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Abstract 
 
Convolutional Neural Networks, CNNs are known for their unparalleled accuracy in the classification of benign images. It 
is observed that neural networks are prone to having lesser accuracy in the classification of images with noise perturbation. 
The following study resulted in inferences to establish that CNNs are extremely vulnerable at predicting noisy images while 
Feed-forward Neural Networks, FNNs are least affected due to noise perturbation, maintaining their accuracy almost 
undisturbed. FNNs showcase better classification accuracy when tested with noise-intensive, single-channelled images that 
are just sheer noise to human vision. The hand-written digit images from the MNIST dataset t are classified using the 
architectures of FNNs with 1 and 2 hidden layers and CNNs with 3, 4, 6, and 8 convolutions, which provide the stated 
experimental inferences. Deviations in the performances of these architectures analyzed systematically propose that FNNs 
stand out to show a classification accuracy of more than 85%, irrespective of the intensity of noise and CNNs witness a 
trend in the reduction in speed of classification accuracy against increasing noise intensities. Correlation analysis and 
mathematical modelling of the accuracy trends act as roadmaps to picture that the change in the speed of classification 
accuracy against increasing noise intensities for CNN with 8 convolutions is half of that of the rest of the CNNs. This 
experimental study is a step to quantify the performance of deep learning image classification models in the context of 
adversarial images. 
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1. Introduction 
 
Image classification involves training a neural network to 
categorize images into different classes or categories, such as 
identifying objects or scenes in images. Neural networks, 
including Feed Forward Neural Networks (FNNs) and 
Convolutional Neural Networks (CNNs), are widely used for 
image classification due to their ability to learn complex 
patterns from large amounts of data. 

Adversarial examples are images that are created by 
adding noise that is specifically curated to fool machine 
learning models [1]. These have posed a serious threat to 
image classification algorithms and systems in recent times. 
The primary concern with regard to these adversarial 
examples is that they are not distinguishable (the noise added 
is not profound) from the benign images to the human eye. 
Hence, an evasion attack can be implemented against machine 
learning models using these adversarial images in order to 
fool them, resulting in misclassifications [21].  These attacks 
can be performed in both white-box scenarios, where the 
attacker has complete knowledge of the neural network's 
architecture and parameters, and black-box scenarios, where 
the attacker has limited knowledge and access to the neural 
network. Previous studies have trained the model using 
adversarial input with an attack step size of up to 16 to 
introduce the model to adversarial data before testing against 
adversarial images [2, 26]. This training teaches the model to 

expect changes at the pixel level, those which could be 
potential sources to fool the model, and act accordingly while 
encountering such images in the test set. The benign dataset 
consists of images without noise. In this study, the model is 
trained using the benign dataset and is tested for its learning 
capabilities using images severely exposed to noise distortion. 
This is to evaluate the model’s robustness towards adversarial 
images encountered in real-time.  

Previous works [5] have focussed on comparing and 
contrasting Deep Belief Networks (DBN) with CNNs under 
adversarial images. It was found that DBNs performed better 
than CNNs for adversarial examples. The work attributes the 
drawback of CNNs to strong inductive bias assumption, 
which is an attribute of the working of CNN. Alterations have 
been made to the CNN architecture to come up with models 
that improve the robustness of CNNs against adversarial 
examples [6]. In a unique study, CNN architecture has been 
altered to denoise an image before processing [7]. Previous 
studies have been engaged in finding the appropriate 
activation function for the hidden layer of an FNN. Laudani 
et al. also proposed a method to change a network 
configuration between various activation functions without 
affecting the network mapping capabilities [15].  

Many real-life scenarios experience the threat of 
adversarial images which results in huge material loss and 
compromised decisions. Adversarial Images can fool medical 
diagnosis systems where something malignant could be 
incorrectly classified as benign or vice-versa [18]. In practice, 
altering pixels to fool machine learning models is common. 
Adding an adversarial patch that can influence the decision of 
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a model has been a new viable adversarial attack [19]. These 
adversarial attacks are not just reserved to image dataset 
classifiers. Time series classifiers, speech recognition 
systems, video processing systems, object detectors, etc are 
also vulnerable to adversarial attacks [20]. Quality, safety and 
security monitoring AI models are also at risk of 
manipulation.  

Al-Shedivat et al. introduce SignSGD, a novel method for 
generating adversarial examples by optimizing the signs of 
the gradients, which is more computationally efficient 
compared to traditional gradient-based attacks, making it 
applicable to non-convex problems [29]. Also, Croce et al 
present a mixed integer programming-based method for 
evaluating the robustness of neural networks against 
adversarial attacks, which provides a more rigorous and 
scalable approach for assessing the robustness of deep 
learning models [30]. 

Neural Networks have a standard approach of learning 
from image datasets. Initially, neural networks assign random 
weights to the weight matrices that attempt to establish 
relationships between any two layers. Training is essentially 
just a process to adjust these weights into meaningful values 
that capture features of the training dataset. Gradient Descent 
method of the training process is used to find a minimum of 
the loss function. A global minimum cannot be guaranteed 
always. Loss function represents the loss incurred due to 
insufficient adjusting of the weights [11]. The weights at a 
particular instance of time can be adjusted by taking the 
gradient of the loss function at that point and by stepping in 
the negative direction of the gradient.  Cross-entropy [12] is a 
differentiable function which accounts for providing feedback 
towards stepwise improvement of the model by assigning 
higher probability to the correct label in order to reduce loss.  

While dealing with noisy images, the features captured by 
models do not sufficiently support the classification due to 
deviations from expected patterns of test inputs at the pixel 
level. In real-life scenarios, it is possible that the model will 
come across images that are distorted, noise-intensive and 
misleading. Such images can also be created computationally. 
The generation of adversarial images follows a procedure 
opposite to that of gradient descent. Differentiating the loss 
function with respect to parameters to decrease the loss on the 
sample is done to reach the minimum (at least local) in 
gradient descent. Similarly, differentiating the loss function 
with respect to the input data to modify the input data such 
that the expected loss of the model increases in the sample 
data generates the required sample of adversarial images. This 
significant relationship between model-training and model-
fooling is one of the interesting aspects of exploring 
adversarial robustness. Fast Gradient Sign Method, FGSM, a 
method proposed by Goodfellow, et al, to generate adversarial 
inputs [9] is precisely the same as doing one gradient ascent 
step, with the exception that we fix the perturbation on each 
pixel to be a constant size - epsilon, which ensures that no 
pixel in the adversarial example differs from the original 
picture by more than epsilon. 

In order to evaluate the robustness of neural networks to 
noise perturbation in image recognition, we add noise to 
normal images. Some of the techniques that are used to add 
noise to images are Fast Gradient Sign Method, One-step 
target class methods, Basic iterative method, Iterative least-
likely class method etc., [2]. There are also numerous 
methodologies applied to defend a model from adversarial 
attacks. The two common approaches are, increasing 
robustness of machine learning models and detecting 
adversarial attacks before testing [14]. To increase the 

robustness of machine learning models, the models can be 
trained with adversarial examples. The other methods include 
defensive distillation, random resizing and padding, 
stochastic activation pruning, total variance minimization and 
quilting, thermometer encoding, adversarial logit pairing, etc. 
To detect adversarial attacks, the initial approaches used were 
principal component analysis, softmax, and reconstruction of 
adversarial images. Other recent techniques include feature 
squeezing, adversary detector networks, reverse cross-
entropy, kernel density and Bayesian uncertainty estimates 
[14]. 

Images captured in real-time applications tend to be 
attacked by adversarial noise. Hence, image classification 
models that are robust to such attacks are to be identified. So, 
the primary question addressed here is: are CNNs, considered 
to be the best models for image classification, even good at 
classifying adversarial images? Given the ability of CNNs to 
classify images accurately using local spatial coherence, it is 
hypothesized that CNNs would be accurate in classifying 
adversarial images as well. But the experimental results prove 
otherwise.  

In this study, we compared the accuracies of Feed 
Forward Neural Networks (FNNs) and Convolutional Neural 
Networks (CNNs) on adversarial test sets. FNNs and CNNs 
have different perspectives when processing images. While 
CNNs are good at handling benign datasets, FNNs show 
commendable stability and robustness on noisy, single-
channelled images. FNNs analyze individual pixels to derive 
patterns for each output bin, while CNNs focus on utilizing 
the data of nearby pixels (local spatial coherence) to 
understand their associations [3][4]. The organization of 
neurons in the animal visual cortex, which respond to 
overlapping portions of the visual field, inspired the 
connection network of CNNs [27][28]. Both FNNs and CNNs 
are capable of image classification, but CNNs only consider 
the proximal positions of pixels, while FNNs are sensitive to 
the position of the object of interest in the image [31][32]. 

In the following sections, we perform experiments to 
compare the classification accuracy of different neural 
networks and derive interpretations from the results obtained 
to further understand the behaviour of the models under study 
for both benign and adversarial test samples. Our 
contributions include: 
 
• Examining the performance trend of the neural networks 

of interest under adversarial attacks. 
• Modelling the reduction in speed of classification 

accuracy against increasing noise intensities 
• Hypothesizing the reason for the poor performance of 

CNNs against adversarial greyscale images. 
 
 
2. Methods 
 
2.1. Architecture of FNNs used in the Study 
In FNNs (as shown in Figure 1), no neuron in the output layer 
acts as an input to a preceding layer or the same layer. Three 
FNNs with varying sizes and number of hidden layers are 
considered. Two single-hidden-layer FNNs with hidden 
layers of sizes 32 and 256 neurons are and an FNN with two 
hidden layers of 256 and 32 neurons is constructed for the 
study.  

The dimension of each sample image in the MNIST 
dataset is 28x28 pixels. There are 784 input neurons which 
represent the 784 pixels. For instance, if we consider the 
model with 32 neutrons in its hidden layer, the size of the 
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input layer would be 1x784 and the dimensions of the weight 
matrix for the hidden layer would be of the size 784x32. After 
the data passes through the hidden layer, the weight matrix for 
the output layer would be of the size 32x10. When we 
multiply the matrix of the input layer with that of the weight 
matrix between the input and hidden layer, we will arrive at a 
matrix of size 1x32 and when the same is multiplied with the 
weight matrix between the hidden and the output layer, we 
would arrive at a matrix of size 1x10 which denotes the output 
of the neural network. The final 10 output values tell the 
probability of the test image belonging to each of the output 
bins. Rectified Linear Unit (ReLU), an activation function 
[22], is applied after each of the layers to keep the 
relationships between the input and output non-linear. 
Softmax function is applied after the last layer to assign 
probabilities of classification to all the bins. The equation for 
ReLU [22], 
 
𝑓(𝑥) = &0, 𝑥 ≤ 0

𝑥, 𝑥 > 0 = 	𝑚𝑎𝑥(0, 𝑥) 
 

 
Fig. 1. A simple architecture of a Feedforward Neural Network [16]. 
 
 
2.2. Architecture of CNNs used in the Study 
In the CNNs developed, with the architecture shown in Figure 
2, a kernel of size 3 is used to traverse over the pixels in the 
image. A kernel is essentially a filter which is used for feature 
extraction. Several kernels together form a convolution that 
acts as the feature repository at a particular stage in the feature 
extraction process. Padding is the process of adding a black 
or white pixel around the edges of the image [23]. A padding 
of 1 pixel is used to make sure that the dimensions of the 
image remain the same even after sliding the kernels. After 
each of the convolutions, the activation function ReLU is used 
before the next convolution is performed. After every two 
convolutions, max-pooling is done to condense the 
information into smaller matrices [13].  
 

Fig. 2. A simple architecture of a Convolutional Neural Network [17]. 
 
 
 A kernel performs the task of extracting the low-level 
features. Once max-pooling is applied on the convolution of 
low-level features, other high-level features are extracted 

through subsequent filters (hierarchical feature learning). 
Stride is the number of pixels by which the kernel is shifted 
each time during the traversal. When the value of the stride is 
very high, then the kernel ‘hops’ leaving many pixels in 
between the hops. For instance, when the kernel size is set to 
3 and the stride is set to 3, then each pixel will be traversed 
exactly once. If the value of stride is set low, then the 
resolution of the filtered image will be high due to application 
of multiple slides of different parts of the kernel on the same 
section of matrix in the convolution phase.  
 
2.3. Experimental Background 
In this study, we have considered the MNIST dataset which 
is a curated collection of hand-written image datasets in 
grayscale (single-channeled) with 50000 training images and 
10000 test images. An epoch is the total number of iterations 
required to train the machine learning model using all of the 
training data at once [24]. Since the accuracies of FNNs 
flatlined around 100 epochs and that of CNNs at 50 epochs, 
the models were trained and modelled for the same. 

The method used to generate adversarial examples is the 
Fast Gradient Sign Method [9] which “linearizes the cost 
function to obtain an optimal max-norm constrained 
perturbation”. FGSM focusses on adding noise whose 
direction is the same as the cost function’s gradient in 
accordance with the data.  

The activation function used in the study is the Rectified 
Linear Unit (ReLU) [10]. The output of the hidden layer and 
the inputs have a linear relationship ie., each element of the 
output of the hidden layer is the product of the weights and 
the elements from the input layer. Hence, a linear function of 
inputs has been established. This makes the hidden layers 
capable of only capturing the linear relationships between the 
input layer and the output layer. Application of ReLU, being 
a nonlinear function, performs activation, to capture nonlinear 
relationships. Loss is the penalty for a bad prediction. 
Technically, the loss function is generated from the difference 
in the expected and predicted output [25]. The computation of 
loss is done using the cross-entropy method. Minimization of 
the computed loss by administering suitable weight 
adjustments is implemented using the Gradient Descent 
Method (Optimization Algorithm).  

A learning rate of 0.01 was used on FNNs throughout the 
training process. The sizes of the hidden layer for the FNN 
model with one hidden layer were set to 32 and 256. The size 
of the hidden layers for the FNN model with two hidden 
layers was set to 256 and 32. Learning rates ranging between 
0.001 and 0.0000001 were used for CNNs based on the speed 
of reaching the minima (minimum loss). To speed up the 
reachability of minimum loss, learning rates were decreased 
gradually.  

 
 

3. Results and Discussions 
 
3.1. Performance of Models on Benign Dataset 
CNNs are widely used for image classification and known for 
their accuracy in effectively classifying images with multiple 
channels. But FNNs are not as popular as the former in the 
realm of image classification. This is because CNNs take into 
account the relative position of pixels in an image when 
performing feature extraction. But in FNNs, the relative 
positions are not taken into account and the images are just 
seen as a set of pixels.  

FNNs show comparable accuracy with CNNs in 
classification due to the simplicity of the dataset. In the 
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dataset of interest (MNIST), each sample image is gray-scaled 
and is composed of 784 pixels (28 X 28). The sample images 
of such minimal resolution are not comparable with those 
found in real-life. Owing to this low resolution and single-
channeled input, FNNs were capable of classifying these 
images to a good degree of accuracy and so FNNs were 
considered in this study to be compared with the CNNs.  

All models in Table 1 show acceptable accuracy in 
classification of benign images. Even when the architectures 
of the models were altered by increasing the number of layers 
or convolutions, classification accuracy shows no significant 
change. Owing to the smaller number of pixels in each 
training image and single-channelled input, the models 
converge quickly.  

 
Table 1. Classification accuracies of the models for benign test images. 

Models 
FNN (1 - 
hidden 
layer) 

FNN (2 - 
hidden 
layers) 

CNN (3 - 
convolutions) 

CNN (4 - 
convolutions) 

CNN (6 - 
convolutions) 

CNN (8 - 
convolutions) 

Accuracies 96.20% 97.70% 99.47% 99.52% 99.47% 99.45% 
 
 
3.2. Influence of the Size of Hidden Layer on Classification 
Accuracy  
In an FNN with 1 hidden layer, when the size of the hidden 
layer is increased from 32 to 256 neurons, a massive 
improvement is observed in the accuracy at which the model 
classifies adversarial images (Table 2). The model with 32 
neurons in the hidden layer shows a decline in the accuracy as 
the attack step size increases. Its accuracy for minimal noise 
perturbation (epsilon = 0.1) is also not satisfactory. But the 
one with 256 neurons in the hidden layer has a classification 
accuracy with a  standard deviation close to 1 and arithmetic 
mean being 88%. But this increase from 32 neurons to 256 
did not have a big impact on the benign test examples but 
rather increased the accuracy of classifying adversarial 
images by a large margin.  
 
Table 2. Classification accuracies of FNN with 1 hidden layer 
of sizes 32 and 256 against different intensities of noise. 

Attack Step Size 
(Epsilon) 

Size of hidden 
layer = 32 

Size of hidden 
layer = 256 

0.1 39.11% 88.69% 
0.2 24.54% 88.23% 
0.3 25.21% 87.03% 
0.5 23.44% 88.97% 
0.75 19.73% 88.51% 

1 18.80% 88.61% 
1.5 17.57% 88.87% 
2 19.99% 88.08% 
5 16.80% 88.97% 
10 24.15% 86.45% 
16 21.23% 86.20% 

 
 

As the size of the hidden layer increases, feature 
extraction is effective. This can be reasoned out by the 
presence of a bigger weight matrix between the preceding 
layer and the current hidden layer of interest. These 
effectively extracted features make the model robust to noisy 
input.  

 
3.3. Performance of Models on Adversarial Dataset 
A significant amount of deviation in the performance of 
CNNs on adversarial data from the previous test result on 
benign dataset is observed. FNNs show a high and steady 
accuracy to all the tested range of attack step sizes. The 
performance of FNNs with one hidden layer of 256 neurons 

on adversarial images is commendable. Adding another layer 
of size 32 has no significant effect on improvement in 
accuracy. A trend of decrease in accuracy is observed in every 
other model except FNNs, which show no trend of variation. 
The accuracy ranges around 88% for FNN with one hidden 
layer (of size 256 neurons) and 90% for FNN with two hidden 
layers (of sizes 256 and 32 neurons) for the two models with 
just 2% of deviation within the tested attack step sizes. 

The probability of guessing a number right without any 
training is 0.1 (10%) due to the presence of 10 possible classes 
each denoting a number. CNNs with 3, 4 and 6 convolutions 
show no better performance than guessing, with epsilon 
increasing beyond a threshold. This observation can be 
attributed to the “perplexed” state the model is in due to 
immense noise accumulation. Kernels act as filters to extract 
various features of an image at various levels [8]. Huge 
amounts of distortion in the test image do not give 
information about features the kernel is expecting to extract. 
Since the model is bound to classify the image into one of the 
ten bins, it classifies it based on what it considers to be the 
nearest fit. The model does not have any strong cause as to 
why it is classifying an image into a particular bin and hence 
the guessing process.  

 
3.4. Correlation Between the Accuracies shown by 
Various Models for Tested Epsilons (r2) 
The correlation between the range of accuracies of FNN (1 - 
hidden layer) and FNN (2 - hidden layers) cannot be 
commented on or compared with other models because the 
accuracies of the models do not follow a trend of inclination 
or declination. The accuracies remain approximately steady 
for the entire range of noise addition. The correlation among 
all possible combinations of the analyzed CNNs is high and it 
shows that the trend of decline of their accuracies across the 
range of attack step sizes are similar. Among them, the 
correlation between the CNNs with 3, 4 and 6 convolutions 
are very high and their trends of decline are identical to each 
other.  

From table 3, it can be inferred that the accuracy is the 
maximum for CNN with 8 convolutions when the attack step 
size is very low (in our case, 0.1) even when compared to 
other FNN models. Other CNN models don't correlate with 
CNN with 8 hidden layers as much as they do among 
themselves. This slight variation in correlation is due to the 
slightly better performance of CNN (8 convolutions) when 
compared with other CNNs when the attack step size is 
increasing beyond 0.5 (Table 4). 
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Table 3. Classification accuracies of networks constructed with different intensities of noise perturbation. 
 Classification Accuracies 

Attack Step Size 
(Epsilon) 

FNN(1 
hidden layer) 

FNN(2 hidden 
layers) 

CNN(3 
convolutions) 

CNN(4 
convolutions ) 

CNN(6 
convolutions) 

CNN(8 
convolutions) 

0.1 88.69% 94.02% 94.50% 90.15% 94.10% 96.47% 
0.2 88.23% 91.05% 70% 65.79% 75.50% 83.76% 
0.3 87.03% 87.66% 37.50% 38.66% 51.00% 79.11% 
0.5 88.97% 91.35% 14.50% 20.19% 23.02% 65.15% 
0.75 88.51% 88.58% 19.20% 14.65% 14.93% 38.14% 

1 88.61% 89.47% 16.39% 15.67% 14.29% 40.38% 
1.5 88.87% 89.37% 15.24% 20.44% 11.15% 38.08% 
2 88.08% 90.66% 19.56% 16.79% 14.56% 30.04% 
5 88.97% 88.79% 12.61% 11.58% 19.29% 32.10% 
10 86.45% 89.30% 17.40% 13.83% 17.80% 31.21% 
16 86.20% 91.74% 19.17% 10.77% 18.48% 16.73% 

 
 

Table 4. Correlations between the trend of decline of classification accuracies of networks for adversarial images. 
Correlation of 

Accuracies 
FNN (1 -

hidden layer) 
FNN (2 -hidden 

layers) 
CNN (3 -

convolutions) 
CNN (4 -

convolutions) 
CNN (6 -

convolutions) 
CNN (8 -

convolutions) 
FNN (1 hidden 

layer) 1 0.09407 0.09382 0.18296 0.07111 0.27618 
FNN (2 hidden 

layers)  1 0.61470 0.58903 0.53898 0.35413 
CNN (3 

convolutions)   1 0.98765 0.97756 0.82924 
CNN (4 

convolutions)    1 0.97819 0.88976 
CNN (6 

convolutions)     1 0.89334 
CNN (8 

convolutions)      1 
 
 

 3.5. Visual Representation and Interpretation with 
Respect to Accuracies 
The benign images when added with the carefully curated 
noise resulted in the adversarial images in Fig. 3, 4 and 5. The 
attack step size (epsilon) denotes the intensity of noise added 
to the image. 
 

Fig. 3. Adversarial examples with lower noise intensities. 
 
 

In Fig. 3, it can be observed that the number in the image 
is evident to the naked eye. But the addition of noise is also 
not unnoticeable. The minimal noise added is also noticeable 
in this dataset because of the lower resolution of the images.  
 

Fig. 4. Adversarial examples with high noise intensities.  
 
 

In Fig. 4, the concentration of noise is so high such that 
the number in the image is not identifiable to the human eye. 
When the concentration of the noise reaches an attack step 
size of 1, the image just becomes sheer noise and no 
observation can be drawn from the image for a human.  
 

Fig. 5. Adversarial examples with extremely high noise intensities.  
 
 

The levels of attack step-size in Fig. 5 do not have such 
huge influence in distortion in real-life multi-channeled 
images. Since the image resolution of this dataset is quite 
minimal (28x28), these attack step sizes have a drastic effect 
on the image. 

The attack step size of 1 serves as a breaking point for this 
dataset such that any amount of noise above this limit is 
resulting in an image that looks the same. This could act as a 
potential point that challenges the robustness of the CNN 
models towards adversarial noise. Just as it is evident to the 
human eye that no peculiar pattern can be observed from any 
of the images after this point, the models also show very 
identical ‘guessing’ behavior (10%-15% correctness in 
classification).  
 

Epsilon: 0 (Benign image) Epsilon: 0.1 Epsilon: 0.2 Epsilon: 0.3 

    

 

Epsilon: 0.5 Epsilon: 0.75 Epsilon: 1 

   

 

Epsilon: 1 Epsilon: 2 Epsilon: 5 Epsilon: 16 
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3.6. Mathematical Modelling of the Trend in Accuracies 
shown by CNNs 
In this section, we attempt to fit a mathematical equation to 
the trend followed by the considered FNN and CNN models. 
 
3.6.1. For an Attack Step Size considered up to 16  
The squared correlation from table 5 doesn’t show many 
positively correlated model accuracies to generate nearest fits. 
The only two noticeable fits are: 
 
• CNN (8 - convolutions) which can be fit into the 

logarithmic equation, 𝑓(𝑥) = 0.524 − 0.149	ln	(𝑥) 

• CNN (8 - convolutions) which can also be fit into the 
power series equation, 𝑔(𝑥) = 0.463𝑥!".$%$ 

 
Except for the above two equations, the others are not 

likely reliable owing to their small values of correlation. Thus, 
we attempt to further the study by modelling the data only up 
to an attack step size of 2 so that the classification accuracies 
of higher noise intensities that result only in the models 
‘guessing’ the output are omitted. 

 
Table 5. Squared correlation values of the model fits for the decline of classification accuracies of networks for attack step sizes 
up to 16.  

Attack step-size<=16 Linear Exponential Logarithmic Polynomial Power Series 
CNN(3 convolutions) 0.112 0.066 0.509 0.264 0.513 
CNN(4 convolutions) 0.189 0.209 0.613 0.325 0.744 
CNN(6 convolutions) 0.123 0.07 0.541 0.267 0.49 
CNN(8 convolutions) 0.409 0.482 0.834 0.531 0.879 

 
 
3.6.2. For an Attack Step Size considered up to 2 
As mentioned in Section 3.4, we cannot expect a deviation 
trend from FNNs. We can approximately fit them into the 
following lines: 
FNN (1 - hidden layer) is following a linear equation,  
 
𝑝(𝑥) = 88.08 
 
FNN (2 - hidden layer) is following a linear equation, 
 

𝑞(𝑥) = 90.18 
 

The squared correlation (r2) is tabulated to understand the 
closeness of fits generated with the actual trend curves of the 
models (Table 6). 

An attempt to fit the decline of classification accuracies of 
the networks against attack step sizes using linear, 
exponential, polynomial, logarithmic and power series 
equations is made.  

 
Table 6. Equations of the model fit for the decline of classification accuracies of networks for attack step sizes up to 2. 
Attack step-size<=2 Linear Exponential Logarithmic Polynomial Power Series 

CNN (3 
convolutions)      

CNN (4 
convolutions)      

CNN (6 
convolutions)      

CNN (8 
convolutions)      

 
 
Table 7. Squared correlation values of the model fits for the decline of classification accuracies of networks for attack step sizes 
upto 2. 

Attack step-size <=2 Linear Exponential Logarithmic Polynomial Power Series 
CNN(3 convolutions) 0.427 0.607 0.774 0.794 0.766 
CNN(4 convolutions) 0.455 0.638 0.802 0.805 0.813 
CNN(6 convolutions) 0.566 0.803 0.881 0.907 0.908 
CNN(8 convolutions) 0.773 0.879 0.941 0.947 0.919 

 

 
Fig. 6. Plot of decline in classification accuracies against the attack step 
sizes for the networks along with suitable polynomial fits 

 
The r2 values for logarithmic, polynomial and power 

series fit are comparable and acceptable due to the presence 
of positive correlation between the model-fit generated and 
available data curve (Table 7). Since the slope of logarithmic 
and power series models are asymptotic, the polynomial 
model is used for further study. It is important to note that the 
polynomial fits proposed are only applicable up to the point 
where the polynomial attains its minimum. This can be 
explained as the polynomial function increases after reaching 
its minimum but the accuracy of classification keeps 
declining. We can see that all the polynomial fits attain their 
minimum between an attack step size of 1 and 1.5. This goes 
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in accordance to our observation in section 3.5 where any 
amount of noise beyond an attack step size of 1 did not make 
a big difference to the accuracy of the models and that the 
point served as a breaking point of the classification accuracy 
of the models.  

Table 8 shows the correlation values of the polynomial fits 
for the decline of accuracies of CNN models with attack step 
size being less than or equal to 2 (beyond which the accuracy 
trend is staggered). This gives us a clearer picture of the extent 
of correlation between the experimental results and 
computationally computed polynomial fits. 
 
Table 8. r (correlation) for polynomial fits of the networks for 
attack step sizes up to 2. 

Attack step-size <=2 Correlation value 
CNN(3 convolutions) 0.891 
CNN(4 convolutions) 0.897 
CNN(6 convolutions) 0.952 
CNN(8 convolutions) 0.973 

 
The equations 1, 2, 3 and 4 represent the polynomial fits 

for CNNs with 3, 4, 6 and 8 convolutions respectively. 
 

𝑎(𝑥) = 	0.51𝑥2 − 1.34𝑥 + 0.896          (1) 
 

𝑏(𝑥) = 	0.466𝑥2 − 1.23𝑥 + 0.854         (2) 
 

𝑐(𝑥) = 	0.528𝑥2 − 1.44𝑥 + 0.973         (3) 
 

𝑑(𝑥) = 	0.296𝑥2 − 0.936𝑥 + 1.03         (4) 
 

The obtained polynomial equations are differentiated to 
find the rate at which the classification accuracies of the 
models are declining.  

 
𝑎′(𝑥) = 	1.02𝑥 − 1.34             (5) 
 
𝑏’(𝑥) = 	0.932𝑥 − 1.23            (6) 

 
𝑐′(𝑥) = 	1.056𝑥 − 1.44            (7) 
 
𝑑′(𝑥) = 	0.592𝑥 − 0.936            (8) 
 

The above functions are the slopes of the polynomial fits 
with x denoting the attack step size. They show the rate at 
which the accuracy declines. Differentiating it one more time 
would give us a value which denotes the slope of the rate of 
declination or the deceleration of accuracy when the attack 
step size increases.  

In Figure 7, lines that represent the deceleration of 
accuracies of models under adversarial noise are plotted and 
it is computed that the accuracy of CNN with 8 convolutions 
decelerates at a slower pace. 

 
Table 9. Table denoting the rate of declination and the 
deceleration of accuracy for the CNNs developed under 
adversarial noise. 

Model 
Rate of 

declination of 
accuracy 

Slope of rate of 
declination (deceleration 

of accuracy) 
CNN (3 

convolutions)  1.02 

CNN (4 
convolutions)  0.932 

CNN (6 
convolutions)  1.056 

CNN (8 
convolutions)  0.592 

 

 
Fig. 7. Slopes of the polynomial fits that represent the decline of 
accuracies of the models for attack step sizes lesser than or equal to 2. 
 

It is observed that the slope of the rate of declination of 
CNN with 8 convolutions is approximately half of that of the 
slope of rate of declination of CNNs with 3,4,6 convolutions. 
CNN with 8 convolutions has better accuracies even at higher 
attack step sizes when compared to other CNNs. This is 
corroborated by the value of the slope of rate of declination 
which is twice as much in the other CNNs as it is in the CNN 
with 8 convolutions.  

We can observe that the line denoting the rate of 
declination of accuracy of CNN with 8 convolutions 
intersects with the lines denoting the rate of declination of 
accuracy of CNN with 3 and 4 convolutions between attack 
step size 0.8 and 1.0 and intersects the line denoting the rate 
of declination of accuracy of CNN with 6 convolutions 
between attack step size 1.0 and 1.2. At these points, the rate 
of declination of the corresponding models for adversarial 
data can be interpreted to be equal. 

As discussed in Section 3.5 about attack step size of 1.0 
acting as a breaking point, here it is also noticeable that it 
unifies the rate of declination of accuracy of all CNN models 
around itself. 
 
3.7. Better Performance of FNNs than CNNs on Grayscale 
Adversarial Images 
Recalling the architecture of FNNs, the relative positions 
between pixels is discarded while interpreting the 
relationships between the input and output vectors. Every 
pixel from input is individually analyzed and its significance 
is mapped using the adjusted weight matrix.  

Preserving the local spatial coherence is a prominent 
principle of CNNs. Various filters extract features and this 
collection is condensed (max-pooled) a few times to extract 
higher-level features each time. It is hypothesized that 
distorted features are presented to kernels while applying 
filters and when the convolutions are max-pooled, the noisy 
information gets accumulated and is carried through all the 
hierarchical layers. The distorted information of the image 
available at the highest feature extraction level is due to 
cumulative addition of inappropriate features right from the 
lower-level leading to relatively poor performance in 
classification accuracy.  

 
 

4. Conclusion 
 
In this paper, we have compared and contrasted the 
performance of CNNs and FNNs under adversarial noise for 
grayscale images and concluded that FNNs are much more 
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robust to noise perturbation than CNNs. The reason for the 
same is also hypothesized by carefully considering the 
architecture of the models. The correlations between the 
trends of decline of accuracies among the models when 
adversarial images are presented are also considered to 
comment on the similarities in the behaviors of models. The 
trends of decline in accuracy were captured using different 
mathematical models and the most suitable among them were 
employed. Using the models that approximate the real trend 
of accuracies, we attempted to understand the rate at which 
the accuracy drops for each of the models and qualitatively 
commented on which model exhibits relatively better 
robustness towards adversarial noise. This helped us to gain a 
better understanding as to for which concentration of noise 
the models behave similarly and the breaking point of the 
CNNs under adversarial noise and hypothesize the reason for 
the changing classification rates. 

5. Future Scope 
 
An interesting problem statement to explore would be to 
understand how FNNs are able to classify the images of the 
MNIST dataset with an appreciable level of accuracy when 
the attack step size increases beyond 1 and no substantial 
pattern is decipherable to the human eye. The exploration can 
be extended to other grayscale image datasets. Multi-
channeled image datasets should also be considered to 
quantify the robustness of image classification models, which 
are beyond the scope of this study. An advanced study with 
other forms of adversarial attacks could yield more insights. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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