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Abstract 
 
Waterflooding is the most common secondary recovery technique used in oil and gas industries today, owing to its cheap 
investment cost and easy implementation. However, major challenges are encountered in terms of oil sweep efficiency and 
breakthrough time which poses a risk to production and economic lifecycle of reservoirs. As a result, reservoir engineers 
are tasked with improvising optimal production strategies with the goal of maximizing profit. This review extensively 
describes some common optimization techniques reported in improving oil reservoir production. Also, their formulation, 
limitations and advantages with respect to production rates, oil well placement and control, inter-well connectivity and 
reservoir sweep efficiency were reviewed. While there are several optimization algorithms used in waterflooding, the 
emphasis in this work involves only the gradient and data driven optimizers since it is impossible to cover all optimization 
technique in a single review paper. Basically, no algorithm has been globally accepted as superior to the other since the 
sole aim is to improve productivity and economic profit, and each of these techniques has its unique practicability. 
However, when considering factors like design limitations, computational and economic cost, implementation timeframe, 
availability of data, some technique may suffice.   
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1. Introduction 
 
Waterflooding recovery is an enhanced oil recovery technique 
that involves the injection of water into an oil reservoir 
thereby increasing the underground pressure [1–3]. This 
pressure increase causes oil to flow to the surface. 
Waterflooding is one of the most used enhanced oil recovery 
technique due to the fact that water is readily available and 
discounted to sustain [4].  Waterflooding enhanced oil 
recovery has shown to be predominant on the basis of [5]; 
water availability, injection simplicity, sweep efficiency and 
ability of water to displace oil. However, with the efficacy of 
implementing waterflooding recovery technique,  about 35% 
of the original oil in place (OOIP) is produced [6]. In reality, 
conventional waterflooding schemes may not suffice in 
increasing the yield of  produced oil due to a poor sweep 
efficiency [7]. So, to account for oil productivity, a system 
involving reservoir management lifecycle called Closed-
Loop Reservoir Management (CLRM) is developed to tackle 
this production shortcoming [8]. CLRM basically involves 
the application of real time data and mathematical models to 
propagate the long and short term decision making strategies 
for new and existing oil reservoirs [8], [9]. CLRM primarily 
consist of two workflows; the first is history matching which 
relies on historical data assimilation; the second is the 
optimization of control inputs which relies on some 
optimization algorithms (Fig. 1). The aspect of optimization 
is the primary focus of this review. 
 
 
2. Waterflood Optimization 

 
Waterflooding problems are commonly formulated as 
optimization problems. The problem is usually formulated to 
optimize a key performance index by manipulating the 
optimal variables such as production and injection wells, 
bottom hole pressure [10], [11]. In reservoir engineering, the 
process of finding varied optimum reservoir parameters such 
as injection and production rates etc., is known as well control 
optimization [12]. The study on optimization techniques for 
waterflooding has over the years been considered a pathway 
for successful realization of new and existing oil reservoir 
production, and authors tend to be explicit on the choice of 
publishing organization due to field specific relevance and 
accessibility. Fig. 2 presents a word cloud on selected 
publishers used by authors for waterflood optimization 
problems. 

 
Fig. 1. Closed-Loop Reservoir Management (CLRM) Workflow [44]. 
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3. Gradient based Waterflood Optimization 
 
Real reservoirs are inherently heterogeneous which makes it 
almost difficult to obtain actual solutions to production 
efficiency. So, in this case, to account for such scenarios, 
geological and economic uncertainties are introduced into the 
optimization sets. One of the methods that has found usability 
for this kind of problem is what is called ensemble 
Optimization(EnOpt) [13]–[18]. EnOpt has found keen 
interest by researchers due to its ease of approximating 
ensemble gradients rather than adjoint estimations [19]. The 
uncertainty are approximated by distributing the performance 
indicator into a finite number of possible outcome and then 
optimized over the production period of the reservoir [20]. 
Successful approaches have been reported for several 
problems including production optimization [21–25]. 
Upstream oil exploration are quite complex, hence utilization 
of conventional optimization strategy will not suffice because 
it only provide solutions of single uncertainty realization [26]. 
Real world optimization problems are faced with constitutive 
challenges such as data uncertainty, difficulty in 
implementation of generated optimal solutions, large scale 
problems even though global optimization may be practically 
applicable. Beyer and Sendhoff [27] described scenarios 
where singularities in global optimal design are experiential. 
They observed that global optimization formulation described 
previously can only be suitable for static systems. Real world 
problems of optimization are dynamic, which makes the 
optimality effectiveness unstable. General optimization 
technique is shown to be sensitive to minor changes. 
However, to deal with sophistication of design objective, the 
robustness of systems that are insensitive to uncertainties are 
identified. The idea of formulating robust designs in the 
presence of uncertainty is what is referred to as robust 
optimization [28]. The common uncertainty cases 
encountered in design process are: A) uncertainty in operating 
conditions. B) uncertainty in design parameters. C) 
uncertainty that is obvious in the performance of a system. 
Robust optimization is an optimization approach used to 
consider investigation of optimal parameter under system 
uncertainty [29]. The concept of robust optimization focuses 
on specific fields that exhibit probabilistic design theories, 
which is closely related to dynamical approach to system 
observation. The concept of robust optimization has gained 
more proximity to robust control techniques. In robust 
optimization, the investigated reservoir model is not usually 
stochastic but rather deterministic. One of the major 
parameters in robust optimization that is tractable is what is 
referred to as the uncertainty parameter sets [30]. They are 
values of parameter uncertainty that are considered in 
optimization and they are usually specified by the user.  In 
robust optimization, parameters can be expressed either 
linearly or nonlinearly depending on the nature of uncertainty. 
Ben-tal and Nemirovski [31] described the mathematical 
illustration of robust designs applied to linear programming 
problems, were the robust counterpart; 
 
min
!,#
{𝑡: 𝑡 ≥ 𝑐$𝑥,			𝐴𝑥 ≥ 	𝑏								∀(𝑐	, 𝐴, 𝐵) ∈ 𝑈}      (1) 

 
for an uncertain linear programming problem of the form; 
 
2min

#
{𝑐$𝑥 ∶ 𝐴𝑥	 ≥ 𝑏}|(𝑐, 𝐴, 𝑏) ∈ 𝑈	∁	𝑅%𝑥𝑅&	#	%	𝑥	𝑅&7    (2) 

 
Is comparable to a very computational approachable case, 

provided the uncertainty set is computationally responsive. 

 
Fig. 2. Selected Publishers for Research In Waterflood Optimization. 
 
 

Waterflood optimization problems are in most cases 
modelled-based, however there are inherent limitations that 
may arise from unknown reservoir implicit behaviour and 
varying economic conditions such as currency devaluation 
from market instability. One way to account for such 
scenarios is to consider optimization scenarios (commonly 
called scenario based optimization) that will leverage the 
reservoir data for better performance. Siraj et al [18] 
investigated the applicability of a scenario-based optimization 
to waterflooding robust optimization. The author described 
the possibilities of providing a robust performance for various 
geological uncertainties. Worst case optimization has been 
given for deterministic models where the uncertainty is 
designed as a variable say 𝜃 which takes values in a 
deterministic set ϴ [32]. The approach of optimizing a 
waterflooded reservoir through scenario-based optimization 
is to distribute the dimension of the uncertainty and then to 
establish a worst-case scenario optimization basis. 

Another aspect of robust optimization that involves 
system randomness is the stochastic based robust 
optimization. Stochastic optimization involves the use of 
nature-based algorithm to optimize a process in the presence 
of system randomness [33]. Over the past few years, this 
method of optimization has seen a significant increase in 
usage trend both for businesses, sciences and engineering. 
System randomness usually occur in two distinct ways. Either 
via objective function or process constraints. Moraes et al [34] 
presented a system that integrates stochastic gradient and 
multiscale forward simulation for robust optimal well control 
of waterflood reservoirs with geological uncertainties. Here, 
the authors considered well control parameters such as the 
pressure, rate of valve settings for different well 
configurations. The multiscale simulation was used to 
evaluate the response of the model, while stochastic simplex 
approximate gradient was used to compute the gradient of the 
objective function by implementing forward simulation 
reaction. Stochastic optimization based on evolutionary 
technology was also implemented by Ambia [35] to optimize 
the waterflooded performance index such as the NPV and 
recovery factor. A synthetic model was built to determine the 
optimum well pattern, spacing, production and injection 
scheme that will improve the NPV and recovery factor. 
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Capolie et al [36] investigated the efficacy of open and closed 
loop optimization applied to oil reservoir waterflooding 
reservoir to maximize the NPV and RF. In robust 
optimization, it is convenient to incorporate the standard 
deviation to actual optimization objective function. As a case 
study, Wellano et al [37] implemented a combination of mean 
and standard deviation of the objective function (NPV) as a 
single function, and a risk factor which recognizes a trade-off 
between the mean and standard deviation of NPV. Secondly, 
the NPV of the reservoir and its corresponding standard 
deviation were included as a set of constraints. However, this 
optimization strategy was applied both to single and multi-
objective cases. For the multi objective case a formulation 
based on the so called pareto idea was used. 

Risk management in robust optimization techniques have 
being shown to play a very vital role in establishing 
successive reservoir modelling decisions that are faced with 
uncertainties for diverse traditional optimization approaches 
[38]. Siraj et al [39] addresses the idea of risk management 
for a reservoir with deviation extrapolation and how the risk 
can be implemented to the objective function. In the literature, 
geological and economic uncertainties were considered. One 
of the risk measures considered is worst case optimal 
approach, and the conditional value at risk approach [40]. 
Since waterflooding optimization is a large non-linear 
optimization, gradient based optimization techniques could 
be used to obtain a base approach. Gradient optimization are 
used by solving a system of adjoint equations to obtain the 
gradients [41–43]. This will be discussed in detail in 
subsection 3.2 of this article. We’ve seen that most traditional 
robust optimization are carried out in an open loop(offline) 
fashion and as such the models are not usually validated. 
However, Siraj et al [44] had identified the robust optimal 
designs of waterflooded reservoirs in an online fashion using 
the so called residual analysis. The analogy was to find a way 
to reduce the model uncertainty in an online setting. As the 
reservoir models are nonlinear in nature, a deterministic 
metric such as the best fit ratio (BFR) is used in defining the 
invalidation sets. The residual is said to be the difference 
between measured output and the computed output [44] 

 
𝜖 = 𝑦 − 𝑦=                 (3) 
 

The best fit ratio (BFR) is given as [46]: 
 
𝐵𝐹𝑅 = 100% ∗max @1− ‖)‖2

‖*+*‖2
, 0A         (4) 

 
The BFR is often used in system identification. A low 

BFR shows a poor fit to data while a high BFR shows a good 
fit.  

In most waterflooded oil reservoirs, water injection rates 
are commonly used as decision parameter that affects the 
economic feasibility of the project. However, in some 
literatures, the compatibility of the injected water are being 
studied with respect to the reservoir type [45]. One of this 
compatibility is studied on low salinity waterflooded 
reservoirs. Although low water salinity has shown to be a 
better system in yielding optimal recovery, conventional 
recovery techniques are still common choices in terms of 
sweep efficiency. With the great impact of unconventional 
waterflooding, the scheme greatly depends on wettability 
conditions. Wettability are conditions were the tendencies of 
a fluid spreading over a rock surface are efficient. Wettability 
parameters are shown to affect the optimal recovery process 
over a production trajectory. Wettability are measured by 
considering the contact angle θ or through the interfacial force 

between two fluids that are immiscible when in contact with 
a solid. Dang [45] defines the contact angle used to illustrate 
the wettability, which is the tangent to the water-oil surface 
estimated through the water phase. Here, the author presented 
a well placement robust optimization strategy for low salinity 
waterflooding case. The optimization was presented on 
several geological uncertainty realizations. The results were 
asserted for optimal wettability alterations and sweep 
efficiency. This was done by locating optimal well placement 
positions. A contact angle of 0 shows a system that is highly 
water wet, while a contact angle of 180 indicates a system that 
is oil wet. Table 1 shows a relationship between angle of 
contact and wettability phase. 

 
Table 1. Relationship Between Angle Of Contact And 
Wettability Phase [47] 

Angle of contact Wettability 
0-30 Strong water wet 
30-90 Considerable water wet 

90 Neutral wettability 
90-150 Considerable oil wet 
150-180 Strongly oil wet 

 
 

Yasari and Reza [46] investigated the effect of pareto- 
based optimization to variabilities in uncertainty realization 
in reservoir permeability. The idea of the pareto optimization 
is on the basis of multiple objective functions. The pareto 
optimality for two objective function is defined by [46]: 

 
∀: 𝑓,(𝑥+1) ≥ 𝑓,(𝑥+2) and  ∃:						𝑓,(𝑥+1) > 𝑓,(𝑥+2), 𝑖 =
1, ……𝑁                (5) 

 
The optimum injection policies gave a higher expected net 

present value and a lower variance. The study gave an 
efficacy of the pareto-based solutions for the injection wells 
under uncertainties in reservoir permeability. 

System uncertainty in reservoir waterflooding has been 
described under conditions of high profit and low risk cases, 
a singularity in financial modelling referred to as ‘portfolio 
selection’ or sometimes called mean variance portfolio 
selection (MVO) formulated by Markowitz [47]. Portfolio 
selection explains the systematic trade-offs between profit 
investment in the presence of uncertainty [50], [51]. Mean 
variance has found tremendous applicability in portfolio 
analysis and selection due to its primary ability to consider 
uncertainty. Based on Markowitz’s mean variance analysis, 
associated risks through variances in portfolio selection are 
identified by measuring the expected value of returns on 
investment. The returns in investment are maximized via 
pareto-optimality by setting up the portfolio’s associated risks 
as upper or lower bound [50], [51]. 

Mean variance analysis (portfolio selection) considers 
several uncertainties involving monetary policies and product 
availability thereby maximizing actual(mean) returns and 
minimizing the variance(risks). This attribute gave it 
applicability in waterflood optimization problem. Capolei et 
al [17] applied mean variance selection in optimizing a 
waterflooded reservoir by considering geological uncertainty. 
This technique was further implemented by Siraj et al [26] for 
both geological and economic uncertainty. Economic risks in 
oil production are reduced by including the expected Net 
Present Value (NPV) and the risk associated with it in the 
ensemble of reservoir model. Just like RO, the idea behind 
portfolio selection basically involves risk reduction, hence 
risk management tools for such cases are also introduced. One 
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of the commonly used risk management tool in mean variance 
optimization is the Value-at-risk (VaR) and Conditional 
Value-at-risk(CVaR) [52]. They are used in portfolio 
optimization. VaR measures the degree of losses in business 
or portfolio finances during a specific period of investment 
[53]. CVaR on the other hand is used to measure the degree 
of loss that occurs beyond a certain threshold of VaR in an 
investment [54]. CVaR has shown to be more robust in 
mitigating risks as compared to VaR [55], [56].  Hanssen et 
al [57] formulated a stochastic reservoir optimization 
problem based on CVaR to handle oil production constraints. 
It was further extended to consider multiple risk scenarios 
[58]. For large ensemble realizations, retrospective 
optimization was found to be an optional technique [59]. 
Table 2 gives a summary of performance for Gradient based 
algorithm.  

 
3.1. Ensemble Kalman Filters (EnKF) 
Ensemble based history matching models have found 
convenience in reducing system non-linearities. One of which 
is the Ensemble Kalman Filters (EnKF). The EnKF is a type 
of ensemble base approach that involves predicting and 
updating reservoir model parameters and states. It is a Monte 
Carlo approach for data adjustment. The EnKF approach 
requires no derivation of adjoint equation and backward 
integration in time [60]. Discrete model equations for Kalman 
filters in a simple linear system is given by the equation [61]: 
 
𝑦%
- = 𝐴𝑦%+.

-                (6) 
 
𝐶*!" = 𝐴𝐶*!#$% 𝐴$ + 𝐶/             (7) 
 
𝑦%0 = 𝑦%

- +𝐾%K𝑑123,% −𝐻𝑦%
-N          (8) 

 
𝐾% = 𝐶*!"𝐻

$(𝐻𝐶*!"𝐻
$ + 𝐶4!)

+.          (9) 
 
𝐶*!% = (1 − 𝐾%𝐻)𝐶*!"           (10) 
 
𝑦 denotes the state vector that is projected. 𝑑123 indicates the 
observed estimate. 𝐾% indicates the Kalman gain parameter 
matrix at a time index 𝑛. 𝐶4! indicates the covariance matrix 
of the estimated error. 𝐶*!" indicates the covariance matrix. 𝐶/ 
represents the model noise. 𝐴$ denotes the dynamics of the 
system at time 𝑇. 𝐾% can be derived using several approaches. 
One way is by solving a least square problem through 
additional constraints such as the time independent evaluation 
of the estimated noise [62]. Another way is by implementing 
the Bayesian inference [63], [64]. EnKF was also extended 
for nonlinear systems having large degrees of measurement 
noise, changing Equation 6 with 𝑦%5.

- = 𝐹%(𝑦%0) such that 𝐹% 
represents a differentiable function. However, for large scale 
problems involving the extended Kalman Filter, several 
alternatives have been introduced [65–68]. 

Production optimization using EnKF is based on low 
computational time in the prevailing condition of large 
reservoir non-linearities and geological uncertainties [69]. 
EnKF has been reported for several reservoir history 
matching scenarios [13], [36], [70–77]. Automatic history 
matching using EnKF was reported by Yaqing and Oliver 
[78]. EnKF was also used for three phase flow conditions in 
a waterflood optimization using a quarter five spot well 
arrangement [79]. Here, the authors investigated the 
dependence of covariance localization on the dynamics of 
flow. They used water and gas phase streamlines as a resource 

for covariance localization. The EnKF follows an ensemble 
realization vector 𝑦6 represented by model prediction vector 
𝑑6 at time 𝑘, dynamic variable 𝑚6

4 and a static variable 𝑚6
3  

while 𝑝 indicates the prediction state [69];  
 

𝑦6
7 = U

𝑑6
𝑚6
4

𝑚6
3
V             (11) 

 
𝑑6 could be the bottom hole pressure, well water cut and gas 
oil ration. 𝑚6

4 indicates pressure or phase saturation and 𝑚6
3  

could be the relative permeability or rock porosity. EnKF was 
combined with a multi-layered capacitance resistance model 
(CRM) for waterflood prediction [80]. The EnKF was used to 
calculate the connectivity coefficients for each layer in the 
CRM. 
 
Table 2. Pros and Cons Of Gradient Based Algorithms [49] – 
[61]. 

Pros Cons 
• Converges faster at 
a possible solution. 
• Effective when 
considering multiple 
injectors. 
• Efficient for single 
history matched 
solutions. 

• Computationally expensive. 
• High possibility of 
converging at a local optimum. 
• Access to simulator source 
code is needed. 
• Requires a very good initial 
guess. 

 
 
3.2. Optimal Control Theory 
Optimal control problem is a gradient driven technique that 
allows the investigation of control parameters which will 
minimize or maximize an objective function or cost function 
through an adjoint (costate) equation [81]. Optimal control 
tends to adjust control parameters of a dynamic system in an 
open loop fashion [82]. For every optimal control designs, 
there are sets of element that must be inherent [83]: a control 
variable that is chosen from several control sets, the system to 
be controlled and a state equation that defines the relationship 
between the control variable. In an optimal control problem, 
the objective function 𝐽 [84]: 
 
min
8
𝐽(𝑢) = 𝜑K𝑥(𝑇)N + ∫ 𝐿K𝑥(𝑡), 𝑢(𝑡)N𝑑𝑡$

9      (12) 
 
Is minimized with respect to a dynamic system; 
 
𝑥(𝑡) = 𝑓K𝑥(𝑡), 𝑢(𝑡)N           (13) 
 
Having a state variable 𝑥(𝑡) and control inputs 𝑢(𝑡), with an 
initial condition; 
 
𝑥(0) = 𝑥̅0              (14) 
 
And a constraint variable subject to path; 
 
ℎK𝑥(𝑡), 𝑢(𝑡)N ≤ 0            (15) 
 
through a control constraint; 
 
𝑢(𝑡) ∈ 𝜇, ∀!∈ [0. 𝑇]           (16) 
 
Such that; 
𝜇 = {𝑞 ∈ 𝑅&: 𝑢&,% ≤ 𝑞 ≤ 𝑢&0#}       (17) 
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In solving a typical optimal control problem for 
waterflood optimization, two approaches are used; direct and 
indirect method. Direct method involves computing the 
derivative of the objective function directly [43], [85–90]. 
Direct method was implemented in a closed loop reservoir 
optimal and then compared to the open loop case [91]. 
Indirect method on the other hand involves a calculus of 
variation (adjoint function) such that the derivative of 
Hamiltonian function 𝐻(𝑘) is obtained [9]. Equation 12 – 17 
was modified for single equality constraint by Agus  [92]. 
Lagrange multiplier was introduced in the constraints to Eq. 
18 such that [93]; 

 
𝐽(𝑢) = 𝜑K𝑥(𝑇)N + ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡))$

0 +
⋋$ (𝑡)[𝐴K𝑥(𝑡)N𝑥(𝑡) + 𝐵(𝑥(𝑡)𝑢(𝑡) − 𝑥(𝑡)]𝑑𝑡    (18) 
 

Were ⋋ is the Lagrange multiplier and 𝑇 the transpose 
symbol. Introducing the Hamiltonian function as [93]; 
 
𝐻(𝑥(𝑡), 𝑢(𝑡),⋋ (𝑡) = 𝐿(𝑥(𝑡), 𝑢(𝑡)) +⋋$ (𝑡)[𝐴K𝑥(𝑡)N𝑥(𝑡) +
𝐵(𝑥(𝑡)𝑢(𝑡)]             (19) 
 

By putting Eq. 19 in Eq. 18; 
 
𝐽(𝑢) = 𝜑K𝑥(𝑇)N −⋋$ (𝑇)𝑥(𝑇) +⋋$ (0)𝑥(0) +
∫ i𝐻K𝑥(𝑡), 𝑢(𝑡),⋋ (𝑡)N +⋋$ (𝑡)𝑥(𝑡)j$
0 𝑑𝑡     (20) 

 
The first order partial variation of 𝐽(𝑢) can be computed 

for a small change in 𝑢 [93]; 
 
𝜕𝐽(𝑢) = l:;<#($)?

:#
−⋋$ (𝑇)m 𝛿𝑥(𝑇) +⋋$ (0)𝛿𝑥(0) +

∫ 2l:@(#($),8(!),⋋(!))
:#

+⋋$ (𝑡)m 𝛿𝑥(𝑇) +	:@(#(!),⋋(!))
:8(!)

+$
0

𝛿𝑢(𝑡)7 𝑑𝑡              (21) 
 
Lagrange multiplier can be set such that; 
 
⋋$ (𝑡) = − :@<#(!),8(!),⋋(!)?

:#
         (22) 

 
⋋$ (𝑇) = :;(#($))

:#
            (23) 

 
Eq. 22 and 23 represents the costate(adjoint) equation of 

any given system. For unconstrained 𝑢, it is optimized for a 
first order necessary condition of a constrained optimal 
control; 
 
𝐻(𝑥(𝑡), 𝑢17!(𝑡),⋋ (𝑡) ≤ 𝐻(𝑥(𝑡), 𝑢(𝑡),⋋ (𝑡)     (24) 
 

Eq. 24 is called the Pontryagin Maximum Principle [94 - 
95]. 

In oil reservoir waterflood optimal control problems, the 
calculation generally constitutes a forward integration of the 
reservoir dynamic system as well as the backward integration 
of the adjoint equations. The adjoint equations are used to 
compute the system gradient [96]. waterflood optimal control 
is made up of [81], [97]: 
§ Reservoir dynamic system of the form; 
 
𝑔(𝑢6 , 𝑥651, 𝑥6 , 𝜑) = 0          (25) 
 
Where 𝑔 is a nonlinear function, 𝑢 is the input vector, 𝑘 is the 
system timesteps, 𝑥651 and 𝑥6 is the reservoir state, 𝜑 is a 
vector of parameters. 

§ Initial conditions of the dynamic system [85]; 
 
𝑥0 = 𝑥̅0              (26) 
 
§ A set of injection and production rates at timestep 𝑘 and 
𝑘 + 1. 
§ Adjoint (costate) equations [97]; 
 

⋋ (𝑘)! = &− "#(%)
"'(%)

−⋋ (𝑘 + 1)! "((%)
"'(%)

* &"((%)*)
"'(%)

*
)*

  (27) 
 
:B(6)
:#(6)

 is a vector of partial derivatives of the objective function 

𝐽6 with respect to state variable 𝑥. :C(6)
:#(6)

 and :C(6+1)
:#(6)

 are the 
Jacobian of the reservoir dynamics. The objective function 
could be the NPV or Production profiles. 𝐽6 for the NPV is 
given in the form [98]; 
 
𝐽6 = ∑ ∆!&

(152)
'&
365

l∑ K𝑃0𝑞1,1% − 𝑃E7𝑞E7,,% N −F(
,G1

$
%G1

∑ (𝑃EH𝑞EI,J%F)
JG1 )m            (28) 

 
Np stands for the Number of production wells, NI is the 
Number of injection wells, b is the Discount factor, ∆tk is the 
Time step size, tk is the evolution time, T is the time unit. The 
water injection rates are commonly used as the decision 
variables. 
 
§ Final conditions of the adjoint systems. 
 

Taking the reservoir as an equality constraint problem, the 
objective function 𝐽6 is summed up using the Lagrange 
multipliers [99][101]; 

 
𝐽 = ∑ 𝐽(𝑘)6+1

6G0 +⋋ (𝑘 + 1)$𝑔(𝑘) = ∑ 𝐻(𝑘)6+1
6G0     (29) 

 
Production optimization was obtained using an 

augmented Lagrange method [99]–[101]. This method was 
compared with the straightforward adjoint equations in the 
absence of reservoir uncertainty. Whereas, uncertainty cases 
involving smart wells was also studied [81], [91], [96], [102–
106]. Some authors have studied the augmented approaches 
used in optimal control theory. One of which is the Bang-
Bang technique which is applicable when the objective 
function is linear and the upper and lower bound are the only 
control constraints [84], [107], [108]. Optimal control is 
considered efficient due to its fast approach to obtaining 
solutions, however, one of the major drawbacks is that the 
gradient of the objective function solely relies on the adjoint 
equations. And this Adjoint are computationally expensive 
and obtaining it solution requires knowledge of programming. 
Table 3 gives a summary of performance for optimal control 
theory (OCT).  
 
Table 3. Pros and Cons of OCT [85], [86], [93] – [109]. 

Pros Cons 
• Converges faster at a 
possible solution. 
• Effective when 
considering multiple 
injectors. 
• Efficient for single 
history matched solutions. 

• Requires an adjoint equation. 
• High possibility of converging 
at a local optimum. 
• Difficult to implement on 
complex nonlinear space. 
• Access to simulator source code 
is needed. 
• Requires a very good initial 
guess. 
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5. Data-Driven Optimization Approach 
 
Availability of data has become a resource to system 
performance. With reservoir production data, it is convenient 
to obtain an optimal reservoir performance without recourse 
to analytical models. Data driven optimization is basically a 
black box approach because a prior knowledge of the 
reservoir geological information is not needed and its 
simulation time is brief. Data driven approaches does not 
require a derivative technique for estimating the objective 
function as opposed to the gradient system of optimization.  

In reservoir optimization, several data driven approaches 
have been looked at with respect to well placement and 
production. The first discussed in this review is the Inter-Well 
Connectivity models (ICM). One of the earliest ICMs used in 
reservoir production optimization is the Capacitance 
Resistance Models (CRM). CRM is a correlation-based 
technique based on material balance law that pairs injection 
wells to production wells [109]. CRM is robust in handling 
dynamic boundary conditions when production and bottom 
hole pressure (BHP) data are available. CRM was established 
by Albertoni and Lake [110], and advanced by Yousef et al 
[111] for injectors and producers using space superposition. 
CRM involves two parameters for injection-producer. The 
first is the allocation factor (connectivity coefficient) and the 
second is the time constant. Allocation factors aids in 
estimating the inter-well connectivity between water injectors 
and producers by equating the total water injection rates that 
flows toward the production wells. Several research on CRM 
has been carried out with respect to waterflood optimization 
including the use of single and multi-layered reservoirs 
considering data from production logging, BHP and 
crossflows [80], [112], [113]. Cao et al [114] combined CRM 
with the Koval model to predict the waterflood production. 
The Koval model is used to address the characterization of 
viscous and heterogeneity effects using the so-called viscous 
fingering [115]. Wang et al [116] later implemented an 
improved CRM-Koval model coupled with aquifer support 
using the Karst reservoir as a case study. While the Koval 
model may be a good choice for production prediction from 
carbonate reservoirs, it is not sufficient to describe production 
from mature fields. A major setback with CRM is that the 
allocation factor remains constant during the span of 
production, whereas it changes as the multiphase flow of the 
system is dynamic. Another limitation lies on the fact that the 
multiphase flow system requires empirical models in 
estimating the fractional flow. For this reason, an approach 
called Inter-well Numerical Simulation Model (INSIM) was 
developed [116], [117].  

INSIM is a physics-based data driven model which is able 
to predict the rates of production in well pairs by using an 
augmented Buckley-Leverett theory. INSIM has being 
derived from the principal of mass conservation and Darcy’s 
law with compressibility of fluid and rock consideration. It 
was assumed that for two phase isothermal flow of oil and 
water, constant viscosities and negligible gravity and 
capillary force, the total volume balance for the 𝑖!K well is 
written as [116]: 

 
∑ 𝑇,,J%
%*
JG1 (𝑡)(@𝑝J(𝑡) − 𝑝,(𝑡)A + 𝑞,(𝑡) = 𝑐!,,(𝑡)𝑉7.,(𝑡)

47+(!)
4!

  
               (30) 
 
𝑐!,, stands for the total compressibility of well 𝑉7,,, 𝑞, is the 
subsurface fluid rate for injection and production well. 𝑝, 
stands for the average pressure of 𝑖!K well at time 𝑡. 𝑉7.,(𝑡) 

stands for half the summation of control volume pore volume 
of connective units to the 𝑖!K well. INSIM is able to estimate 
inter-well connectivity as well as monitor water cut [117]. 

INSIM was first employed by Zhao et al [117], [118] for 
one-dimensional two-phase flow reservoir. An improved 
approach called INSIM Flow Tracking (INSIM-FT) was 
studied by Guo et al [119], [120] for 2-dimensional flow and 
later extended for 3-dimensional flow to history match the 
production history of multi-layered reservoirs [121] and 
reservoir wells with gravitational effect [122]. Recently, 
INSIM-FT was extended to include a Flow Path Tracking 
(INSIM-FPT) for production optimization, history matching 
and inter-well connectivity [123]. 

Another data driven approach used in oil reservoir 
waterflooding is the Reduced Order Model (ROM). They are 
large models that are discretized from set of Partial 
Differential Equations (PDEs). The two mostly used 
technique in generating ROM for waterflood optimization 
problem is the Proper Orthogonal Distribution [97], [124–
126], and Trajectory Piecewise Linearization (TPWL) [127]. 
Data driven based optimal control algorithms have found 
tremendous applicability in waterflood optimization. With the 
availability of production measurement, it’s quite convenient 
to implement a control-based optimization framework. Of the 
many control-based optimization, one of the commonly used 
techniques is the Model Predictive Control (MPC). MPC is a 
numerical optimization technique that corresponds to a finite 
horizon optimal control [128], a new optimization strategy 
called Receding Horizon approach since the system’s state is 
updated at every given sampling period [129]. The 
complexity of MPC solely depends on the complexity of the 
model. For example, a linear problem will settle for a linear 
predictive control. Considering the complexities and 
nonlinearities of reservoir model, a Nonlinear MPC is better 
suited. Several approaches in waterflood optimization using 
NMPC has being studied for conventional wells [129–132] 
and nonconventional well production [133], including the 
Receding Horizon approach [129], [134], [135]. Based on the 
data reviewed in this work, data driven algorithms are the 
second most used optimization techniques in the oil and gas 
fields for more than two decades, with an average 
implementation of about 33% after gradient-based techniques 
which has a record of about 40% usage (Fig. 3).  

Attention has been given to a state of optimal control 
strategy in waterflooding optimization, where the feedback 
closed loop control strategy is improved by investigating 
control variables that are less sensitive to reservoir 
uncertainties. The control variables are maintained at a 
constant set point in the presence of uncertainty to make the 
process near optimal. This concept has been described by 
Halvorsen et al [136] as self-optimizing control (SOC).  

Self-optimizing control describes scenarios of optimality 
with acceptable loss and in turn, the need to reoptimize in the 
presence of disturbance will be minimized. Halvorsen et al 
[140] described the proximate relation of SOC approach to 
self-regulating control, a scenario were by controlled activity 
is minimized as the dynamic performance of the process 
becomes acceptable. Skogestad [141] gave an outline of the 
variables to control to attain a self-optimizing control: 

 
• Controlled variables 
• Manipulated variables 
• Measurements selection 
• Structure of the controller configuration 
• Selection of the controller strategy (PID, decoupler, fuzzy 
etc) 
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Fig. 3. Algorithms Used for Waterflood Optimization. 
 
 

Process system are basically controlled in diverse 
manners, whereby control strategies are implemented in the 
local and plantwide layers. Plantwide control layers are 
generally responsible for the entire controllability of the 
process in order to maintain the local controlled variables 
[138], [139]. However, it is possible to link the layers to form 
a single control unit through the concept of SOC. According 
to Cao [140], control scheme of a self-optimizing system is 
chosen accordingly: 

 
• Stabilization control 
• Constrained control 
• Self-optimizing control 
 

MVs are control values that must be adjusted in order to 
achieve a specific output, while the CVs are quantities that 
have being controlled. On the other hand, the uncontrolled 
variable is called the disturbance [141]. CVs are selected via 
two basic ways, locally or globally. The local method has 
been described as the linear approximation of a nonlinear 
model around a nominal point. By doing this, the solution is 
said to be local [142]. Ye et al [143] described the linearized 
model between independent variables and measured outputs 
around a nominal point as: 

 
𝑦 = 𝐺*𝑢 + 𝐺4

*𝑊4𝑑 +𝑊%𝑛         (32) 
 
𝐺* and 𝐺4

* are steady state gain matrices for inputs and 
disturbance. 𝑊4 and 𝑊% are the diagonal matrices that are 
used to normalize  𝑑 and 𝑛. 𝑑 and 𝑒 denote the disturbance 
and errors of the control system respectively. The selection of 
subsets as alternatives for CV or their combination is 
considered as combinatorial optimization [143]. Solution for 
this kind of problem has been proposed by an approach called 
branch and bound methods [144–146]. The global method 
involves the direct use of gradient functions as CVs so that 
global optimum could be achieved[147]. This proposed 
method could be seen in the works of [138], [140], [148]. 

Self-optimizing control for waterflooded reservoir 
optimization has being reported by Grema et al [149], [150]. 
Grema and Cao [32] applied a data driven self-optimizing 
control. This method involves investigating controlled 
variable that are applied to oil reservoirs with uncertainties. 
The CVs were investigated from measured production data in 
an offline manner and it was then implemented online in a 
closed loop feedback approach, and then compared to the 
open loop control (OC) scheme. This same approach was 
applied to multivariable waterflooding optimal control by 
Grema et al [150]. Recently, SOC was extended for smart 
well problems [151]. Table 4 gives a summary of 
performance for data driven algorithms while table 5 shows 
the summary of the entire review.  

 
Table 4. Pros and Cons Of Data Driven Algorithm [130] – 
[140] 

Pros Cons 
• The predictable value 
is a good quantity. 
• Uncertain parameters 
are the only needed 
measure. 
• It is easy to 
implement with 
availability of data. 

• In some cases, a very large 
amount of data will be 
required to improve the 
performance. 
• Discrepancies in data 
quality will eventually 
produce inaccurate results. 

 
 

Recently, machine learning models have been 
implemented to oil reservoir optimization problems. Machine 
learning as a branch of artificial intelligence is a data driven 
technique used for predictive analysis. It comprises of several 
algorithms with specific purposes such as regression, 
classification and clustering problems. The ability of this 
algorithm to self-learn from available data makes it a choice 
of preference for waterflooding optimization [152]. A typical 
framework for machine implementation is presented in Fig 4. 
Machine learning is classified based on the nature of learning. 
This are supervised learning, unsupervised learning and 
reinforcement learning. In supervised learning, the data is 
made up of input and output variables, while unsupervised 
learning is comprised of input variables where the developed 
machine learning is expected to obtain patterns and produce 
appropriate output. Reinforcement learning is concerned with 
knowledge based derivation from the model [153]. Deep 
learning models are the most commonly used machine 
learning algorithms in waterflood optimization. Deep 
learning algorithms are made of complex interconnecting 
units called neurons divided into layers. Some of them include 
the deep feedforward neural network (DFFNN), nonlinear 
autoregressive and external inputs (NARx), support vector 
machines (SVM), convolutional neural networks (CNN), 
recurrent neural network (RNN) etc.  
 

 
Fig. 4. Workflow For Machine Learning Waterflood Optimization. 
 
 

Effective machine learning has been applied to problems 
that includes geophysical exploration, logging curve 
construction, drilling and completion methods, surface 
facility engineering and well logging [153]. Machine learning 
have been applied for well control optimization [154 – 157], 
production optimization [158 – 159], reservoir estimation 
based on reinforcement learning [160].  Machine learning 
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algorithms are of great importance due to their robust data 
driven capabilities and strengths. 
 
Table 5. Review Summary. 

Optimization Algorithm Reference 
Data driven 
proxies 

Self-Optimizing 
Control 

[33], [146], [151], 
[153] – [155] 
 

Correlation based 
models 

[82], [112] – [126] 
 

Reduced order 
models 

[100], [127] – [130] 
 

Model Predictive 
control 

[132] – [139] 
 

Machine learning  [157] – [165] 
 

Gradient 
based 
Algorithm 

Conditional 
Value at Risk 

[57] – [61] 
 

Mean Variance 
optimization 

[18], [27]  
 

Robust 
optimization, 
Sequential  
Quadratic 
programming 
(SQP) 

[14] – [32], [35] – 
[39] 
 
 

 Optimal Control 
theory 

[10], [85]–[93], 
[94] – [111] 
 

 Ensemble 
Kalman Filter 

[14], [38], [71] – 
[82] 
 

 
5. Conclusion 

 
Research on waterflood optimization has been one of the most 
predominant topics covered in the oil and gas industry. 
Typically, with more emphasis on well placement pattern, 
well control, oil and gas production rates and how these 
optimization algorithms are implemented. Traditional model-
based algorithm has found great use for optimization cases 
however, it may still be full of flaws as to implementation and 
obtainable solutions.  As more data become available, 
researchers tend to focus more on leveraging them in 
obtaining possible and efficient solutions thereby establishing 
more techniques that may suffice against the existing ones. 
New ways in making oil recovery efficient and profitable has 
gained traction over the years. Such kind of technology like 
the use of machine learning and deep learning has become 
predominant in the oil and gas industry. Computational 
limitations have become one major challenge in identifying 
reservoirs, especially those of complex geological properties. 
Investigating efficient production or Net Present Value might 
be rigorous and time taken. Monumental oil well data, rock 
and fluid properties will require extensive study for cases of 
modelling. This key limitation will require advanced 
computational technique like the deep machine learning 
models. Several optimization algorithms used in waterflood 
optimizations where discussed, the pros and cons of these 
algorithms were also studied with respect to formulation and 
implementation. It is however important to note that, no 
algorithm suffices against the other. Hence, the need to 
improve on the existing technique becomes imminent.  
 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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