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Abstract 
 

The trajectory optimization problem in agricultural unmanned aerial vehicles (UAVs) inspection of agricultural 
facilities and equipment shares similarities with the traveling salesman problem. Traditional heuristic algorithms can 
encounter challenges such as overlapping flight paths and local optima due to complex terrain, numerous obstacles, and 
external environmental influences. To optimize the agricultural UAV detection process, a Genetic Algorithm and 
Simulated Annealing (GA–SA) algorithm based on GA was proposed to calculate 3D flight paths for agricultural UAVs. 
By establishing a mathematical model that combines the UAV threat environment with physical constraints, the cost 
function of the traditional SA algorithm was optimized to improve search efficiency. Additionally, trajectory smoothing 
techniques were applied to ensure smooth transitions between trajectory points. Experimental results demonstrate that the 
GA–SA algorithm overcomes the limitations of the traditional SA algorithm in node search efficiency and trajectory 
smoothing, enabling the planning of realistic and optimal flight paths in 3D environments. The GA–SA algorithm 
exhibits an 18.82% improvement in convergence time GA–SA compared with the traditional GA algorithm and a 13.20% 
improvement compared with the SA algorithm. Moreover, it shortens the optimal track distance by 2.244 km and 1.793 
km, respectively, validating the effectiveness of the proposed method. 
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1. Introduction 
 
Agricultural unmanned aerial vehicles (UAVs) have 
emerged as modern agricultural machinery with various 
applications such as land and soil analysis, aerial seeding, 
spraying operations, crop monitoring, agricultural irrigation, 
and crop health assessment. As governments worldwide 
relax UAVs control regulations, enterprises have 
increasingly invested in agricultural UAV research and 
development, highlighting their significance in future 
agricultural production. Unmanned agriculture, an 
encompassing agricultural production process controlled 
through unmanned vehicles, agricultural UAVs, and satellite 
positioning systems, achieves true agricultural automation 
and modernization. By relying on transmitted UAV images 
and data, people can focus on judging and processing, thus 
optimizing agricultural operations. With the rapid 
development of artificial intelligence and machine learning 
technology, UAVs are finding their place in the agricultural 
field. Thanks to their high speed, efficiency, and precision, 
agricultural UAVs have become a popular technology in 
modern agriculture. However, the application value of 
agricultural UAVs cannot be fully realized without well-
controlled trajectory planning. Thus, flight path planning for 
agricultural UAVs plays a crucial role. 

When planning flight path routes, several factors must 
be considered. First, the altitude and speed of UAVs directly 
affect the effectiveness of agricultural operations. Improper 
altitude or speed may cause damage to farmland or result in 
unnecessary losses. Weather conditions also necessitate 

adjustments in UAVs’ altitude and speed to ensure flight 
stability under conditions such as strong winds [1]. 
Additionally, terrain, vegetation, lighting, and other factors 
must be taken into account during planning. Achieving 
millimeter-level control over trajectory details is an 
inevitable trend to meet the accuracy requirements of UAVs’ 
trajectory planning [2]. Trajectory planning for agricultural 
UAVs represents a fundamental technology that maximizes 
agricultural efficiency, reduces pesticide use and 
environmental pollution, promotes green agriculture, and 
enhances the agricultural industry. 

Monitoring and controlling crop diseases and pests in the 
main stages of agricultural production heavily rely on 
manual labor, making the shortage of human resources 
increasingly evident. With the advancement of aerial 
application technology, agricultural UAVs have become 
widely used in modern agricultural production management. 
Utilizing UAVs for accurate monitoring, fertilization, and 
pesticide application has become an inevitable choice [3]. 
UAVs route planning is currently a research hotspot due to 
challenges such as poor manual operability and high 
operating costs [4]. The success or failure of flight missions 
directly depends on the reasonability of the trajectory 
planning for agricultural UAVs. In complex terrain 
environments like mountain orchards and farmlands, UAVs 
often encounter different types of threats and obstacles, 
including windshear areas, facilities, base station towers, 
forest protection trees, and agricultural buildings [5]. 
Therefore, reasonable and safe flight path planning for 
agricultural UAVs is essential to enhance their obstacle 
avoidance performance and reduce flight costs. 
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2. State of the Art 
 

In recent years, the increased use of UAVs in various fields, 
including military, industrial, and daily life, has driven the 
demand for autonomous flight capabilities. Path planning 
has been a major focus for scholars in related technical fields 
worldwide. 

The UAVs’ trajectory planning problem revolves around 
finding a safe and unobstructed path from the starting point 
to the target point in a 3D environment based on prior 
knowledge and mission requirements [6]. Currently, 3D path 
planning algorithms fall into two categories: traditional 
algorithms and intelligent algorithms. Traditional algorithms 
encompass methods such as the Rapidly-exploring Random 
Tree (RRT) algorithm [7], artificial potential field method 
[8], and A-star algorithm [9]. Intelligent algorithms include 
genetic algorithm [10], ant colony optimization algorithm 
[11], neural network algorithm [12], and particle swarm 
optimization algorithm [13]. To address limitations such as 
low efficiency and long, unsmooth paths in 3D path 
planning using the RRT algorithm, researchers have 
introduced heuristic functions oriented towards the target 
point and dynamic expansion step sizes [14]. Similarly, a 
mathematical model incorporating physical constraints of 
UAVs and environmental threat constraints has been 
proposed, resulting in an improved A-star algorithm based 
on model constraints [15]. Genetic algorithms (GA) have 
been enhanced by introducing the differential evolution 
mutation strategy and combining it with the simulated 
annealing (SA) algorithm to improve diversity and avoid 
local optima during mutation [16]. Combining ant colony 
optimization algorithms with artificial potential field 
methods, researchers have proposed a new pheromone 
updating mechanism and improved the heuristic function, 
significantly enhancing the algorithm convergence rate [17]. 
Traditional algorithms for path planning coupled with 
reinforcement learning have greatly improved UAVs’ 
dynamic obstacle avoidance capabilities [18]. Intelligent 
algorithms, particularly those based on reinforcement 
learning and deep learning, have consistently performed well 
in the presence of dynamic obstacles, effectively identifying 
safe paths. Notably, the SA algorithm stands out due to its 
independence from extensive training data and lengthy 
training time while avoiding potential bias from training data 
in path generation. However, traditional SA algorithms often 
encounter challenges in terms of search efficiency and path 
complexity, presenting a path optimization dilemma. 
Researchers have reduced path generation complexity by 
decomposing the global map environment into multiple local 
environments, optimizing sub-node selection methods, 
improving cost functions, and introducing smoothing 
functions [19]. By incorporating a step-by-step search of key 
nodes, the directed SA algorithm has been enhanced, 
improving path-planning performance for mobile robots. 
However, these methods are primarily applied in two-
dimensional environments [20]. In the case of 3D 
environments, the Kalman filtering algorithm is used to 
predict target positions, followed by path planning. Although 
flight range has been effectively reduced, path complexity 
remains high [21]. Under directional constraints, the SA 
algorithm generates numerous useless nodes. These methods 
have somewhat improved search efficiency and path 
planning for traditional SA algorithms, but challenges persist 
in 3D environments. 

Heuristic algorithms, such as particle swarm 
optimization, GA, and SA algorithms, have been widely 

employed in route optimization research worldwide. For 
instance, an improved particle swarm optimization algorithm 
for multi-UAV cooperative route planning linearizes 
learning factors and proposes a speed adjustment mechanism, 
improving algorithm convergence rate. However, the 
particle swarm optimization algorithm may struggle with 
complex sample data, leading to locally optimal solutions 
[22]. Researchers have improved genetic algorithms by 
incorporating multiple constraints, utilizing the Surrounding 
Point Set (SPS) algorithm to generate initial populations 
faster, and employing the small environment method to 
maintain population diversity and avoid premature 
convergence [23]. Dynamic genetic algorithms have been 
utilized for unmanned aerial vehicle trajectory planning, 
optimizing crossover and mutation operators, and 
automatically adjusting probabilities based on individual 
fitness, resulting in advantages in optimization speed [24]. 
Although a single genetic algorithm can effectively solve 
optimal trajectories, as problem size increases, challenges 
such as difficulty in escaping local optima and low 
computational accuracy may arise during the optimization 
process. SA algorithms, which can accept different solutions 
based on the Metropolis criteria and possess strong local 
optimization capabilities, are widely used in trajectory 
optimization problems.  

To improve the efficiency of SA algorithms in 
generating feasible neighborhood solutions, an exchange 
judgment strategy has been introduced in the optimization 
process, and virtual nodes have been added to the track 
optimization model, facilitating the acquisition of optimal 
solutions. Compared with traditional SA algorithms, the 
proposed method achieves shorter optimal track distances. 
However, SA algorithms often struggle with global 
optimization performance, potentially missing out on 
optimal global solutions if the cooling process is too fast 
[25]. Traditional SA algorithms exhibit certain drawbacks, 
including high computational load during planning stages 
and low algorithmic efficiency, resulting in obtained paths 
longer than the actual paths to target points, characterized by 
an excess of redundant nodes. To explore these issues, this 
study investigates the global optimization capability of the 
genetic algorithm and the local optimization capability of 
simulated annealing, GA–SA introducing a hybrid GA–SA 
algorithm to improve track optimization efficiency and 
reduce track distances. Taking the trajectory planning of 
agricultural UAVs as an example and considering the 
influence of complex spatial environments on the UAVs’ 
trajectory, the proposed method’s effectiveness is 
demonstrated through a comparative analysis of optimized 
UAVs trajectories using GA, SA and the hybrid GA–SA 
algorithm. 

 
 

3. Model Construction 
 

To explore the 3D trajectory planning problem for UAVs in 
a designated spatial area, a mathematical model needs to be 
established. This model should consider both the physical 
constraints of the UAVs and the complex impact of the 
environment on task execution, including special terrain 
conditions and radar detection threats. 

 
3.1 Physical constraints of UAVs 
Considering the physical constraints and task execution 
requirements of UAVs, the 3D trajectory planning should 
adhere to certain basic constraints, including: 
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(1) The minimum track segment length means that the 
UAV must maintain a direct flight distance before changing 
attitude. Assuming that the flight path of a UAV consists of 
and the minimum track segment length is , the 
following conditions should be met: 

 
                                      (1) 

 
(2) The maximum track segment length refers to the 

constraint that the flight track length of the UAV needs to be 
less than or equal to the preset maximum distance value. 
Assuming that the flight path of a UAV consists of 

 and the maximum track segment 
length is , the following conditions should be met: 

In the weight of the topic keywords to be crawled by the 
web crawler, TF·IDF refers to the frequency of the web 
crawler crawling the behavior data of the power user group, 
and its calculation formula is as follows: 

 

                             (2) 

 
In equation (2),  represents the length of vector . 
(3) Maximum yaw angle pertains to the UAV turning 

within the maximum yaw angle range. Assuming the 
coordinate position of the track point is , the path 
vector of this segment is , and 
the maximum allowable yaw angle is . The following 
conditions should be met: 

 

                         (3) 

 
In equation (3), represents the transposition of the 

path vector and  represents the path vector of the next 
leg.  

(4) The maximum climbing angle means the UAV is 
climbing within a certain height distance range. Assuming 
the maximum allowable climb angle is , the following 
conditions should be met: 

 
                         (4) 

 
In equation (4),  represents the absolute value 

of the climb altitude from  to i and  represents the 
path vector of the segment. 

(5) The minimum and maximum flight altitudes pertain 
to the UAV flying within a designated flight altitude range. 
Assuming that the flight altitude of the th trajectory is , 
the lowest flight altitude is , and the highest flight 
altitude is , the following conditions should be met: 

 
                             (5) 

 
(6) The maximum and minimum flight speeds refer to 

the constraint that the flight speed of a UAV on a certain 

flight path segment must be maintained within a limited 
range. Assuming that the flight speed of the UAV is , the 
minimum flight speed is , and the maximum flight 
speed is , the following conditions should be met: 

 
                                   (6) 

 
3.2 Threat environment model 
Generally speaking, assuming that the central coordinate of a 
mountain in the planning area is , x, y represents 
longitude and latitude, z represents altitude, and a set of 
planning areas is 

 
       (7) 

 
In equation (7),  represents the range of 

longitude values,  represents the range of 
latitude values, and  represents the range of 
altitude values. 
 
(1) Mountain threat model 
In actual mission flight environments, UAVs need to use 
terrain to conceal their bodies. However, owing to the 
limitation of maximum flight altitude, they are prone to 
collide with mountains, leading to the destruction of UAVs 
[16]. In this study, the mountain is defined by an exponential 
function, and its mathematical model is 

 

      (8) 

 
In equation (8),  represents the elevation 

value at this point in the map;  represents the 
coordinates of the mountain center at that point;  
represents the coordinates of the ith mountain center;  
and  represent the reduction rates of the ith mountain 
along the x-axis and y-axis directions, respectively; and 

 represents terrain parameters. 
 
(2) Radar threat model 
Enemy detection radar is one of the biggest threats to UAVs 
during mission execution. The closer the body is to the 
radar, the higher the probability of detection and the greater 
the threat it poses to UAVs [17]. This study defines the radar 
detection range using a function expression, and its 
mathematical model is 

 
      (9) 

 
In equation (9),  represents the elevation 

value of the radar detection range,  represents the 
coordinates of the radar center at that location,  
represents the coordinates of the ith radar center,  
represents the value of radar detection performance 
coefficient, and  represents the maximum detection 
range value of the radar. 

 
3.3 Mathematical model expression 
The trajectory planning objective function of the UAV 
performing the task in this study is a collision-free flight 

minL

i minL L³

{ 1,2,3, , }iL i n= ∣

maxL

i max
i
L L£å

iL iL

i i i(x ,y ,z )

i i i-1 i i-1 i i-1s =(x -x ,y -y ,z -z )

maxj

1

1

cos
T
i i

max
i i

s s
s s

j+

+

³

T
is

i+1s

maxq

1
maxtani i

i

z z
s

q--
£

1i iz z --∣ ∣

1i - is

i iH

minH
maxH

min i maxH H H£ £

V
minV

maxV

min maxV V V£ £

( , , )i i ix y z

max max max{( , , ) 0 ,0 },0i i i i i ix y z x x y y z z£ £ £ £ £ £∣

( )max0,ix xÎ

( )max0,iy yÎ

( )max0,iz zÎ

( )
2 2

1
( , ) exp

n
i i

Momtain
i si si

x x y yz x y h i
x y=

é ùæ ö æ ö- -
ê ú= - -ç ÷ ç ÷
ê úè ø è øë û

å

( , )Momtainz x y
( , )x y

( , )i ix y

six
siy

( )h i

2 2 2
Radsr h max( , ) ( ) ( )i iz x y K R x x y yé ù= - - - -ë û

Radsr ( , )z x y
( , )x y

( , )i ix y

hK

maxR



Yusen Peng, Long Wang and Qixian Li /Journal of Engineering Science and Technology Review 16 (3) (2023) 191 - 198 

 194 

path composed of a starting point and a target point. Assume 
that  represents the flight position and 
body attitude of the UAV, where  represents the 
UAV’s coordinate position,  represents the UAV’s body 
turning angle, and  represents the UAV’s upward climb 
angle. 

The objective function can be expressed as 
 

        (10) 
 
In the equation,  and  represent the starting point 

and target point, respectively; and  represents a flight 
path from  to . 

Physical constraints can be expressed as 
 

                                   (11) 
 

                                  (12) 
 

                                  (13) 
 

                               (14) 
 

                             (15) 
 

                            (16) 

 
 Traditional SA algorithms typically search for nodes in 
eight sub-directions from the current node and use heuristic 
function values to determine the next extension node. 
However, when multiple minimum values exist, the 
algorithm cannot guarantee the optimal solution, leading to 
increased time costs. To address this issue, this study 
proposes the introduction of the GA and constructs the GA–
SA algorithm. This algorithm transforms the search space of 
the traditional SA algorithm into a spatial region that 
satisfies the constraint function of the mathematical model, 
conducting node searches within this region. This method 
reduces the spatial range of the algorithm’s search nodes and 
improves the search execution efficiency of the GA–SA 
algorithm. 

 
 

4. Algorithm Design 
 

In the problem of 3D path optimization for UAVs, as the 
scale of the problem increases, precise algorithms like linear 
programming become less applicable, and heuristic 
algorithms are widely employed. 

 
4.1 Genetic algorithm 
The GA algorithm is a random optimization search method 
that draws inspiration from the evolutionary principles of the 
biological world. It demonstrates the robustness and global 
search ability [15]. The GA algorithm begins with a 
randomly generated initial population and enhances 
population diversity through operations such as selection, 
crossover, and mutation. In this process, individuals are 
screened and eliminated based on their fitness. Individuals 
with good fitness undergo mating to generate a new 
population, and the iteration continues until the optimal 

individual is obtained. In the context of 3D trajectory 
optimization for UAVs, each individual in the GA algorithm 
corresponds to a UAV trajectory. 

 
4.2 Simulated annealing algorithm 
The SA algorithm is a heuristic random search algorithm 
based on the thermodynamic process of high-temperature 
solid cooling. The optimization process resembles the 
heating, isothermal, and cooling processes of solid annealing 
[16]. The SA algorithm starts with randomly generated or 
specific initial solutions and employs the random 
perturbation method to generate new solutions. It compares 
the objective function value of the new solution with the 
current solution and accepts the new solution with a certain 
probability according to the Metropolis criterion. This 
allows the algorithm to escape local optima and improve 
global convergence. The iteration continues until the end 
temperature is reached, and the optimal solution is output as 
the UAV’s optimal trajectory. In the context of 3D trajectory 
optimization for UAVs, each solution in SA corresponds to a 
UAV trajectory. 

 
4.3 Hybrid genetic simulated annealing algorithm 
GA algorithm and SA algorithm are random optimization 
search methods. The GA algorithm exhibits robustness and 
strong global optimization ability but performs poorly in 
local optimization. In the later stages of the optimization 
search, the population’s individuals tend to have high 
similarity, making it challenging to generate new individuals 
through crossover and variation, thereby hindering the 
ability to escape local optima [17]. SA can accept poor 
solutions with a certain probability and break out of local 
optima to find global optimal solutions. However, SA’s 
global optimization ability is limited, and it is 
computationally inefficient. 

Considering the advantages and disadvantages of the 
above two algorithms, a hybrid GA–SA algorithm is 
proposed to optimize the 3D trajectory of a UAV for 
transmission tower detection. To address the difficulty of 
generating new individuals through crossover and mutation 
in the later stages of the genetic algorithm search, crss 
mutation is applied to the genetic algorithm population, 
followed by simulated annealing to generate a new child 
population. This approach improves population diversity, 
enabling the genetic algorithm to escape local optima and 
obtain the optimal global solution. The GA–SA hybrid 
algorithm is used to solve the problem of 3D trajectory 
optimization for UAVs, and the calculation process is as 
follows: 

Step 1: Code and generate the initial population. 
Encoding involves representing the chromosomes of 
individuals in the population using the integer arrangement 
encoding method. For the problem of optimizing the 
trajectory of agricultural UAVs performing n high-altitude 
safe hover views, the chromosome is divided into n 
segments, with each segment corresponding to a hover point 
sequence number. For example, in a track optimization 
problem involving five high-altitude {1, 2, 3, 4, 5} safe-
hover agricultural UAVs, the chromosome |1|5|4|2|3| 
represents a valid solution. After completing the 
chromosome coding, an initial population is randomly 
generated, with the number of individuals determined by the 
size of the agricultural UAV’s hover view. 

Step 2: Calculate the fitness value for each individual. 
The fitness value serves as an index to evaluate the quality 
of chromosomes. The individual fitness evaluation function 
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determines whether the maximum number of iterations has 
been reached. If the maximum number of iterations is 
reached, the optimal flight path for the agricultural UAV is 
output. Otherwise, proceed to Step 3. 

Step 3: Perform the selection operation. The purpose of 
selection is to screen out individuals with higher fitness 
values and improve optimization efficiency. In this study, 
the roulette selection method is adopted, and the probability 

of individual i being selected in the iterative process is 

, where  is the individual fitness value and  

is the initial population number. 
 

 
Fig.1. GA–SA operation flowchart 
 

Step 4: Perform the crossover operation. The crossover 
operator is a key operator in the genetic algorithm, where 
two parents undergo crossover to produce a new individual. 
This study utilizes partial mapping hybridization, following 
these steps: (1) randomly select two sequence numbers 
representing high-altitude safety hover points of UAVs. 
Determine the positions of the two crossover points and 
exchange the data between them. (2) After crossover, if the 
same hover number exists in an individual, the local 
mapping method is used to eliminate duplicate hover 
numbers while retaining non-duplicate hover numbers. 

Step 5: Perform the mutation operation. The mutation 
operator serves as an auxiliary operator, primarily providing 
the genetic algorithm with the ability for local random 
search. This study adopts the single-point mutation, where 
two sequence numbers representing UAV high-altitude 
safety hover views are randomly selected, their positions are 
exchanged, and a new individual is generated. 

Step 6: Set the control parameters for the simulated 
annealing operation. To improve population diversity, the 
GA population undergoes the cross-mutation operation, 

followed by the simulated annealing operation. The control 
parameters for SA mainly include the initial temperature 
(T0), end temperature (Tend), Metropolis chain length (L), 
and temperature attenuation factor (q). 

Step 7: Set the crossed and mutated GA population 
individual as , the initial solution of SA, and conduct 
simulated annealing operation on the GA population. 

Step 8: Random perturbations generate new solutions 
. The initial solution  is operated and a new UAV 

track is generated. The method of generating a new solution 
by random perturbation is to randomly select two hovering 
points from the current solution and exchange their positions 
to generate a new trajectory. 

Step 9: Determine the size of the objective function of 
the new solution  and the initial solution . Calculate the 
sizes of  and . If , the new solution 
replaces the initial solution, and the number of iterations is 
increased by 1. Otherwise, go to Step 11. 
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Step 10: Accept the new solution with a certain 
probability according to the Metropolis criterion. The 
probability of accepting a new solution in the Metropolis 

criterion is . 

Step 11: Determine whether the number of iterations is 
greater than the Metropolis chain length (L). If it exceeds the 
length, apply the temperature attenuation factor (q) to cool 
down. Otherwise, return to Step 8. 

Step 12: Determine whether the end temperature is 
reached. If T<Tend, output the current solution, otherwise go 
to Step 8 for the next iteration. 

Step 13: Create a new offspring population. Select, 
crossover, and mutate individuals from the initial population 
of the genetic algorithm, then perform simulated annealing 
to generate new populations with higher fitness values. The 
new population is returned to Step 2 for individual fitness 
evaluation, and the iteration concludes. Refer to Fig. 1 for 
the flowchart of the hybrid GA–SA algorithm. 

 
 

5. Simulation Experiment 
  

5.1 Experimental environment and parameter settings 
The simulation was conducted on a Windows 10 operating 
system using MATLAB 2014b. The mission planning area 
had dimensions of 20 km × 20 km, and the simulation model 
included randomly generated mountains and radar threats 
with radii ranging from 0.3km to 0.5km. The same 3D 
experimental environment was used for simulation 
verification. The coordinates of the main navigation points 
along the agricultural UAV’s flight path are listed in Table 
1. 
 

Table 1. Main navigation points of agricultural UAV flight 
path 
Serial number X(km) Y(km) Z(km) 
1 2 1 0.3 
2 3 1 0.4 
3 4 2 0.5 
4 5 3 0.6 
5 6 4 0.7 
6 7 5 0.8 
7 6 6 0.8 
8 7 7 0.8 
9 8 8 0.8 
10 9 9 0.8 
11 10 10 0.8 
12 11 11 0.8 
13 12 12 0.8 
14 13 13 0.8 
15 14 14 0.8 
16 15 15 0.8 
17 16 16 0.8 
18 17 17 0.7 
19 17 18 0.6 
20 18 19 0.5 
21 19 19 0.4 
22 18 19 0.3 

 
5.2 Experimental results 
For the experiment, the starting point coordinates of the 
planned trajectory were set as (4, 10, 0.1), and the target 
point coordinates were (18, 20, 0.3). The GA–SA algorithm 
was run for a maximum of 500 iterations. The initial 
population size of GA was set to 50, with a crossover 
probability of 0.8 and a mutation probability of 0.2. The SA 
operation had an initial temperature of 98 ℃, an end 
temperature of 8 ℃, a temperature attenuation coefficient of 
0.995, and a Metropolis chain length (L) of 300. The UAV’s 
take-off point was set as (4, 10, 0.1) and the landing point as 
(18, 20, 0.3). The results of the GA–SA algorithm 
optimizing the 3D track for UAV inspection are shown in 
Figure 2. 

 
Fig. 2. GA–SA algorithm for agricultural UAV track planning 
 

To visualize the 3D trajectory planning path of the 
agricultural UAV accurately, MATLAB 2014b was used to 
display the UAV’s 3D flight path through a 3D coordinate 
system. The 3D flight path is shown in Figure 3. 

To verify the effectiveness of the GA–SA algorithm, the 
GA, SA, and hybrid GA–SA algorithms were used to 
optimize the UAV’s 3D track under the same environment, 
with a planned area of 20 km × 20 km and the same threat 
model position, starting point, and target coordinates. The 

comparison results of the convergence time and UAV track 
path length for the three algorithms are presented in Table 2. 

 
Table 2. Comparison of results of the three algorithms 
Algorithm Algorithm Convergence  

Time (s) Path Length (km) 

GA algorithm 28.72 32.868 
SA algorithm 27.36 32.417 
GA-SA algorithm 24.17 30.624 
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As shown in Table 2, the convergence time of the GA–
SA algorithm is 18.82% and 13.20% higher than that of the 
traditional GA and SA algorithm, respectively. Under the 
same experimental environment, the convergence time for 
the GA–SA algorithm was 4.55 seconds and 3.19 seconds, 
respectively. Additionally, the path length of the GA–SA 
algorithm is reduced by 7.33% and 5.85% compared with 
the traditional GA and SA algorithm, respectively. In the 
same experimental environment, the path length for the GA–
SA algorithm was 2.244 km and 1.793 km, respectively. The 
simulation results demonstrate that the GA–SA algorithm 
not only improves the search speed of agricultural UAV 
trajectory planning but also reduces the path length of the 
trajectory planning. In terms of path search efficiency and 
algorithm optimization, the GA–SA algorithm outperforms 
the traditional GA and SA algorithm.  
 

 
Fig. 3. 3D flight path of agricultural UAV in 3D coordinate system 

 
Therefore, through the comparison of experimental 

results, the proposed GA–SA algorithm effectively avoids 
threats and plans the optimal flight path for UAV 3D 
trajectory planning. The algorithm successfully reduces the 
search time and shortens the path length of the trajectory 

planning, validating the effectiveness and progressiveness of 
the GA–SA algorithm proposed in this study. 

 
6. Conclusion 

 
In this study, a GA–SA hybrid algorithm for the trajectory 
planning of agricultural UAVs was proposed in the 3D 
environment. A mathematical model was established based 
on the physical constraints and threat environment of UAVs, 
defining the planned space region searched by the algorithm. 
The GA–SA algorithm incorporated weight GA–SA 
coefficients to guide the node search toward the target node, 
with different coefficient values set for different stages of 
the search path. Curve smoothing was employed to ensure 
smooth transitions between trajectory points and reduce sub-
path lengths. This study conducted on the trajectory planning 
of agricultural UAVs led to the following conclusions:  

(1) To improve the convergence speed and path distance 
of agricultural UAV 3D track planning, a GA–SA hybrid 
optimization algorithm was proposed, combining the genetic 
algorithm’s strong global search ability with the genetic 
algorithm’s fast local convergence speed.  

(2) The GA–SA hybrid algorithm was successfully 
applied to plan the inspection trajectory of agricultural 
UAVs. Compared with the traditional GA and SA algorithm, 
the GA–SA algorithm showed an increased convergence 
time of 18.82% and 13.20%, respectively. The optimal track 
distance was reduced by 2.244 km and 1.793 km, 
respectively, validating the effectiveness of the proposed 
method. This study provides valuable insights for ensuring 
the flight path planning of agricultural UAVs and improving 
UAV’s flight path planning efficiency. 

 
This is an Open Access article distributed under the terms of the 
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