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Abstract 
 

The category identification and grade classification of tea are important to food safety and life safety. The category and 
grade of the whole tea batch are typically determined by random sampling. However, full distribution graphs of tea 
categories are hardly available. This study analyzed relevant features and model construction to improve model precision 
for the category identification of tea. Moreover, spectral and texture features of hyperspectral images of tea were 
discussed through principal component analysis and gray level concurrence matrix. The category identification models of 
tea based on spectral features, texture features, and the integration of the two were constructed on the basis of the support 
vector machine model. The optimal model was applied to hyperspectral images to produce the full category distribution 
graph of tea. Then, its accuracy was verified through an assessment. Results demonstrate that the model based on 
hyperspectral images integrating spectral and texture features achieves the highest accuracyon the prediction set, and the 
total accuracy reaches 94.3%. This outcome is higher than the accuracy of the model based on spectral features (88.9%) 
and the model based on texture features (85%). On the full-image scale, the overall classification accuracy of the model 
based on hyperspectral images of four kinds of tea reaches 90.3% when the training sample is only 1%. In addition, the 
corresponding Kappa coefficient is 0.87, indicating that the established model is feasible. The integration of spectral and 
texture features can overcome the influences of having different spectra for the same object to some extent. The proposed 
algorithm provides scientific guidance for authenticity verification, grade classification, and other practical production of 
tea. 
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1. Introduction 
 
Food safety determines life safety and social safety. During 
the “13th Five-year Plan,” food safety prioritized as a 
national great strategy [1]. The internal and external qualities 
of tea, including color, appearance, taste, and fragrance, 
directly determine its grade. Nevertheless, the tea market has 
experienced regulation issues, such as selling seconds at the 
best quality price as well as fake and poor-quality 
commodities. All of these factors seriously hinder the 
development of the tea industry. Hence, the quality and 
category identification of tea have become crucial. The 
sensory ranking method and electronic nose technology are 
major traditional methods to identify tea categories [2]. 
These methods are time consuming, labor consuming, and 
economically inefficient. Hence, they cannot evaluate the 
quality of tea objectively and quickly. Compared with 
traditional methods, hyperspectral imaging can acquire 
internal structural features and external information of 
testing substances. Moreover, it is a fast nondestructive 
testing technology [3,4]. 

Existing category identification mainly includes 
category identification based on spectral technology, 
category identification based on image processing 
technology, and category identification based on 
hyperspectral images [5-7]. The former two are mainly 

limited to the use of partial spectral or image information. 
On the one hand, a disturbance of external factors (e.g., 
sampling position, sampling time, and illumination of plants) 
exists in the spectral information collected by a spectrometer. 
On the other hand, the category identification method based 
on image processing technology underuses spectral 
information and can only provide limited feature spaces. 
Thus, identifying category information upon the influences 
of multiple factors becomes difficult. These methods fail to 
evaluate the internal and external qualities of tea 
comprehensively and leave a great gap with practical 
applications. Imaging spectrometry has remarkable 
advantages for category identification because it integrates 
traditional spectral technology and computer image 
technology. Furthermore, it breaks many limits of visible 
multispectral images. However, most existing studies 
generally judge the quality of batches through a limited 
number of samples. Further studies on full category 
distribution graphs based on imaging spectral data are still 
needed. 

Therefore, the dimensions of the hyperspectral images of 
the four kinds of tea were reduced by principal component 
analysis (PCA) to extract their spectral features. The texture 
features of tea were extracted on the basis of the gray level 
concurrence matrix method (GLCM). A tea quality 
identification model was built by combining a support vector 
machine (SVM). The research conclusions can provide some 
technological support for practical production detection. 
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2. State of the art 
 
Hyperspectra can capture reflectance at a very high spectral 
resolution after electromagnetic waves act on substances. 
Many studies have identified categories through nonimaging 
spectral technology. For instance, Kos et al. [8] 
distinguished mildew peanuts and corn samples using mid-
infrared spectroscopy. In addition, Fu et al. [9] identified 
mildew pollution of sunflower and soybean using near-
infrared spectroscopy. Huang et al. [10] collected near-
infrared (NIR) spectral data of mung beans in the shape of 
particles and powder in cold northern China. A 
nondestructive detection method of the origin of mung beans 
was established by screening the wavenumber of NIR 
spectral features. Meanwhile, Chen et al. [11] established a 
detection method for the origin of Lonicera japonica using 
NIR spectral technology and partial least squares 
discriminant analysis. Liu et al. [12] extracted the feature 
wavebands of full-band spectra of Xinjiang jujubes by 
combining hyperspectral technology and machine learning 
algorithms. Then, they established a model based on feature 
wavebands. The results proved that the established model 
had very high identification accuracy. Li et al. [13] proposed 
a fast nondestructive identification technique for green tea 
based on NIR and chemometrics by scanning and obtaining 
NIR spectra. 

The above studies of category identification based on 
spectral technology only use spectral information without 
the involvement of image information. Disturbances of 
external factors (e.g., sampling position, sampling time and 
illumination of plants) exist in the information collected by a 
spectrometer. On this basis, some scholars have studied 
category identification using image processing technology. 
By combining digital image processing technology and 
machine learning, Zhang [14] proposed an image 
identification technique of tea based on the K-means and 
SVM coupling algorithm according to different colors 
between high-quality and poor-quality tea particles. Chaitra 
et al. [15] believed that the red waveband (R) in RGB 
channels of visible light has good separability of mildew 
peanuts; thus, they proposed an identification method of 
mildew peanuts based on “color mapping” by using this 
waveband. Furthermore, Liu et al. [16] identified and deleted 
damaged soybean seeds on the basis of image features and 
constructed a classification model using a series of image 
processing algorithms, such as data fusion and 
morphological corrosion expansion. Through examining tea 
images under natural conditions, Wang et al. [17] realized 
the automatic identification and segmentation of tea shoots 
using digital image processing technology. However, the 
above studies mainly identify product categories on the basis 
of RGB images and machine vision. RGB can provide very 
limited spectral information and can only use information of 
image tones, textures, and shapes. Few studies have 
concentrated on category identification that integrates 
spectra and image texture information. 

Imaging spectral technology shows remarkable 
advantages in tea for “image-spectra integration” and supply 
of spectral and image spatial information at the same time. 
Studies on applications of hyperspectral imaging technology 
to tea are mainly divided as follows: (1) growth monitoring 
and pest monitoring in the planting and management process 
[18-21], (2) inversion of quantitative indexes and qualitative 
evaluation of tea during production and processing [22,23], 
and (3) tea identification. This technology can not only 
identify different kinds of tea but also detect the degree of 

adulteration [24]. Kelman et al. [25] classified five kinds of 
tea through maximum likelihood and artificial neural 
networks and provided classification images to present 
identification results intuitively. In addition, Wang et al. [26] 
classified and identified inoculated corn kernels using 400-
1000 nm and 1000-2500 nm hyperspectral images by 
combining PCA and factor discriminant analysis. The 
classification accuracy of the five levels reached more than 
88%. Furthermore, Rabanera et al. [27] predicted the water 
content in peanuts by combining 900-1700 nm NIR 
hyperspectral images and PLSR. The decision coefficient of 
their test set was 0.94. Moreover, the visual distribution of 
water content in peanuts was determined, which provided 
references for the judgment of peanut quality and storage 
stability. Qiao et al. [28] identified multiple categories of 
mildew peanuts by combining pattern recognition and spatial 
image segmentation, thus obtaining relatively satisfying 
results. Moreover, Singh et al. [29] constructed a model on 
the basis of average spectra and a one-dimensional 
convolutional neural network by using hyperspectral 
technology; this model was then used to classify different 
categories of barley seeds. At present, research on category 
identification using hyperspectral image technology has the 
following shortcomings. Most studies are based on samples 
but do not give full distribution graphs of tea categories. 
Moreover, research results are influenced by the imaging 
environment and shapes of samples. Evident phenomena of 
having different spectra for the same object occur. Hence, 
extracting spectral features from hyperspectral data under 
the influences of having different spectra for the same object 
and generating full category distribution graphs must be 
further studied. 

On the basis of the above analysis, this work established 
a method to identify string-shaped teas with similar 
appearances using hyperspectral images. This method can 
address the following questions. How can robust spectral 
features and texture features be extracted for category 
identification under the influences of having different 
spectra for the same object? How can a high-precision tea 
identification model be built and full category distribution 
graphs of tea be given? 

The remainder of this study is organized as follows. 
Section 3 describes the acquisition and preprocessing of tea 
sample materials and hyperspectral image data, as well as 
the research method during the construction of tea 
identification models. Section 4 extracts the spectral features 
and texture features of tea by analyzing the spectral response 
features of tea. A tea identification model is built, and full 
category distribution graphs of tea are generated. Section 5 
summarizes the conclusions. 
 
 
3. Methodology 
 
3.1 Acquisition of tea sample materials 
Tea sample materials were bought randomly from a tea shop 
in Xingfu Supermarket at Xueyuan Road, Haidian District, 
Beijing. In this study, four types of string-shaped tea with 
similar appearances were selected, namely, Junshan Yinzhen 
Tea, Wuxi White Tea, Xinyang Maojian Tea, and Lu’an 
Guapian Tea. Each kind of tea was purchased in a volume of 
250 g. Meanwhile, chippings and suspicious impurities were 
removed manually to assure the uniformity of tea samples. 
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3.2 Acquisition of hyperspectral image data 
The hyperspectral data acquisition system is composed of an 
ImSpector N25E hyperspectral imager, a light source system, 
and a mechanical drive system. First, the four kinds of tea 
samples were placed on the black cloth of the mechanical 
transfer platform, which moved at a constant speed upon 
driving by the motor. A tungsten light source irradiated the 
tea samples. The reflected lights of tea samples were 
captured by the camera through a lens, thus obtaining 
spectral data of pixels on the column of scanning seams of 
the imaging spectrometer. As the transfer platform moved at 
a constant speed, hyperspectral images of all tea samples 
were acquired through push scanning. For the acquired 
hyperspectral images, the spectral range, spectral resolution, 
number of pixels per row, and number of wavebands were 
1000–2500 nm, 6.30 nm, 320 and 239, respectively. The 
imaging mode used was push-scanning. 

 
3.3 Preprocessing of hyperspectral image data 
 
3.3.1 Radiation correction 
During scanning imaging, the reflectance of the reference 
white board and black board as well as dark current data 
were acquired except for the hyperspectral images of tea. 
These data can help realize the radiation correction of 
hyperspectral images of tea. Later, the DN value of the 
original hyperspectral data can be transformed into 
reflectance. The specific radiation correction is expressed as 
follows [30]: 
 

                          (1) 

 
where is the relative reflectance of the corrected 
hyperspectral image, .  is the DN value of the 
original hyperspectra of tea.  is the DN value of the dark 
current image.  is the DN value of the calibration images 
of the reference board. 
 
3.3.2 Spectral smoothing 
Given the system error of the imaging spectrometer, the 
influences of dark spot flows, and the inconsistent influences 
of noise on different wavebands, noise is inevitable in 
hyperspectral images. Hence, spectral smoothing is essential 
to eliminate high-frequency random error during the spectral 
sampling process. As a result, a five-point moving mean 
smoothing method was applied to hyperspectral images [31]. 
This method is expressed as: 
 

             (2) 

 
where  is the spectra after smoothing of each pixel.   
is the reflectance of waveband , , where  is 
the number of wavebands of hyperspectral images.  

After smoothing the hyperspectral images, these 
wavebands were deleted selectively because of the low 
signal-to-noise ratio of channels at two ends of the spectral 
range as well as signal mutation in some wavebands. Finally, 
230 wavebands were retained for subsequent treatment. 
Moreover, the background of tea was masked. This masking 
determines the segmentation threshold according to the gray 
level history of wavebands and features. Finally, the 
hyperspectral images of four kinds of tea were acquired. A 

total of 250 samples were selected randomly for each kind of 
tea on images using region of interest (ROI), thus summing 
to 1,000 samples. Among them, 700 samples were chosen 
randomly as the training set of the model. The remaining 
300 samples were used as the test set. 
 
3.4 Principal component analysis 
PCA [32,33], also called Hotelling transformation, is mainly 
used to map n-dimensional features onto k-dimensional 
features. These k-dimensional features are fresh new 
orthogonal features or principal components. These features 
were rebuilt on the basis of the original n-dimensional 
features. The principal components can be formed by a 
linear combination of images under different wavebands: 
 

                            (3) 

 
where  is the image of the jth principal component.   

is the gray image corresponding to the ith waveband. is 
the weight coefficient of  in . After Eq.(3) is unfolded, 
the image under the wavelength corresponding to the 
maximum weight absolute has the maximum 
contribution to .After component transformation, 
principal components are unrelated, and the information size 
decreases with the increasing principal component number. 
Given that the principal components that rank the back 
positions contain a very small amount of information, they 
can be viewed as noise. Hence, PCA can concentrate 
redundant information contained by multivariable data into a 
few principal components. This approach is highly effective 
with respect to the big data size of hyperspectral images as 
well as the strong correlation and information redundancy 
among adjacent wavebands. In this study, PCA was applied 
for the dimension reduction of hyperspectral data. 

 
3.5 Gray level concurrence matrix 
The GLCM [34,35] usually analyzes texture features of gray 
images with references to pixel gray and positional 
information. It analyzes the gray combination of any point in 
the image space with pixels in the adjacent zone with some 
distances. The GLCM is defined as the probability  

or the pixel with a gray level of  to leave 
a fixed point distance to the pixel with a gray level of 

. All estimated values can be expressed as a 
matrix: 
 

     (4) 
 
where is the direction of generation of the GLCM, which is 
usually one of the four directions of 0°, 45°, 90°, and 135°.  

is the grayscale calculation function. Mean, variance, 
standard deviation, homogeneity, contrast, dissimilarity, 
entropy, and correlation are major common feature statistical 
indexes that are used to extract texture information in remote 
sensing images. 
 
3.6 Support vector machine model 
The tea categories were identified using a support vector 
machine (SVM) [36]. This model is a support vector library 
developed by Professor Lin Zhiren from Taiwan. It is 
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applicable to the linear or nonlinear classification of high-
dimensional spatial problems as well as the detection of 
regression and outlier points. SVM is a machine learning 
model algorithm based on statistical theory that maps low-
dimensional spatial vectors onto high-dimensional spatial 
vectors. Based on optimization solving, the optimal 
classification hyperplane is determined in the high-
dimensional feature space of the data. Hence, it achieves a 
series of advantages, such as minimum classification error, 
improved generalization ability of the classifier to the 
maximum extent, good robustness and expansion, and 
processing of large-scale data. Given these advantages, SVM 
has been widely applied to classification problems. The 
optimal classification function of SVM is: 
 

                 (5) 

 
where and are the optimal solutions obtained by convex 
quadratic programming; is the category symbol;  
is the kernel function, and  are the vectors to be classified 
and the support vector, respectively.  
 At present, SVM has four common types of kernel 
functions, including the sigmoid kernel function, polynomial 
kernel function, radial basis function (RBF), and linear 
kernel function (Linear). Specifically, RBF was used as the 
kernel function: 
 

              (6) 

 
where  is the Gaussian kernel bandwidth. 
 
 
4. Result Analysis and Discussion 
 
4.1 Spectral features of different tea categories 
To understanding the spectral response differences of tea, 10 
pixels were randomly selected for each kind of tea. The four 
kinds of tea were expressed by red, green, blue, and yellow 
(Fig. 1).  
 

 
Fig. 1.  Spectral curves of four kinds of tea. 

 
 

4.2 Extraction of spectral and texture features of tea 
 
4.2.1 Extraction of spectral features of tea 
The PCA of hyperspectral images was conducted, and the 
results are shown in Table 1. Clearly, the cumulative 
variance contribution rate of the first three principal 
components reached 99.94%. They covered most of the 
information of the original waveband data and could explain 
most of the information of the original hyperspectral images. 
Hence, the images of the first three principal components 
were extracted as spectral features of tea (Fig. 2). 
 

Table 1. PCA of hyperspectral images of tea 
Principal 

components 
Feature 

value 
Contributio

n rate 
Cumulative 

contribution rate 
PC1 6.0967 97.93% 97.93% 
PC2 0.1162 1.87% 99.80% 
PC3 0.0086 0.14% 99.94% 

 
4.2.2 Extraction of texture features of tea 
After the PCA of hyperspectral images, the first three 
principal components could sufficiently interpret 99.94% of 
the information of the original images. In addition, they 
could interpret most of the information of the original 
hyperspectral images. Hence, the images of PC2 began to 
develop noise information. The feature waveband image was 
searched using the images of PC1. According to the 
principle of PCA, images of different principal components 
are formed by linear combination of images of different 
wavebands. The image under the wavelength corresponding 
to the maximum absolute weight coefficient makes the 
largest contribution to the principal components, which is 
known as the feature image [37]. The weight coefficients at 
waveband 17 (1107.01 nm) and waveband 46 (1289.43 nm) 
were the highest in the images of PC1. Hence, these two 
wavebands were selected as feature wavelengths to analyze 
texture. Waveband 17 (1107.01 nm) and waveband 46 
(1289.43 nm) are shown in Fig. 3. 

The GLCM calculation of wavebands 17 and 46 of the 
hyperspectral images obtained eight texture features of 
hyperspectral images, namely, mean, variance, Std, 
homogeneity, contrast, dissimilarity, entropy, and correlation. 
A total of 16 texture feature images were obtained for two 
wavebands. The texture features of waveband 17 of Junshan 
Yinzhen Tea are shown in Fig. 4. 
 
4.3 Construction of models 
 
4.3.1 Construction of the model based on spectral 
features 
The images of three principal components were extracted 
through PCA. Combined with the selected ROI sampling 
points, the training samples of the four tea categories were 
extracted and input into the dataset. The classification values 
of the four categories were defined as 1, 2, 3, and 4. The tea 
classification values were extracted by ROI sampling points 
and used as the output dataset of the model training samples. 
Then, they were input into the SVM classifier. In addition, 
RBF was chosen as the kernel function. The penalty 
coefficient and kernel parameter in the SVM classification 
model were acquired by cross validation [38]. A tea 
identification model based on spectral features was 
constructed. 
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 (a)                                                                        (b)                                                                        (c)    

Fig. 2.  Clustering result for the karate network. (a) PC1. (b) PC2. (c) PC3 
 

 
(a) 

Fig. 3.  Feature images extracted by PCA. (a) b17. (b) b46 

 

(b) 

 
 

 

 
 

 
Fig. 4. Tea texture feature image of band17. (a) Mean. (b) Variance. (c) Std. (d) Homogeneity. (e) Contrast. (f) Dissimilarity. (g) Entropy. (h) 
Correlation 
 
 
 

 
 

(a) (d) (c) (b) 

(e) (h) (g) (f) 
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4.3.2 Construction of the model based on texture features 
The images of 16 texture features extracted by wavebands 
17 and 46 as well as the selected ROI sampling points were 
used to extract the training samples of the four tea categories. 
Then, these samples were input into the dataset and were 
used as variables of texture features. The classification 
values of the tea categories extracted by ROI sampling 
points were used as the output dataset of the model training 
samples. They were input into the SVM classifier to train the 
SVM model. In addition, RBF was selected as the kernel 
function. The penalty coefficient and kernel parameter in the 
SVM classification model were acquired by cross validation. 
A tea identification model based on texture features was 
constructed. 
 
4.3.3 Construction of the model based on spectral and 
texture features 
The three spectral features in Section 4.3.1 and 16 texture 
features in Section 4.3.2 were used as the input dataset of the 
training samples. The classification values of the four tea 
categories extracted by ROI sampling points were used as 
the output dataset of the model training samples. They were 

input into the SVM classifier. RBF was selected as the 
kernel function. The penalty coefficient and kernel 
parameter in the SVM classification model were acquired by 
cross validation. Then, all residual pixels were classified. A 
tea identification model based on spectral and texture 
features was constructed. 
 
4.3.4 Accuracy evaluation of the model 
After the models were constructed, 300 prediction set 
samples were input into three models to calculate their total 
accuracy values. The model based on texture and spectral 
features achieved the highest accuracy with a total accuracy 
of 94.3%. Meanwhile, the model based on spectral features 
achieved the second highest accuracy (88.9%). In addition, 
the model based on texture features had the lowest accuracy 
(85%). Hence, four kinds of tea were classified through the 
model on the basis of texture and spectral features. The 
results are shown in Fig. 5. Moreover, a statistical analysis 
of the image pixel classification results of the four tea 
categories conducted. Pixel statistics and classification 
accuracy are listed in Table 2.

  

 

 
 
Fig. 5.  Identification results of SVM classification: (a)–(d) are physical images of Junshan Yinzhen, Wuxi White Tea, Xinyang Maojian and Lu’an 
Guapian. (e)–(h) Corresponding pixelwise identification results of classification. 
 

Compared with the physical images of tea, the 
classification results were basically consistent with category 
truth values. The category classification accuracy was higher 
than 85%, the overall classification accuracy was 90.3%, and 
the kappa coefficient reached 0.87. However, mixed pixels 
appear at edges, and some incorrect classifications of some 
tea samples occur for the following reasons: 1) influences by 

tea-background mixed pixels or tea shieldin, 2) different 
postures of tea at imaging bring different reflectances 
(“different spectra for the same object,” and 3) low 
chlorophyll content of tea decreases the difference among 
different types of tea. Generally, some differences emerge in 
these influences. However, the feasibility of hyperspectral 
images in tea identification cannot be rejected. 

 
 

Table 2. Full-image statistics of tea classification accuracy 

Kinds of tea 

Pixel classification results (unit: pixels) 

 

Classification accuracy (%) 

Junshan 
Yinzhen  

Wuxi White 
Tea 

Xinyang 
Maojian  

Lu’an 
Guapian  

Category 
accuracy 

Overall 
accurac
y 

Kappa 
coefficient 

Categ
ory 
truth-
value 

Junshan Yinzhen  17242 1756 80 19 90.3% 

90.3% 0.87 Wuxi White Tea 1044 14806 888 79 88.0% 
Xinyang Maojian  612 1608 16382 526 85.6% 
Lu’an Guapian  452 144 493 23383 95.6% 

(a) (b) (c) (d) 

(f) (h) (g) (e) 
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5. Conclusions 
 
Category identification and grade classification of tea have 
great practical significance. Texture features and spectral 
features of different tea categories were extracted on the 
basis of hyperspectral images. Some tea identification 
models were built by combining the SVM model, and their 
accuracy values were evaluated. The following conclusions 
can be drawn: 

(1) Compared with tea identification and classification 
methods based on texture features or spectral features only, 
the method integrating texture and spectral features achieves 
better classification accuracy. In particular, the overall 
accuracy reaches 94.3%. This outcome proves that 
integrating spectral and texture features can offset the 
influences of having different spectra for the same object to 
some extent. 

(2) The classification model based on spectral and 
texture features shows the best identification effect in the 
four kinds of tea. The category identification accuracy, 
overall accuracy, and kappa coefficient are >85%, 90.3%, 
and 9.87, respectively. This result demonstrates that the 
model is feasible for identifying tea and can provide full 
category distribution graphs of tea. 

Compared with sample-centered studies, an 
identification model is built considering the spectra, texture 
features, and hyperspectral images of tea. Then, the full 
category distribution graphs are provided. The conclusions 

of this study can provide theoretical and technological 
support for the rapid identification of tea. Moreover, the 
research results are applicable to tea detection or relevant 
food production enterprises. This study not only has 
important theoretical significance but also has favorable 
economic and social application prospects as well as 
important social and economic value. Future studies can be 
initiated to distinguish additional tea categories by 
combining spectral and image spatial features, detect and 
improve the stability of models, and guide authenticity 
identification and grade classification of tea in practical 
production. 
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