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Abstract 
 
Sign language is an interactive language through which deaf-mute people can communicate with ordinary people. There 
are two ways to translate sign language: contact-based recognition and vision-based recognition. The contact-based method 
depends on external electrical devices, such as sensors, to identify the movements made by the person and translate them 
into text. The real-time motion of a person is caught via a web camera in the case of the vision-based technique and is 
subsequently converted to text using image processing and deep learning algorithms. In this paper, we try to compare and 
contrast various techniques for Sign Language Recognition and Translation. From our review, we came to a conclusion 
that the models that were trained on custom datasets were more accurate than the one’s which were trained on datasets 
accumulated by researchers like WLASL. And most of the literature used CNN or a form of RNN, like GRU, LSTM and 
Transformers. From our study, we found that LSTM outperformed all the models with an average accuracy of 85.4% when 
data augmentation is utilized. 
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1. Introduction 

 
Speech is the most common form of communication; 
however, some people have trouble hearing or speaking. For 
those with these difficulties, communication presents a big 
challenge. In India, roughly 1 to 2 percent of the population 
constitutes deaf and dumb people. Communicating with the 
mute and deaf has always been a challenge for everyone 
unfamiliar with any type of Sign Language. The visual form 
of communication known as sign language uses structured 
hand motions to communicate thoughts. This is the only way 
to communicate with people with hearing and speaking 
impairments. Sign Language refers to a language that implies 
signs made with the hands and other movements, including 
facial expressions and postures of the body for 
communication in order to communicate with those people 
who can’t interpret traditional languages of communication 
due to some disability of senses or other reasons [19]. 

Sign Language is mostly used by deaf community as they 
are unable to hear. This leads to a communication gap 
between deaf and normal people because most of the normal 
people community don’t understand Sign Language. 

According to the World Health Organization (WHO) 
nearly 500 million people worldwide suffer from hearing loss 
[11]. Eliminating barriers to communication that exist for 
both the general public and the hard-of-hearing group has 
gained more attention [12]. An assistive technology that 
automatically transforms an input gesture into its equivalent 
voice or text is called sign language recognition (SLR) [13]. 
As a result, the SLR system helps close the communication 
gap between the hearing and deaf-mute communities and 
opens up new opportunities for applications based on human-
computer interaction [14–18]. 

2. Literature Survey 
 

Previous researchers have used a wide range of techniques, 
these included hardware-based technique, which used some 
combinations of sensors to identify the gestures, used by the 
authors of [7] and [9], vision based deep learning on images, 
which used a collection of images to identify the sign, used 
by the authors of [1, 2, 5], and vision based deep learning on 
the pose of the sign, which extracts the landmarks of the 
gestures and uses that information to identify the sign, used 
by the authors of [2, 3, 4, 6, 8, 10]. Furthermore, authors of 
[2, 3] used the common dataset of word level American sign 
language, authors of [1, 6, 7, 8] created a custom dataset for 
sign language, authors of [4] used the publicly available 
Phoenix-2014T dataset, authors of [7] used a sentence level 
Chinese Language Dataset and authors of [5] used a custom 
dataset for alphabet level prediction as depicted in Fig. 1. 
 
2.1. Hardware Based Approaches 
Z. Wang T. Zhao et al. used multi-channel CNN to account 
for multiple features in sign language recognition in real-time 
[7]. They focused on reducing the communication between 
deaf-mute and ordinary people by sending the recognition 
results in a text format to a mobile as well as converting that 
text into speech by using a text-to-voice dictionary in 
Chinese. Their approach was highly accurate with an 
accuracy of 89.2%. They proved that their approach has good 
scalability and was effective in real-time. Their uniqueness 
was also in part because their model was trained to predict 
sentences with 4 words and not just restricted to single letters. 
Though this approach had the prerequisite that the person 
communicating in sign language had to wear two arm sensors, 
one for each arm. Their approach could be further improved 
and modified for longer sentences. This work resulted in the 
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contribution of a sign language database with 20000 samples 
for further use by researchers. 
 A hardware glove containing sensors, an accelerometer, 
and a microcontroller was utilized by Lance Fernandes, 
Prathamesh Dalvi et al, to interpret the motions based on 
predetermined values of ranges for each gesture. With this 
gesture, the text that was provided to an Android application 
to be converted to speech is translated. The glove's accuracy 
was initially not very great because of various conflicts 
between the sensor values, which led it to forecast some 
values inaccurately. The photos from the dataset were then 
converted to grayscale images using a random appropriate 
threshold value, and then further converted to binary images 
using a software consisting of code to capture images. The 
accuracy of this model was found to be 99.8% as the dataset 
was made versatile [9]. 
 
2.2. Pose Based Approaches 
Pose-based methods rely on localizing key points or joints in 
the human body from a single shot or video and analysing the 
posture trajectories. These methods typically use techniques 
such as pose estimation and keypoint detection to identify the 
location and movement of the body parts involved in a sign 
language gesture. 
 M. Boháek and M. Hrz developed a robust pose 
normalization scheme that took into account the signing space 
and processed the hand poses in a separate local coordinate 
system, independent of the body pose, and based recognition 
on estimation of the pose of the human body in the form of 
2D landmark locations. They also included a number of 
enhancements to the body posture that increased its accuracy, 
such as a brand-new augmentation for sequential joint 
rotation. With 54 joint positions as the input, each picture 
produced a 108-dimensional posture vector. In the self-
attention module, they employed transformers with 6 
encoding layers and 9 heads. Once more, they employed 6 
decoder layers and 9 heads for decoding. They were able to 
effectively identify 63.18% of sign recordings in the 100-
gloss subset for Word Level American Sign Language 
(WLASL), an increase of 5% over the previous state of the 
art. They attained a recognition rate of 43.78% for the 300-
gloss subgroup, a 3.8% relative improvement. They reported 
a test recognition accuracy of 100% using the LSA64 dataset 
[3]. 
 The problems of low learning efficiency and short-term 
memory problems of large and complicated approaches [8] 
were addressed by B. Subramanian, B. Olimov, B. Naik, 
S.M., et al. They chose mediapipe and adjusted GRU as an 
approach. They improved the screening of irrelevant data by 
multiplying the GRU update gate with the reset gate. In 
comparison to straightforward RNN and other models built 
on top of RNN, namely, LSTM, regular GRU, BiGRU, and 
BiLSTM deep learning models, this approach demonstrated 
greater accuracy. Very low MAE and MSE values as well as 
strong R-squared values were present in their proposed GRU 
neural network model. The recommended technique had the 
advantages of improved prediction accuracy, very effective 
learning, and information processing capacity. Though the 
proposed model provides better accuracy it can’t be said with 
certainty that it is always better than other approaches since 
the study was conducted on a limited dataset. 
 S. B. Abdullahi and K. Chamnongthai used FFV-Bi-
LSTM (Fast Fisher Vector Bi-LSTM) to bring Spatio-
temporal prosodic as well as angular features into 
consideration for prediction of the given gesture for 
distinguishing similar sign language gestures in a better 

manner [6]. The advantage that FFV-Bi-LSTM displayed was 
its high accuracy in the range of 91% to 98%. They 
considered rhythmic movement making their approach 
unique. The limitations were that choosing an FV (Fisher 
Vector) is a trial-and-error process, and FFV-Bi-LSTM was 
unable to detect small changes in hand trajectory. The result 
was that they found a new way to classify similar hand 
gestures. They concluded that sign language recognition 
should be dealt with as a multi-feature problem in the future. 
They also contributed to the creation of a large 3D hand-
skeletal dataset. 
 Kayo Yin and Jesse Read, introduced a Spatial-Temporal 
Multi-Cue (STMC) Transformer which was used in the 
translation of sign language gloss notation to spoken language 
translations. Through their findings, they concluded that 
transformers outperformed recurrent networks in this setup 
and STMC-Transformer improved the state-of-the-art video-
to-text translation by 7 BLEU. Additionally, they 
accomplished cutting-edge outcomes on several translation 
assignments using the PHOENIX-Weather 2014T and 
ASLG-PC12 datasets [4]. 
 
2.3. Appearance Based 
Appearance-based methods involve analysing the visual 
appearance of sign language gestures using computer vision 
and deep learning techniques. This approach focuses on 
extracting the features of the hands and other body parts and 
recognizing sign language based on their texture, colour, or 
shape. Appearance-based methods utilize the visual 
information obtained from images or videos and often rely on 
feature extraction techniques. 
 Sakshi Sharma and Sukhwinder Singh proposed a 
convolutional neural network for sign language recognition 
using gestures. The proposed CNN model was termed G-
CNN. In this work, a dataset consisting of 2150 images of the 
gestures of the Indian Sign Language (ISL) was collected 
using an RGB camera, and a publicly accessible dataset of 
ASL was used. In the data preparation phase, initially, the 
samples of the images were collected from the camera, and 
then they were resized to a size of 256x256. After the images 
were ready, they were labelled with the appropriate tags 
which provided a learning basis for the classifier. Once the 
data was labelled, it was trained against the proposed model. 
For the classification of sign language hand gestures, VGG-
11 and VGG-16, two other architectures, had been explored 
and modified. The self-collected 43 unique ISL motions were 
tested to evaluate the performance of the work. For ISL and 
ASL, respectively, the G-CNN model obtains the highest 
accuracy of 94.83% and 100% respectively. The evaluation 
was done using the 10-fold cross-validation method. The 
suggested vision-based model removes the need for external 
technology and user dependence, making it easier to operate 
[1]. 
 Shagun Katoch, Varsha Singh, et. al offered a method for 
creating an extensive, diversified, and trustworthy real-time 
Indo-Arabic digits (0-9) and English alphabets (A-Z) 
identification mechanism for ISL. Their main goal was to 
create a more universal recognition tool that would improve 
real-time recognition. A method was proposed that recognizes 
alphabets (A-Z) as well as Indo-Arabic digits (0-9) in a live 
video stream using the Bag of Visual Words model (BOVW), 
and outputs the anticipated labels as both text and speech. For 
classification, CNN and SVM are employed. With an 
accuracy of 99%, the system was successfully trained on all 
36 ISL static alphabets and digits. SVM and CNN both 
produced high accuracy classifications of the photos, however 
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CNN outperformed SVM with fewer features. For superior 
results, skin colour segmentation and background subtraction 
were also used [5]. 
 For the challenge of motion gesture recognition, Yanqiu 
Lao, Pengwen Xiong, and colleagues suggested the B3D 
ResNet model, which is built on 3D Residual ConvNet and 
Bi-directional LSTM networks. It is suggested that the B3D 
ResNet model be used to assess long-term temporal dynamic 
feature sequences and capture spatiotemporal feature 
information for video representation. Seventeen 
convolutional layers, two Bidirectional-LSTM layers, one 
fully connected layer, and one soft-max layer make up the 
majority of the B3D ResNet model architecture. This model 
incorporates video sequences to derive the spatiotemporal 
properties of the video sequence, which are then applied to 
the recognition of motion gestures. For the contrast test, two 
testing datasets, the DEVISIGN-D dataset and the SLR 
dataset were chosen in order to successfully demonstrate that 
the proposed network can recognize motion gestures. The 
B3D ResNet model excelled in extracting context-specific 
information from a sequence [10]. 
 For the purposes of categorizing sign language, Dongxu 
Li, Cristian Rodriguez Opazo, et al. employed two standard 
approaches. The first kind used purposefully chosen 
characteristics to describe the spatial-temporal information 
from picture frames and combine them into a higher 
dimensional code. The first hidden layer was created with 64 
neurons and the subsequent layers with 96,128 and 256 
neurons respectively and GRU's number of layers was set to 
2. They started with a pre-trained VGG16 model for this 
method and then fine-tuned it using a stacked GRU model. 
They also used the I3D, three-dimensional convolutional 
network as another method for appearance-based techniques. 
The second method was pose-based techniques, which were 
aimed at localizing the key points or human body joints from 
a single shot or video. For this method, they used OpenPose 
to extract 55 body and hand 2D key points from a frame. 
Which included 13 upper-body joints and 21 joints for both 
the left and right hands. This was fed to a stack of 2 GRUs 
with hidden sizes of 64, 64, 128, and 128 for the four subsets 
respectively. They also proposed their own Temporal Graph 
Convolution Networks (TGCN), which stacks many residual 
graph convolutional blocks and uses the average pooling 
result throughout the temporal dimension as the feature 
representation of posture trajectories. 3D Convolutional 
Networks (I3D) trained on appearance-based images had the 
highest accuracy of 86.98%. And their proposed Temporal 
Graph Convolutional Network trained on pose-based frames 
had the 2nd highest accuracy of 79.64% [2].  
 

 
Fig. 1. Comparative Analysis of Datasets chosen. 

 
 

Table 1. Analysis of various sign language detection 
algorithms. 

Reference 
No. 

Models Compared Best Model 

[2] Pose-GRU, Pose-
TGCN, VGG-GRU, 

I3D 

I3D 

[3] I3D, TK-3D ConvNet, 
Fusion-3, GCN-BERT, 

Pose- TGCN, Pose-
GRU, SPOTER 

TK-3D ConvNet 

[8]  standard GRU, BiGRU, 
simple RNN, LSTM, 

and BiLSTM 

MOPGRU 

 
[1] 

G-CNN, VGG-11, 
VGG-16 

G-CNN 

[5] SVM and CNN CNN 
 

[10]  
Bi-LSTM, HMM-DTC, 

DNN, C3D and B3D 
ResNet 

B3D ResNet 

 
 

Researchers had used various deep learning algorithms for 
sign language detection. Some of which include CNN, RNN, 
LSTM, GRU etc. Other algorithms that are used by the 
researchers are the modifications to these base algorithms. For 
example, Pose-GRU and VGG-GRU are the models derived 
from the GRU model. Similarly, G-CNN, VGG-11, I3D, 
HMM-DTC, C3D are the other algorithms. 

 
Table 2. Analysis of the accuracy of the best models. 

Reference No. Model  Accuracy 
[1] G-CNN 94.83% 
[2] I3D for WLASL300 86.98% 
[3] TK-3D ConvNet for 

WLASL300 
 68.75% 

[5] CNN 99.64% 
[6] FFV-Bi-LSTM 91% to 98% 
[7] Multi-Channel CNN  89.2% 
[8] MOPGRU 95% 
[9] CNN+hardware 

glove  
99.98% 

[10] B3D ResNet 86.9% to 89.8% 
 
 

The above table shows the accuracies of the best models 
in each study. Some of the researchers used the custom dataset 
for training their models. In such studies, the accuracy 
achieved by the models was high, but they were not able to 
perform well in real-time sign language detection. While the 
models trained on public datasets are less biased and tend to 
provide better results. Amongst the given models, CNN used 
with the hardware gloves gave the highest accuracy of 
99.98%. 

 
 

3. Methodology 
 

3.1. Feed Forward Neural Networks (FNN) 
FNN are indeed the least complex neural networks, which is 
composed of one or more layers of neurons [27]. Which 
performs some mathematical functions on a given set of 
inputs and produces a given set of outputs. The output from 
each layer is forwarded to the next layer which again performs 
their own set of mathematical operations on it. The initial 
layer of neurons is called the input layer, the final layer is 
named the output layer and any intermediary layers are 
termed as the hidden layers. In feedforward networks, the 
information only moves ahead from the input layer, through 
the hidden layers and to the output layer [26]. The downside 
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of the Feed forward layers is that it can only deal with data, 
which is sequential, it only takes into account the current input 
and it is impaired of the capacity to entirely memorize the 
information of the past. This is solved by using Recurrent 
Neural Networks [23]. 
 
3.2. Recurrent Neural Networks (RNN) 
RNN are an extension of traditional neural networks, having 
the capability of storing the outcome of a specific layer and 
passing it back as the input in order to foretell the outcome of 
the layer. Feed FNNs have a disadvantage, that is, the output 
can only be propagated in the forward direction.  
 Thus, RNNs solve this problem by using its “memory”, 
which captures information about what has been calculated so 
far [24]. Whose equation is given by.  
 
z(t) = b + W1(h(t-1)) +W2x(t)            (1) 
 
h(t) = tanh (z(t))               (2) 
 
r(t) = c + V(h(t))              (3) 
 
Where h(t) represents the hidden state, which depends on the 
current input state x(t), and the previous hidden state h(t-1). And 
the output, r(t), is given by a combination of the hidden state 
and the input state. 
 
 The significance of these equations lies in their ability to 
process sequential data. The intermediate state z(t) combines 
information from the previous hidden state and the current 
input, providing a context for the current time step. The 
hidden state h(t) captures the current representation of the 
input sequence, incorporating information from previous time 
steps through the recursive nature of the RNN. The output r(t) 
is derived from the hidden state and can be used for various 
tasks such as classification, prediction, or further processing. 
 The downside of using RNNs is the Vanishing Gradient 
Problem, that is, the gradient, which carries information 
becomes smaller and smaller, thus its updates keep becoming 
more insignificant [25]. This is solved by using LSTM [23].  
 Recurrent Neural Networks (RNNs) are a type of neural 
network specifically designed for processing sequential data 
by maintaining internal memory. RNNs are capable of 
capturing temporal dependencies and have several use cases 
where they outperform other neural networks. RNNs are 
particularly useful for tasks involving sequential data, where 
capturing and modelling temporal dependencies is critical. 
RNNs enable the modelling of sequential context, making 
them valuable in various applications across different 
domains. 
 
3.3. GRU 
Gated Recurrent Neural Networks were designed to solve the 
issue regarding long-term dependency in the traditional RNN. 
The gated recurrent neural network is similar to the long-short 
term memory network with a slight variation in the internal 
architecture. GRU does not maintain the internal cell state like 
the LSTM and has the hidden state only. Due to this change, 
the training of the GRU network is faster compared to the 
LSTM units. The architecture of the GRU cell composes two 
gates namely: reset gate and the update gate. The reset gate 
can also be called the short-term gate while the update gate 
can be called a long-term gate.  
 The importance of the previous cell state in order to 
calculate the current cell state is given by the equation: 
 

r(t) = 𝜎 (W(r) · [ h(t-1), x(t)] )            (4) 
 
where r(t) denotes the output value of the reset gate, W(r) 
denotes the corresponding weight associated with the cell, h(t-

1) denotes the cell state at the previous step and x(t) denotes the 
current input given to the model. 
 
 The update gate decides how much part of the updated cell 
state should be considered to form the new cell state for the 
current cell state and it is given as: 
  
z(t) = 𝜎 (W(z) · [ h(t-1), x(t)] )           (5) 
 
 Now, when the outputs of the reset gate and the update 
gate are calculated, they are used to calculate the current cell 
state of the GRU cell, which is the output of the cell. The 
current cell state is calculated as follows:  
 
q(t) = tanh (W · [r(t) * h(t-1), x(t)] )          (6)  
 
h(t) = (1- z(t)) * h(t-1) + z(t) * q(t)           (7)  
 
where h(t) denotes the output of the GRU cell which is 
calculated using the z(t) and r(t). 
 
 GRU is less CPU intensive compared to the LSTM model 
providing approximately similar accuracy compared to the 
LSTM model. 
 Gated Recurrent Unit (GRU) networks are a type of 
recurrent neural network (RNN) that, like LSTM networks, 
can effectively capture and model sequential dependencies. 
GRUs have a simplified architecture compared to LSTMs, 
making them computationally more efficient and easier to 
train. GRU networks are used in video analysis tasks, such as 
action recognition, gesture recognition, and video captioning. 
GRUs can process sequential frames of a video and capture 
the temporal dependencies between different frames, 
enabling accurate recognition of actions or generation of 
descriptive captions. GRUs offer a balance between 
computational efficiency and modelling capacity, making 
them particularly useful in scenarios where training time or 
model complexity needs to be optimized. 
 
3.4. LSTM 
RNNs bring with them the issue of long-term reliance. LSTM 
is built to overcome the same. Results from the previous 
LSTM cell are passed onto the succeeding cell at each 
iteration [22]. Issue of vanishing gradient is addressed by 
LSTM [21]. Components of an LSTM cell [23]:  
 
1. Output gate 
2. Forget gate 
3. Cell state 
4. Input gate 
 
 Forget gate inputs are previous hidden state & current 
input, it is later on refined by an activation function as per 
configuration. If this function’s outcome is in proximity of 
one the information is stored or else it is discarded. The input 
gate's function is to contribute information to the cell’s state. 
Responsibility of the forget gate is to bring the cell’s state up 
to date. The output gate specifies the value of the following 
hidden state[23]. The equation for forget gate of LSTM is 
given as: 
 
ut = σ (mi [lt-1 , ht ]+ ri)             (8) 
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ct = tanh (mi [lt-1 , ht ]+ ri)           (9) 
 
Input gate has the responsibility of bringing the cell state up 
to date. 
 
vt = σ (mf [lt-1 , ht ]+ rf )          (10) 
 
The forget gate decides which information from the 𝑙!"1 and 
ℎ! is to be forgotten by supplying it to the sigmoid (σ) 
activation function. 
 
wt = σ (mo [lt-1 , ht ]+ ro )          (11) 
  
The next hidden cell state’s value is specified by the output 
(wt). Here ut illustrates forget gate, vt illustrates input gate, wt 

illustrates output gate, σ illustrates the sigmoid activation 
function, mx illustrates weight associated with neurons in 
respective gates, lt-1 is the output of the time step (t-1), input 
supplied for the current time step is depicted by ht , and rx is 
the value of bias for the gates.  
 The significance of these equations lies in the LSTM's 
ability to selectively update, forget, and output information, 
thus enabling the network to capture and retain long-term 
dependencies in sequential data. 
 Long Short-Term Memory (LSTM) networks are a type 
of recurrent neural network (RNN) that are specifically 
designed to address the vanishing gradient problem, allowing 
them to effectively capture and remember long-term 
dependencies in sequential data. LSTM networks are well-
suited for time series forecasting, anomaly detection, and 
pattern recognition tasks. They can capture temporal 
dependencies and learn complex patterns in the data. 
Applications of LSTM in this domain include stock market 
prediction, weather forecasting, energy load forecasting, and 
predicting customer behaviour. 
 
3.5. Bi-LSTM 
The Bidirectional-LSTM RNN is mostly employed in natural 
language processing. Unlike traditional LSTM, the input 
travels in both directions, and it may use information from 
both sides. It's also an effective tool for simulating the 
sequential relationships between words and sentences in both 
directions. 
 To summarize, BiLSTM adds an additional LSTM layer 
that reverses the direction of information flow. In a nutshell, 
the input sequence flows backwards in the extra LSTM layer. 
The outputs of both LSTM layers are then combined in a 
variety of methods, including average, sum, multiplication, 
and concatenation. The equation for forward input gate of Bi-
LSTM is given as: 
 
�⃗�t = σ (mf [lt-1 , ht ]+ rf )           (12) 
 
 The equation for backward input gate of Bi-LSTM is 
given as: 
 
�⃗�t = σ (mf [lt+1 , ht ]+ rf )           (13) 
 
where vt illustrates input gate, σ illustrates the sigmoid 
activation function, mx illustrates weight associated with 
neurons in respective gates, lt-1 is the output of the time step 
(t-1), input supplied for the current time step is depicted by ht 
, and rx is the value of bias for the gates. 
 
 Bidirectional Long Short-Term Memory (Bi-LSTM) 

networks are a type of recurrent neural network (RNN) that 
have the ability to process sequential data in both forward and 
backward directions. This bidirectional nature makes them 
suitable for a variety of applications where the context from 
both past and future inputs is important. Natural Language 
Processing is one of the most important applications of Bi-
LSTM. The bidirectional nature of Bi-LSTMs allows them to 
capture dependencies in both directions, making them 
effective for tasks where the meaning of a word or phrase 
depends on its surrounding context. 
 
3.6. Mediapipe 
A tool called Mediapipe is used to build machine learning 
pipelines for time series data, including audio and video, and 
so on [8]. This multi-platform framework is compatible with 
Android, Desktop Server, embedded devices, and iOS such as 
the Raspberry Pi and Jetson Nano. 
 A specific pre-trained TensorFlow or TFLite model serves 
as the foundation for solutions, which are open-source pre-
built examples. The Framework serves as the foundation for 
MediaPipe Solutions. To find the critical spots, we used the 
Face, Hand, and Pose solutions from the sixteen solutions it 
currently offers. 
 Since MediaPipe provides pre-trained models and APIs 
for pose estimation, which can accurately detect and track 
landmarks on human bodies, facial expressions, hand gestures 
and it is designed to efficiently process video and image data 
in real-time, it makes it the best framework to go with. 
 
 
4. Implementation 
 
4.1. Data Collection 
The WLASL dataset contains over 2,000 unique ASL 
gestures corresponding to a vocabulary of 2,000 words. These 
gestures were recorded from diverse signers in a controlled 
environment with consistent lighting and background 
conditions. The dataset provides a wide range of variations in 
sign language gestures, allowing for robust training and 
evaluation of models [2]. 
 Each video in the dataset is labelled with the 
corresponding word it represents, enabling the development 
of algorithms for automatic recognition and classification of 
ASL gestures [2]. 
 The data is in MP4 video format, consisting of a collection 
of videos capturing ASL gestures. The videos have durations 
ranging from 0.3 to 0.8 seconds, providing concise 
representations of the sign language gestures. The dataset 
includes a JSON file that serves as a mapping reference, 
associating words with their corresponding video IDs. In 
some cases, multiple video IDs may be linked to a single 
word. This JSON mapping provides a convenient way to 
access and organize the videos based on the specific words 
they represent [2].  
 This data was collected by previous researchers from 
multiple sign language educational websites and YouTube 
tutorials [2]. 
 Using RNN-based neural networks (RNN, LSTM, GRU, 
Bi-LSTM) is highly beneficial for video data processing in 
sign language prediction due to their ability to capture 
temporal dependencies and sequential patterns in the data. 
 Using CNNs for video data processing in sign language 
prediction offers several advantages. CNNs excel in capturing 
spatial patterns making them suitable for analysing individual 
frames of sign language videos. CNNs can detect features, 
such as hand shapes, facial expressions, and body movements, 
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which are crucial for interpreting sign language gestures. 
 Since we wanted to build a system which satisfies a real-
world use case, we decided to use the WLASL dataset, instead 
of creating our own. Fig. 3 showcases an overview of the 
proposed architecture, we capture a frame from the video, 
extract the landmark coordinates using mediapipe, then using 
a collection of such coordinates for a video, we label it. In this 
way the labelled dataset was prepared, which was further 
expanded using scaling. This data was then used to train four 
different models, RNN, LSTM, GRU and Bi-LSTM, since 
these models were common in the reviewed literature. 

 
Fig. 3. Overview of proposed architecture. 

 
 

4.2. Data Pre-processing 
We used Word Level American Sign Language, WLASL, the 
largest video dataset for Word-Level American Sign 
Language (ASL) recognition, which features 2,000 common 
different words in ASL [2]. 
 On this dataset, we used Mediapipe, and marked 468 face 
landmarks, 21 hand landmarks, per hand and 33 full body 
landmarks [20]. 
 For the words chosen, we chose the first 15 words with 
the greatest number of videos, i.e., "book", "drink", 
"computer", "before", "chair", "go", "clothes", "who", 
"candy", "cousin", "deaf","fine","help","no" and "thin". 
 Since LSTM requires input sizes to be the same, we took 
the least number of frames, 23 in our case, from the chosen 
videos, and uniformly chose the same number of frames, 23, 
from all the videos. 
 
4.3. Data Transformation 
For Evaluating the Models, we decided to Augment the 23 
frames using Scaling, this increases the training data and 
helps us in getting better results. 
 We also found out that face landmarks make most of the 
input data, but only some of the key points contribute towards 
the prediction of the sign, hence we decided to also test the 
models without the face key points as an input. Fig. 4 depicts 
the two classes of the chosen landmarks and the points which 
are marked by them. 
 This left us with four permutations on which we will train 
our models: 
 
1. With face landmarks and without data augmentation. 
2. With face landmarks and with data augmentation. 

3. Without face landmarks and without data augmentation. 
4. Without face landmarks and with data augmentation. 
 
 After deciding which data to use, we fixed the test size to 
0.2 and proceeded with our implementation. 

 
Fig. 4. Comparison between chosen landmarks. 

 
 

4.4. Modelling and Results 
4.4.1. RNN 
For RNN, we used a hidden layer with size 128, followed by 
a dense layer of size 10, followed by a dense layer of size 15. 
The results for the permutation of the inputs were as follows. 
 
1. For just face landmarks, an accuracy of 22.22% was 

attained after 450 epochs of training the model on the 
filtered key points. 

2. For face landmarks with data augmentation, an accuracy 
of 83.33% was attained after 450 epochs of training the 
model on the filtered key points. 

3. For just hand and pose landmarks, an accuracy of 18.15% 
was attained after 180 epochs of training the model on the 
filtered key points. 

4. For hand and pose landmarks with data augmentation, an 
accuracy of 83.33% was attained after 150 epochs of 
training the model on the filtered key points. 

 
4.4.2. GRU 
For GRU, we used a three hidden layer with size of 64, 128 
and 64 units respectively followed by two dense layers of size 
64 and 32 units respectively. The results for the permutation 
of the inputs were as follows. 
 
1. For just face landmarks, an accuracy of 18.51% was 

attained after 176 epochs of training the model on the 
filtered key points. 

2. For face landmarks with data augmentation, an accuracy 
of 81.481% was attained after 163 epochs of training the 
model on the filtered key points. 

3. For just hand and pose landmarks, an accuracy of 18.52% 
was attained after 186 epochs of training the model on the 
filtered key points. 

4. For hand and pose landmarks with data augmentation, an 
accuracy of 87.04% was attained after 97 epochs of 
training the model on the filtered key points. 
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4.4.3. LSTM 
For LSTM, we used three hidden layers with size 32, 128 and 
64 units respectively followed by two dense layers of size 64 
and 32 units followed by a dense layer of size 15 units. The 
results for the permutation of the inputs were as follows. 
 
1. For just face landmarks, an accuracy of 22.22% was 

attained after 375 epochs of training the model on the 
filtered key points. 

2. For face landmarks with data augmentation, an accuracy 
of 83.33% was attained after 324 epochs of training the 
model on the filtered key points. 

3. For just hand and pose landmarks, an accuracy of 25% 
was attained after 150 epochs of training the model on the 
filtered key points. 

4. For hand and pose landmarks with data augmentation, an 
accuracy of 87.5% was attained after 100 epochs of 
training the model on the filtered key points. 
 

4.4.4. Bi-LSTM 
For Bi-LSTM, we used one hidden layer with size 128, 
followed by two dense layers of size 32 and 15. The results 
for the permutation of the inputs were as follows. 
 
1. For just face landmarks, an accuracy of 22.22% was 

attained after 400 epochs of training the model on the 
filtered key points. 

2. For face landmarks with data augmentation, an accuracy 
of 72.22% was attained after 500 epochs of training the 
model on the filtered key points. 

3. For just hand and pose landmarks, an accuracy of 25.95% 
was attained after 125 epochs of training the model on the 
filtered key points. 

4. For hand and pose landmarks with data augmentation, an 
accuracy of 83.33% was attained after 105 epochs of 
training the model on the filtered key points. 

 
4.4.5. Results 
From the experiments, it is observed that the addition of face 
landmarks usually led to a decrease in the accuracy of the 
models. Furthermore, data augmentation played an important 
role in increasing each model's accuracy as depicted in Fig. 5. 
 Among the models, LSTM performed the best when data 
augmentation was in play, with an average accuracy of 
85.41%, followed by GRU at 84.25%, RNN at 83.33% and 
finally Bi-LSTM at 77.77%. When data augmentation was not 
utilized, Bi-LSTM performed the best with an average 
accuracy of 24.08%, followed by LSTM at 23.61%, RNN at 
20.18% and finally GRU at 18.155%. 
 

 
Fig. 5. Comparison of each model for the permutation of the input data. 

 
 

5. Conclusion 
 
In this study, the results of various approaches for Sign 
language recognition are compared.  
 This research discovered the following limitations after 
reviewing the relevant literature. First, the dataset used by the 
previous literature wasn't the same, making it difficult to 
conclude from the literature. Second, the sign languages 
chosen for prediction were different. Third, some papers rely 
on datasets built by the researchers themselves either directly 
or with the help of volunteers, hence the data itself in the 
dataset might be improper due to the lack of expertise of the 
signer and may introduce bias depending on different features 
used for SLR. Furthermore, from the previous literature, we 
conclude that the models that were trained on custom datasets 
were more accurate than the ones which were trained on 
accumulated datasets from professional signers, like WLASL. 
And most of the literature used CNN or a form of RNN, like 
GRU, LSTM, and Transformers. 
 Thus, we opted to utilize a general dataset WLASL. We 
first extracted the coordinates for pose, hand, and face from 
the WLASL dataset for a few chosen words. These were then 
used to model RNN, LSTM, GRU, and Bi-LSTM, in which 
LSTM on average outperformed the rest of the models. The 
proposed architecture can be effectively used to translate a 
signers gesture in real-time. 
 Further iterations of this work should use a publicly 
available dataset for the benefit of society, so that the results 
may be used by a wide range of individuals in everyday life. 
They should also consider a better image processing method 
to map the key features of the face and the body. Also, 
developing a low-latency architecture solution for common 
use of sign language detection is an aspect which requires 
extensive research and experimentation. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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