Lu, “Dynamic Sign
Language Recognition Based on Video Sequence With BLSTM-3D
Residual Networks,” IEEE Access, vol. 7, pp. 38044–38054, 2019,
doi: 10.1109/ACCESS.2019.2904749.

[11]N. B. Ibrahim, H. H. Zayed, and M. M. Selim, “Advances,
Challenges and Opportunities in Continuous Sign Language
Recognition,” J. Eng. Appl. Sci., vol. 15, no. 5, pp. 1205–1227, Dec.
2019, doi: 10.36478/jeasci.2020.1205.1227.

[12] O. Koller, “Quantitative Survey of the State of the Art in Sign
Language Recognition,” 2020, doi: 10.48550/ARXIV.2008.09918.

[13]A. Mittal, P. Kumar, P. P. Roy, R. Balasubramanian, and B. B.
Chaudhuri, “A Modified LSTM Model for Continuous Sign
Language Recognition Using Leap Motion,” IEEE Sensors J., vol.
19, no. 16, pp. 7056–7063, Aug. 2019, doi:
10.1109/JSEN.2019.2909837.

[14] A. Wadhawan and P. Kumar, “Sign Language Recognition Systems:
A Decade Systematic Literature Review,” Arch Computat Methods
Eng, vol. 28, no. 3, pp. 785–813, May 2021, doi: 10.1007/s11831-
019-09384-2.

[15] Z. Sun, “A Survey on Dynamic Sign Language Recognition,” in Adv
Comp, Comm Comp Sci, S. K. Bhatia, S. Tiwari, S. Ruidan, M. C.
Trivedi, and K. K. Mishra, Eds., in Advances in Intelligent Systems
and Computing, vol. 1158. Singapore: Springer Singapore, 2021, pp.
1015–1022. doi: 10.1007/978-981-15-4409-5_89.

[16] J. S. Raj, A. M. Iliyasu, R. Bestak, and Z. A. Baig, Eds., Innov Dat
Comm Technolog Applic: Proceedings of ICIDCA 2020, vol. 59. in
Lecture Notes on Data Engineering and Communications
Technologies, vol. 59. Singapore: Springer Singapore, 2021. doi:
10.1007/978-981-15-9651-3.

[17] E. Kiran Kumar, P. V. V. Kishore, A. S. C. S. Sastry, and D. Anil
Kumar, “3D Motion Capture for Indian Sign Language Recognition
(SLR),” in Sm Comp Infor, S. C. Satapathy, V. Bhateja, and S. Das,

Eds., in Smart Innovation, Systems and Technologies, vol. 78.
Singapore: Springer Singapore, 2018, pp. 21–29. doi: 10.1007/978-
981-10-5547-8_3.

[18] R. Itkarkar Rajeshri, A. K. V. Nandi, and V. B. Mungurwadi, “Indian
Sign Language Recognition Using Combined Feature Extraction,” in
Adv Med Phys Healthc Eng, M. Mukherjee, J. K. Mandal, S.
Bhattacharyya, C. Huck, and S. Biswas, Eds., in Lecture Notes in
Bioengineering. Singapore: Springer Singapore, 2021, pp. 1–7. doi:
10.1007/978-981-33-6915-3_1.

[19] K. Vaibhav, “India Must Empower Millions with Hearing Disability
says Deaf and Mute Entrepreneur Vaibhav Kothari,” The Times of
India, Aug. 17, 2020. https://timesofindia.indiatimes.com/india-
must-empower-millions-with-hearing-disability-says-deaf-and-
mute-entrepreneur-vaibhav-kothari/articleshow/77591952.cms
(accessed Oct. 10, 2022).

[20] “On-device machine learning for everyone,” Mediapipe.
https://developers.google.com/mediapipe (accessed Jul. 28, 2022).

[21] C. Sanket, K. Rajeswari, and S. Vispute, “A Review on using Long-
Short Term Memory for Prediction of Stock Price,” Inter J Eng Res
Technol (IJERT), vol. 10, no. 11, pp. 251–256, Nov. 2021, doi:
10.17577/IJERTV10IS110117.

[22] V. Pathrikar, T. Podutwar, A. Siddannavar, A. Mandana, Κ.
Rajeswari, and S. R. Vispute, “Research on Various Time
Forecasting Algorithms for Predicting Covid-19 Cases,” Inter J Eng
Res Technol (IJERT), vol. 10, no. 12, pp. 451–460, Dec. 2021, doi:
10.17577/IJERTV10IS120203.

[23] V. Pathrikar, T. Podutwar, S. R. Vispute, A. Siddannavar, A.
Mandana, and K. Rajeswari, “Forecasting Diurnal Covid-19 Cases
for Top-5 Countries Using Various Time-series Forecasting
Algorithms,” in 2022 International Conference on Emerging Smart
Computing and Informatics (ESCI), Pune, India: IEEE, Mar. 2022,
pp. 1–6. doi: 10.1109/ESCI53509.2022.9758373.

[24] H. T. Rauf et al., “Time series forecasting of COVID-19
transmission in Asia Pacific countries using deep neural networks,”
Pers Ubiquit Comput, vol. 27, no. 3, pp. 733–750, Jun. 2023, doi:
10.1007/s00779-020-01494-0.

[25] S. Shastri, K. Singh, S. Kumar, P. Kour, and V. Mansotra, “Time
series forecasting of Covid-19 using deep learning models: India-
USA comparative case study,” Ch, Sol & Fr, vol. 140, p. 110227,
Nov. 2020, doi: 10.1016/j.chaos.2020.110227.

[26] S. Chaturvedi, R. N. Titre, and N. Sondhiya, “Review of
Handwritten Pattern Recognition of Digits and Special Characters
Using Feed Forward Neural Network and Izhikevich Neural Model,”
in 2014 International Conference on Electronic Systems, Signal
Processing and Computing Technologies, Nagpur, India: IEEE, Jan.
2014, pp. 425–428. doi: 10.1109/ICESC.2014.83.

[27] S. Himavathi, A. J. Dhanaseely, and E. Srinivasan, “Performance
comparison of cascade and feed forward neural network for face
recognition system,” in International Conference on Software
Engineering and Mobile Application Modelling and Development
(ICSEMA 2012), Chennai, India: Institution of Engineering and
Technology, 2012, pp. 21–21. doi: 10.1049/ic.2012.0154.

