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Abstract 
 

Route planning for agricultural inspection robots is an extremely complicated combination optimization problem. The 
traditional optimization method cannot solve the problem of agricultural robot inspection routes, which is different from 
the classical TSP problem. The reason is that the coordinates of the agricultural robot inspection route are not completely 
connected. Therefore, an improved ant colony algorithm was proposed for route planning of agricultural inspection 
robots. First, the initial structure of ant colony pheromone was established, and the motion matrix of the target area was 
obtained. The kinematic constraints of the intelligent patrol robot were set, and the robot route planning evaluation 
function was constructed based on the improved ant colony algorithm. Second, an intelligent inspection robot route 
planning algorithm was designed by calculating the inspection completion of the inspection robot. Results show that, 
compared with those of the traditional ant colony algorithm, the average route length of the improved ant colony 
algorithm is reduced by 3.45%, and the efficiency of the algorithm is improved by 22.97%. Moreover, it has better 
stability and convergence and achieves better results in actual inspection tasks. 
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1. Introduction 
 
Agricultural inspection robots, as a new type of robot, can 
autonomously run and complete various activities in the 
whole agricultural production process. These robots with 
different actuators and sensors can clearly perceive and 
respond to different signals and information in complex 
farmland environments and complete the detection and 
analysis of climate, soil, and crop growth state, which can 
help realize farmland management and production 
automation. Agricultural inspection robots can provide 
scientific and reasonable crop management suggestions for 
farmers by detecting environmental information, such as soil 
moisture, nutrient content, temperature, and humidity in 
farmland. In addition, they can monitor the growth of crops 
through cameras, infrared sensors, and other technologies, 
including growth height, stem diameter, and leaf color, and 
find problems in plant growth over time. Agricultural 
inspection robots can independently complete fertilization 
and spraying of drugs according to different needs of crops, 
avoid manual operation errors, and improve the efficiency 
and accuracy of fertilization and spraying [1]. 

In recent years, various robots used in agricultural 
production have gradually become an important part of 
equipment research and development and agricultural 
technology, which is indispensable for the development of 
concentrated agriculture [2]. To a certain extent, the 
development and application of agricultural robots have 
alleviated the problems of unreasonable rural structures and 
labor shortages, influenced the agricultural labor mode, and 
promoted the development of modern agriculture. 
Undoubtedly, agricultural robots will greatly contribute to 
the safe, high-efficiency, and green development and 

intelligent production of agriculture. Agricultural robots will 
gradually replace manual labor and reduce the labor 
intensity in agricultural production, and agriculture will also 
occupy a place in the robot industry [3]. Meanwhile, robots 
can improve labor efficiency and solve the labor shortage 
problem in many countries. These advantages have made 
agricultural robots increasingly concerned by countries all 
over the world. 

In the intelligent fruit and vegetable greenhouses of 
demonstration farms in China and Israel, the first artificial 
intelligent agricultural robots officially started 24h 
production inspection [4]. The inspection agricultural robot 
is a white cartoon character with clear facial features and 
limbs. It can realize 360° rotation movement through the 
wheels and universal mechanism at the bottom and 
independently and smoothly conduct automatic inspection, 
automatic turning, fixed-point collection, automatic return, 
and automatic charging along the culture tank [5]. Various 
sensors of the inspection robot upload the data containing 
environmental temperature and humidity, soil humidity, soil 
temperature, and soil fertility in the agricultural production 
process to the cloud server in various networking ways and 
then feedback the optimal solution to the control 
organization through the integration, analysis, and 
processing of the data by the system. Finally, specific 
operations, such as sprinkler irrigation, light 
supplementation, drip irrigation, heating, shading, 
ventilation, and CO2 supplementation, will be performed. 
 
 
2. State of the art  
 
The rapid development of technologies, such as big data, 
cloud platforms, block chains, the Internet of Things, smart 
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grids, and mobile communication, has driven the rapid 
growth of system information. Operation and maintenance 
personnel need to log in to specific equipment every day, 
check the inspection information of smart agriculture, and 
fill in the registration form manually. However, such a large 
amount of data may be omitted and filled in incorrectly, 
which will directly lead to untimely fault detection. 
Agricultural inspection robots can complete data collection 
and processing through mechanical equipment, which can 
eliminate possible human errors. 

The agricultural inspection robot must move on the 
feasible route, which is different from the TSP problem in 
classical route planning. The traditional optimization 
algorithm can barely solve this problem. At present, the 
intelligent algorithms proposed for route planning in China 
and foreign countries include the neural network algorithm 
[6], particle swarm optimization algorithm [7], and ant 
colony algorithm [8]. The neural network algorithm has self-
learning ability and can find the optimal solution at a high 
speed, but it easily falls into the local minimum and has low 
accuracy [9]. The ant colony algorithm has good robustness 
and can be combined with other methods, but it has some 
problems, such as a long calculation period and easy 
deadlock. The ant colony algorithm, as a global optimization 
method based on natural heredity and natural selection, has 
been widely used in the field of route planning [10]. Ma et al. 
introduced an improved ant colony algorithm with reverse 
mutation to avoid the mutation operation from generating 
new routes that do not meet the requirements [11]. Fan et al.   
[12] used distant mating in cross recombination, which can 
effectively prevent repeated routes of the next generation. 
However, Luo et al. and Chang et al. did not propose 
effective methods to prevent falling into a local optimal 
solution [13-14]. Behnck et al. and Zhong et al. introduced 
an elite reservation strategy into the ant colony algorithm to 
ensure that the algorithm jumps out of local extremum [15-
16]. Luo M. et al. proposed a hierarchical route planning 
method combined with the Q-learning algorithm and ant 
colony algorithm [13]. Dian et al. proposed a method of 
adaptive adjustment of the crossover rate and mutation rate 
considering individual fitness to improve the convergence 
performance of the ant colony algorithm [17]. However, the 
abovementioned algorithms have the problem of gene 
stability in the mutation process. In the late iteration, some 
excellent genes will degenerate due to mutation, which will 
affect the convergence performance of the algorithm. 

Route planning ability, in addition to the ability of 
information collection and processing, is also necessary for 
intelligent inspection robots [18-19]. Molina et al., Shao et al. 
and Song et al. all used the locust optimization algorithm, 
using the beta function as the initial solution in the 
population space, adjusting its distribution uniformity in 
space, and achieving the optimal design of control 
parameters [20-22]. Adhikary et al. and Jiang et al. used the 
hop search method to obtain the global route planning 
strategy and obtained the global optimal route with high 
smoothness at a faster speed combined with the optimized 
A* algorithm and the dynamic window method, which 
improved the application value of the algorithm [23-24]. 
Zhang et al. designed a route planning model based on 
discrete multi-objective cuckoo with multi-objective 
collaborative optimization as the core and defined and 
absorbed the update strategy of global optimization under a 
multilayer coding mechanism [25]. 

In view of the shortcomings of the traditional ant colony 
algorithm, such as poor convergence and local optimal 

solution, the concepts of adaptive mutation operator, 
elimination operator, and “distant mating” were introduced 
to improve the convergence speed and calculation accuracy. 
The advantages of the improved ant colony algorithm in the 
actual inspection task were verified by simulation. The 
experimental results show that the improved ant colony 
algorithm can optimize the mobile efficiency. On the basis 
of the abovementioned literature, this study designed a route 
planning method for intelligent inspection robots for power 
information network equipment based on an improved ant 
colony algorithm. 
 
 
3. Construction of the route planning evaluation function 
of agricultural inspection robots 
 
3.1 Locating search nodes of intelligent agricultural 
network equipment 
In the route planning process of the intelligent inspection 
robot, multiple search nodes were set and located, which 
were the parts that the robot must pass through in the process 
of completing the task. After the robot avoided obstacles, it 
returned to the fixed route to avoid missing the positioning 
node. The trajectory of the inspection robot with a high-
order polynomial was optimized by the subsection method to 
make it continuous. The route can be expressed as follows: 
 

                      (1) 

 
where  is the polynomial programming result of the tth 

route,  is the curve of n short routes, and  is the time 
required for the ith route. 

In this route, the starting and ending points of the search 
node can be obtained: 

 

                     (2) 

 
where  is the route of starting point at   ,    is 
the distance traveled at this time,   is the route of end 

  at , and  is the distance traveled during this 
time period.  

Combined with the whole route, the following formula 
can be obtained: 
 

                  (3) 

 
where  is the function value represented by each 

endpoint in the piecewise function and  is the 
time at each endpoint [8]. Under such a preset optimization 
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problem, the time coefficient can be obtained according to a 
certain proportion: 
 

                              (4) 

 
where  is the time required for preset optimization in a 
certain proportion under the nth subsection,  is the 
maximum function value under the piecewise function in 
different time periods, and  is the expected value of the 
physical quantity. Combined with the abovementioned 
formula, the search node of the intelligent inspection robot 
can be located. 
 
3.2 Construction of the evaluation function of 
agricultural inspection robot route planning 
In the process of searching the route planning result, the 
extended nodes were used to decrease the complexity of the 
algorithm and the number of iterations. This way could 
shorten the running time of the algorithm and improve the 
efficiency. At this point, the search node of each intelligent 
agricultural network device was located. The actual cost of 
each node is as follows: 
 

                            (5) 

 
where  is the actual cost of each search node of 

intelligent agricultural equipment; and are the 
horizontal and vertical coordinates of the starting point, 
respectively; and are the horizontal and vertical 
coordinates of the end point, respectively. Combined with 
this cost function, the heuristic functions of intermediate 
nodes and target nodes can be redefined, and the pheromone 
of the ant colony algorithm can be initialized. In the 
improved ant colony algorithm, pheromone is generally used 
as the route information of the agricultural inspection robot 
during driving, and its storage structure is shown in Fig. 1. 
 

 
Fig. 1.  Initialization structure of ant colony pheromone 
 

In the initialization process of the ant colony pheromone, 
as shown in Fig. 1, the motion matrix of the agricultural 
inspection robot in the target area can be established: 
 

            (6) 

where is the motion matrix of the agricultural inspection 
robot in the target area ; and  are geometric 
constraint parameters of the target area on the horizontal and 
vertical coordinates, respectively; and   is the 
circumferential curvature of the agricultural inspection robot. 
Combined with this motion matrix, the kinematic constraints 
of the intelligent inspection robot can be determined: 
 

                         (7) 
 
Where  is the constraint posture of the target area. 
Based on the improvement, the route planning evaluation 
function of the agricultural inspection robot is calculated: 
 

                    (8) 

 
where  is the planning and evaluation function of the 
agricultural inspection robot in this route;   is the time 
parameter;   is the minimum cost function; and  is 
the route search function. Combined with the 
abovementioned formula, the route planning evaluation 
function of the agricultural inspection robot based on the 
improved ant colony algorithm can be obtained. 
 
4. Design of the route planning algorithm of agricultural 
inspection robots 

 
4.1 Motion model of agricultural inspection robots 
Under the action of the improved ant colony algorithm, a 
complete motion model expression needs to be established 
according to the X-axis, Y-axis, and Z-axis coordinates of 
the current node of the robot to accurately grasp the global 
motion route of the agricultural inspection robot. If the 
agricultural inspection robot does not have the possibility of 
omnidirectional motion, then it can only complete simple 
rotation and forward motion in a given route area. Only the 
motion state difference of the robot at two adjacent moments 
needs to be considered when solving the motion model [4]. 
Given that the motion behavior of the agricultural inspection 
robot at adjacent moments satisfies the recording and 
marking of the linear motion behavior, the actual angular 
velocity and linear velocity of the robot will not be 
obviously different from the initial value given by the 
velocity vector under the condition that the rotation angle 
value is unchanged. θ is defined as the steering angle of the 
agricultural inspection robot, and its value must meet the 
definition condition of 0°<θ<90°. The motion model of the 
agricultural inspection robot is expressed as follows: 
 

                     (9) 

 
where X is the X-axis definition condition,  is the 
X-axis normal vector, sinθ is the sine value of the 
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steering angle θ, Y is the Y-axis definition 
condition,  is the Y-axis normal vector, cosθ is the 
cosine value of the steering angle θ, Z is the Z-axis 
definition condition,  is the Z-axis normal vector, 
and tanθ is the tangent value of the steering angle θ. 
The sine, cosine, and tangent values of the steering 
angle may be transformed. Thus, a transformation 
relationship also exists between the definition 
conditions of the X, Y, and Z axes of the robot 
motion model. 
 
4.2 Sampling of the inspection speed of agricultural 
inspection robots 
After the definition standard of the motion model of the 
agricultural inspection robot was determined, several 
different speed parameters were selected according to the 
improved ant colony algorithm to simulate the global motion 
trajectory of the agricultural inspection robot. Given that the 
robot speed sampling results corresponding to different 
speed parameters differed, the set space using speed 
indicators was infinite and recyclable. Under the action of 
the improved ant colony algorithm, the driving force of the 
agricultural inspection robot was completely provided by the 
motor components. Therefore, the robot will display faster 
when the physical value of the power driving coefficient is 
greater. The velocity vector in the X-axis direction is set 
as , the velocity vector in the Y-axis direction is set as , 
and the velocity vector in the Z-axis direction is set as ,λ
is the global adoption coefficient of the robot motion vector, 
and ϖ is the sampling feature of the velocity parameters 
based on the improved ant colony algorithm. 

The sampling expression of the motion speed of the 
agricultural inspection robot is as follows: 

 

                        (10) 

 
To make the speed sampling results more in line with the 

global motion characteristics of the agricultural inspection 
robot, the , , and vectors cannot be the maximum 
and minimum results simultaneously, and the values of the 
three index parameters cannot be zero simultaneously. 
 
4.3 Estimation of the inspection step value of agricultural 
inspection robots 
Step size estimation is also called trajectory measurement of 
agricultural inspection robots. In the global route trajectory, 
the physical interval between adjacent route nodes is greater 
when the absolute value of the step value index is larger. If 
the absolute value of the step value index is relatively small, 
then the physical interval between adjacent route nodes is 
small.  is the numerical component of the motion step 
value of the agricultural inspection robot in the X-axis 
direction,  is the numerical component of the motion step 
value in the Y-axis direction,  is the numerical component 
of the motion step value in the Z-axis direction,  is the 
initial assignment of the motion index in the X-axis direction, 

 is the initial assignment of the motion index in the Y-axis 
direction, and  is the initial assignment of the motion 
index in the Z-axis direction. 

The estimation results of the global motion step value of 
the agricultural inspection robot are as follows: 

 

      (11) 

 
Where ψ is the movement step of the robot. When 
implementing the global route planning of agricultural 
inspection robots, we should not only refer to the improved 
ability of the ant colony algorithm but also pay attention to 
the appropriate value of the step value index. This way not 
only can avoid the excessive stride movement of the robot 
but also can effectively control the deviation between the 
actual detection trajectory and the preset motion trajectory. 

 
4.4 Route planning algorithm of agricultural inspection 
robots 

 
By combining the position of the search node and the 
evaluation function, the route planning algorithm of the 
agricultural inspection robot can be obtained by combining 
the position of the search node and the evaluation function. 
First, the initial node was input, and the loss function in the 
network was calculated by the improved ant colony 
algorithm. Second, the relative characteristics of the target 
node and the search node were determined by the loss 
function. The inspection completion degree of the 
agricultural inspection robot was obtained: 
 

                    (12) 

 
Where  is the inspection completion coefficient. When 

>0, the agricultural inspection robot has completed the 
overall inspection work, and no obstacle prevents it from 
entering the target area. When =0, the agricultural 
inspection robot has not completed the normal work.   is the 
weight parameter.  and  are the actual inspection point 
and the updated inspection point, respectively.  and  are 
the completion degrees of the ith and jth maintenance 
operations, respectively. The abovementioned contents can 
be used as the route planning algorithm of the agricultural 
inspection robot, and the driving route of the agricultural 
inspection robot in actual operation can be obtained through 
this algorithm. 

The improved ant colony algorithm was used on the 
basis of the abovementioned obstacle avoidance route 
planning objectives to obtain the optimal obstacle avoidance 
route planning results. In the application process of the 
improved ant colony algorithm, the pheromone updating 
method is important to determine whether the best obstacle 
avoidance route can be found quickly. Therefore, the 
pheromone updating method should be changed 
correspondingly. The improved pheromone updating 
formula is as follows: 

 

     (13) 
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Where and  are the pheromone concentration 
on the obstacle avoidance route  at  and time, 

respectively; is the volatilization coefficient of 
pheromone;  is the pheromone concentration of the α ant on 
the obstacle avoidance route; m is the total number of ants; 

 and  are the pheromone concentrations on the 
local optimal and worst obstacle avoidance routes, 
respectively, and their calculation formulas are as follows: 
 

     (14)  

 
  (15) 

 
where  and  are the number of ants needed to find the 
local optimal and worst obstacle avoidance routes, 
respectively;  Q is the total route length; and  L* and L**  are 
the lengths of the local optimal and worst obstacle avoidance 
routes, respectively. 

Based on the improved ant colony algorithm, a process 
for detecting the obstacle avoidance route planning of robots 
is developed as follows: 

(1) The working environment information of the 
agricultural inspection robot is transformed into a matrix, 
and the internal element value is 0 or 1. A value of 0 
represents a normal environment, and 1 represents obstacles. 

(2) Initialization improves the parameters of the ant 
colony algorithm, such as the maximum number of iterations 

and pheromone volatilization coefficient. Ants search for 
obstacle avoidance routes from the starting point. 

(3) The inspection route is determined. If obstacles are 
present on the next route, then other routes will be searched. 
If no obstacle is present on the next route and the target 
point is not reached, then the inspection robot continues 
moving. If the end point of the next route is the target point, 
then the obstacle avoidance route will not be searched. 

(4) The pheromone concentration value is updated 
according to Formula (2). 

(5) Whether the number of iterations has reached the 
maximum is determined. If the maximum number of 
iterations is reached, then the center point smoothing method 
is used to address the obstacle avoidance route. Instead, step 
3 is continued. 

(6) The optimal obstacle avoidance route planning result 
of the inspection robot is output. 
 
 
5. Route planning of agricultural inspection robots based 
on the improved ant colony algorithm 
 
5.1 Simulation experiment 
This study assumes that 34 agricultural inspection robots are 
present at the agricultural inspection points, and their 
positions are represented by the values of coordinates X and 
Y. The speed of the agricultural inspection robot is known, 
and the coordinates of 34 inspection points are shown in 
Table 1. The layout of 34 inspection points is shown in Fig. 
2. 

 
Table 1. Coordinates of inspection points
Inspection point Coordinate X Coordinate Y Inspection point Coordinate X Coordinate  Y 

1 13.04 23.12 18 40.61 23.7 
2 36.39 13.15 19 37.8 22.12 
3 41.77 22.44 20 36.76 25.78 
4 37.12 13.99 21 40.29 28.38 
5 34.88 15.35 22 42.63 29.31 
6 33.26 15.56 23 34.29 19.08 
7 32.38 12.29 24 35.07 23.67 
8 41.96 10.04 25 33.94 26.43 
9 43.12 7.9 26 34.39 32.01 

10 43.86 5.7 27 29.35 32.4 
11 30.07 19.7 28 31.4 35.5 
12 25.62 17.56 29 25.45 23.57 
13 27.88 14.91 30 27.78 28.26 
14 23.81 16.76 31 23.7 29.75 
15 13.32 6.95 32 29.31 36.76 
16 37.15 16.78 33 19.08 40.29 
17 39.18 21.79 34 5.11 12.44 

 
 

 
Fig. 2. Layout of inspection points of agricultural robots 

This study conducted experiments on an Intel i7 
processor using MATLAB 2014a and solved the 
optimization model of the inspection route of agricultural 
robots through the improved ant colony algorithm. The 
related parameters are set as follows: the number of ants 
m=50; pheromone importance factor alpha=1; importance 
factor of heuristic function beta=5; pheromone volatilization 
factor rho=0.1; constant coefficient Q=1; heuristic function 
Eta=1./D; pheromone matrix Tau=ones(n,n); initial value of 
iteration number iter=1; route record table = zeros(m,n); 
maximum number of iterations iter_max=200; optimal 
route_best=zeros(iter_max,n); length of the best route of 
each generation Length_ best =zeros (iter_max,1); and 
average length of each generation route 
Length_ave=zeros(iter_max,1). Agricultural robots must 
stop at all monitoring points during the inspection. The 
improved ant colony algorithm and the traditional ant colony 
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algorithm were used to simulate and test, respectively, and 
the corresponding calculation results were compared.  
 
5.2 Result analysis 
The improved ant colony algorithm was used to 
optimize the detection route of the agricultural 
inspection robot for 200 times for eliminating the 
influence of various random factors and verifying 
the advantages and disadvantages of the improved 
ant colony algorithm. The convergence curve of the 
improved ant colony algorithm is shown in Fig. 3, 
and the optimal route of the agricultural inspection 
robot is given in Fig. 4. 
 

 
Fig. 3.  Convergence curve of the improved ant colony algorithm 
 

 
Fig. 4.  Optimal path of the agricultural inspection robot. 
 

The traditional ant colony algorithm was applied on the 
same platform to verify the effectiveness of the model and 
the algorithm, and the proposed optimization model was 

solved with the same parameters. The maximum number of 
iterations of the traditional ant colony algorithm was also set 
to 200 to make the experimental results more scientific and 
effective. The convergence curve of the improved ant colony 
algorithm is given in Fig. 5, and the optimal route of the 
agricultural inspection robot is shown in Fig. 6. 
 

 
Fig. 5.  Convergence curve of the traditional ant colony algorithm 

 

 
Fig. 6.  Optimal path of agricultural inspection robot 

 
The improved ant colony algorithm and the traditional 

ant colony algorithm were compared in terms of the 
inspection route, the total distance traveled by the 
agricultural inspection robot, and the convergence time of 
the algorithm. The comparison results are listed in Table 2. 

 
Table 2. Comparison between the improved ant colony algorithm and traditional ant colony algorithm

Algorithm Inspection route Distance (m) Time (s) 

Improved ant 
colony algorithm 

29→11→23→16→5→6→7→2→4→8→9→10→3→18→17→19→24→25→20→21
→22→26→28→32→27→30→31→33→1→34→15→14→12→13→29 

186.7321 60.17 

 Traditional ant 
colony algorithm 

13→12→14→29→11→23→16→5→6→7→2→4→8→9→10→19→17→18→3→21
→22→20→24→25→26→27→28→32→33→31→30→1→34→15→13 

193.4097 78.11 

 
As shown in Table 2, the improved ant colony algorithm 

has better optimization ability and convergence than the 
traditional ant colony algorithm. The convergence curve of 
the algorithm indicates that the optimal route length obtained 

by the improved ant colony algorithm is better than that 
obtained by the traditional ant colony algorithm in terms of 
the total inspection distance of agricultural robots. The total 
inspection distance of the improved ant colony algorithm is 
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shortened by 6.78 m and 3.45% compared with that of the 
traditional genetic algorithm. The traditional ant colony 
algorithm has a longer convergence time than the improved 
ant colony algorithm. The convergence time of the improved 
ant colony algorithm is 17.94 s shorter and 22.97% higher 
than that of the traditional genetic algorithm. 

The servo motor power of the agricultural inspection 
robot is approximately 2200 W, and the total power of the 
other equipment is approximately 80 W. The agricultural 
inspection robot stops at each stop point and rotates the 
tripod head for inspection. The average residence time of 
each inspection point is approximately 4 s, and the average 
driving speed of the inspection robot is approximately 1 m/s. 
The inspection robot is equipped with a 50 Ah lithium 
battery pack and uses an AC charger with a charging power 
of 200 W. After each inspection, the agricultural inspection 
robot needs to return to the charging room for charging and 
then conduct the next inspection. Therefore, the total time of 
each inspection includes two parts: task and charging times. 
The inspection time and weekly inspection frequency of 
inspection robots using the traditional ant colony algorithm 
and improved ant colony algorithm are shown in Table 2. 
The improved algorithm shortens the detection route by 
approximately 3.45% compared with the traditional ant 
colony algorithm by reducing the task and charging times. 
The operational reliability of the agriculture equipment will 
be significantly improved due to the increase in inspection 
times per unit time. 

 
6. Conclusions 
 
This study designed a route planning method for intelligent 
agricultural inspection robots based on the improved ant 
colony algorithm. This method not only can effectively solve 
the problem of low inspection efficiency of intelligent 

equipment and avoid missed inspection and incorrect 
inspection reports in the inspection process but also can 
perfectly achieve the expected optimization effect. However, 
the development time of the route planning method is 
relatively short, and multithreading route processing is not 
used in the algorithm. Therefore, the proposed method is 
inefficient in stimulating resources and has not reached the 
maximum. In future studies, the problems existing in the 
operation and maintenance of power information network 
equipment can be solved, and the learning and analysis 
ability of inspection robots can be further improved. In this 
study, the application of an improved ant colony algorithm 
in agricultural route planning was investigated, and the 
following conclusions could be drawn: 

(1) Constructing an environmental model is important 
for the route planning of agricultural inspection robots. 
Subsequent algorithms can be implemented more easily by 
simplifying the environment model. 

(2) The improved ant colony algorithm is prone to jump 
out of the local optimal solution compared with the 
traditional ant colony algorithm. This algorithm with better 
convergence and stability can effectively solve the route 
planning problem of agricultural inspection robots. In 
addition, the improved ant colony algorithm can shorten the 
interval between each inspection task. Compared with those 
of the traditional ant colony algorithm, the inspection route 
is reduced by 3.45%, and the convergence speed is increased 
by 22.97%. The operational reliability of agricultural 
equipment is improved to some extent. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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