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Abstract 
 
A complete process of optimizing a steel structure depends on the calculated requesting efforts, the standard considered, 
the profile catalogs used in the design and the optimization algorithm adopted. This study aims to optimize steel space 
frames structures, using the Genetic Algorithm (GA) associated with the Two Cycles Iterative Method (TCIM), for a 
simplified geometric nonlinear analysis. The design follows the ‘Eurocode 3 – Design of Steel Structure’. The results 
show that the GA is efficient in optimizing steel structures by working with discrete variables facilitating the use of 
profile table provided by manufacturers. Regarding the consideration of second order effects in the optimization process, 
the use of TCIM generated accurate results, with low computational cost. The use of a more complete analysis method; 
the ‘Eurocode 3 – Design of Steel Structure’; and different shape catalogs, according to the cases analyzed, are the 
reasons for the reduction observed. 
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1. Introduction 
 
Due to the improvement of processing power of computers, 
the use of optimization algorithms in the solution of 
structural engineering problems becomes increasingly 
common both in plane and in space structures, considering 
or not the effects of nonlinearities in the structure. 

Usually, the solution of structural engineering problems 
is obtained by the designer's experience or in some cases 
using trial and error techniques. In this context, the use of 
optimization techniques allows more efficients and 
automatized solutions. Thus the application of optimization 
can reduce errors in the final design considering an safety, 
an economic, and an environmetal point of view. The use of 
optimization techniques in steel structures and composite 
steel/concrete structures has been growing over the last 
decades, as can be seen in the works of Arpini and Alves [1], 
Fiorotti et al. [2], Xin et al. [3], among others.  

One of the most used metaheuristic algorithms is the 
Genetic Algorithm (GA), developed in the 1950s and related 
to biologist A. S. Fraser, although the work of Holland [4] 
had the greatest contributions since he proposed a logical 
approach to issues regarding the mechanism of species 
adaptation ([5]). Gregor Mendelian’s principle of Mendelian 
Heredity (1866) and Charles Darwin’s theory of Natural 
Selection (1838) inspired these algorithms, which is applied 
in areas such as engineering, medicine, economics, biology, 
chemistry. 

Fu, Zhai and Zhou [6] mention the advantage of using 
GA in steel beam bridge projects. In addition to obtaining 
satisfactory results, the authors highlight that the method is 
efficient in representing real gains, since it is possible to use 
discrete variables, such as the obtained from shape tables. 

Liu, Hammad and Itoh [7]  apply the GA with the Pareto 

principle and use it in a bridge  recovery study, forming a 
model with multiple objective functions and reconciling the 
various results. However, Breda, Pietralonga and Alves [5] 
present the formulation to steel deck optimization obtained 
via GA. The algorithm seeks to determine the best steel deck 
composition, the interaction ratio between the slab and the 
beams, and the automatic arrangement of the secondary 
beams. 
 In this work the algorithm seeks to determine the best 
composition of the composite  slab, the degree of interaction 
between the slab and the beams and the automatic 
arrangement of the secondary beams. 

Kripakaran, Hall and Gupta [8] develop a decision-
making support system for rigid steel frames where they use 
an GA to generate optimized structures, varying the types of 
connections (rigid and labeled). In this work, the Modeling 
to Generate Alternatives (MGA) technique is used, in which 
the solution is chosen from a small group composed of the 
best answers. This improves design possibilities, since the 
optimal response may present inconveniences not captured 
by algorithm modeling and depend  on the critical analysis 
of a human. 

Prendes-Gero, Bello-García and Coz-Díaz [9] apply GA 
in flat and space structures and complicit the responses 
obtained with those generated by a commercial program of 
analysis and dimensioning, obtaining a 9.3% lighter 
response to the 2D structure and 10% for the 3D structure.  
Kociecki and Adeli [10] implement a modified GA to 
increase convergence speed, characterizing an evolutionary 
computing method. Then, the authors used efficiently this 
GA to optimize the shape of two real structures, saving 
between 10% and 16% of structure weight.  

Meruane and Heylen [11] develop a hybrid GA and 
apply it in the detection of structural damage, avoiding false 
damage detection, which is more efficient than conventional 
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methods. In a complex scenario, the algorithm analyzed only 
6.3% several possibilities to detect all damage.  

Forti, Souza and Requena [12] optimize plane and space 
steel trusses, of roofs large spanwith the GA, to improve the 
structural design of the system. Ramos and Alves [13] 
applied GA to analyze the optimum design and the collapse 
modes of alveolar beams.  

However, the most accurate structural analysis and 
design – depending on the type of loading and geometry – is 
the analysis of the effects due to the geometric nonlinearity 
of the structure, especially for steel structures. Works related 
before were not concerned with the influence of second 
order effects during the optimization problem using GA. 
Usually, associate nonlinear analysis to an optimization 
problem brings large computational effort, since complete 
nonlinear analysis uses matrix methods, and incremental-
iterative processes in an already heavy algorithm of 
optimization. 

Therefore, to improve the structural design, this work 
associates optimization techniques to geometric nonlinear 
analysis, considering the Two Cycles Iterative Method 
(TCIM), an approximated method that however, uses a 
geometric matrix.  

Rodrigues, Burgos and Martha ([14], [15]) present a new 
approach to the Timoshenko geometric stiffness matrix 
considering higher-order terms in the strain tensor. The 
authors had excellent results from the point of view of the 
precision of the values for the displacements, but with a high 
computational cost.  

There are studies that associate stability analysis to 
structural optimization as Lu, Gilbert and Tyas [16], where 
the authors conclude that the ratio between gravitational and 
horizontal forces exert great influence on the determination 
of the optimal frame, as well as the code chosen for sizing. 
This shows the need to compare optimized structures 
generated by the Brazilian code with those generated by 
international codes. 

Hernández-Montes, Gil-Martín and Aschheim [17] 
create an algorithm to optimize frame elements, using the 
approximate method of second-order analysis from AISC 
Load Resistance Factor Design (AISC-LRFD [18]) and 
Eurocode 3 [19] and the B1-B2 Method the study developed 
a tool capable of achieving a great increase in structural 
stability with a small increase in the structure’s weight. 

Hellesland [20] cites the inefficiency of some 
approximate methods in predicting local second-order 
effects, P-δ, in elements subjected to simple curvature. The 
possible reasons for this difference are the P-� effects, 
which are higher than those usually considered, this affects 
the stiffness distribution at the column´s edge. Then the 
author proposes an amplification coefficient to correct the 
values and to approximate to the real values. 
 Jing and Jinxin [21] propose a formulation to estimate 
the effective bending stiffness, used in an approximate 
method of second-order analysis and applied to concrete 
frames. They obtained more accurate and faster results 
compared to the old formulation, because they avoid 
extensive calculations based on the solutions of differential 
equations. This demonstrates the importance of approximate 
methods, especially when applied in iterative algorithms, in 
which a small simplification in calculations can represent an 
exponential gain in analysis time. 
 Although several researches with the application of 
structural optimization techniques have been presented over 
the last few years, usually the analysis of the effect of 
geometric nonlinearity is performed by approximated 

methods as Load Resistance Factor Design, and the B1-B2 
method, since a complete nonlinear analysis would be very 
costly in an optimization problem. However the TCIM is 
approximated matrix method easily implemented in a linear 
finite element analysis program. 
 Therefore, this study aimed to present the problem 
formulation of steel space frames structural optimization 
according to EN 1993-1-1 [19] and considering geometric 
nonlinearity. The solution of the optimization problem is via 
Genetic Algorithm and the geometric nonlinear analysis was 
performed via TCIM. 
 
 
2. Formulation of the Optimization Problem 
 
This study seeks to minimize the structure’s weight, thus, the 
objective function is represented by the expression (1): 
 
𝑊𝑒𝑖𝑔ℎ𝑡 = ∑ 𝐿! . 𝐴! . 𝜌"

!#1     (1) 
 
where:	𝑛	is the number of elements; 𝐿!	length of element i, 
in m; 𝐴!	cross-section area of element i, in m2; 𝜌	specific 
mass of steel, adopted as 7860 kg/m3. 
 
2.1. Constraints 
The constraints applied to the solutions of the structural 
dimensioning problem are directly related to the normative 
criteria of EN 1993-1-1. 2005 [19] linked to both The 
Ultimate (ULS) and Service (SLS) States. In this way, the 
constraints to be used in this problem are presented in the (2) 
representing the Ultimate Limit State and the constraints (3). 
Serviceability Limit State.  
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To solve the optimization problem the GA algorithm was 

adopted. The considered initial population contains 120 
individuals, the rate of elite individuals and crossing of the 
intermediate type are 0.05 and 0.8, respectively, whereas the 
mutation rate is random. 
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2.2. Analysis of Geometric Nonlinearity via TCIM 
The TCIM is a method of analysis that considers geometric 
nonlinearity in a simplified way and presented by Chen and 
Lui [22]. The method, although simplified, if used correctly 
is applicable to three-dimensional structures with good 
results.  

The equilibrium equation to perform a geometric 
nonlinear structural analysis using TCIM is shown in 
equation (4). The tangent stiffness matrix is given by the 
sum of the linear stiffness matrix (5) and the geometric 
stiffness matrix (6).  
{F} = [KL +K$]. {D}             (4) 
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 Wherein, 𝑃

	

is the element axial force; 𝐸

	

is the element 
Young’s modulus;

 

𝐴

	

is the element cross-section area; 𝐿

 

is 
the element length; 𝐼 is the element moment of inertia; 𝐽2 is 
the torsion constant of Saint Venant; x, y, and z are the 
cartesian axes. Figure 1 presents the flowchart for the use of 
the TCIM method and Figure 2 presents the flowchart of the 
optimization process. 
 
 
3. Numerical Αnalysis 
 
3.1. Validation of the 2 Cycles Interactive Method 
ANSI/AISC 360-16 [23] presents two structural cases with 
precise structural analysis results so that they are used as a 
reference in the initial evaluation of methods and second-
order analysis programs. Case 1 (figure 3) aims to evaluate 
the P-δ effect, and Case 2 (Figure 4) the P-δ and mainly P-Δ 
effects.  

 Through these cases it is possible to evaluate whether the 
studied method correctly considers the P-δ and P-Δ effects 
in the calculation of requesting efforts and structural 
deformations, the first being neglected by many methods of 
second-order analysis.  
 For the analyses, the Profile W360x72 was used for both 
cases; bending columns in relation to the axis of greatest 
inertia; and modulus of elasticity E = 200 GPa. An analysis 
of the bar discretization was performed as follows.   
 
3.2. Discretization Analysis of the Εlements 
To verify the accuracy of the solution of the reference cases, 
the discretization of the elements was evaluated. The bars 
were analyzed as a single element and subdivided into 2, 4, 8 
and 16 elements. Figure 5 shows the results relative to the 
maximum bending moment and displacements for Cases 1 
and 2. 
 In this analysis, the overlapped graphs facilitate the 
visualization of the time and error associated with each 
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degree of discretization, represented on the horizontal axis. 
The error plot is represented by the bars and associated with 
the left vertical axis, with the limits recommended by 
ANSI/AISC 360-16 [23], represented by the dashed red 
lines. The line chart represents the analysis time and is 
associated with the right vertical axis. 
 

 
Fig. 1. Flowchart for TCIM. 
 

 
Fig. 2. Flowchart of Optimization Process. 
 

 Although the precision increase, by subdividing the bar 
into more than four elements, the analysis time follows the 
proportionality in relation to the number of subdivisions. 
Thus, four elements were adopted for discretization, which 
brings the best balance between precision and computational 
cost, considering the results obtained in the discretization 
analysis. 
 Figure 6 presents the results of the analyses for the 1st 
Reference Model, considering the moment at the bottom of 
the column, and the the maximum displacements at the top 
of the column. The table 1 shows the percentual difference 
between results.  
 

Fig. 3. Reference Case 1. 
 
 

Fig. 4. Reference Case 2. 
 

 
Fig. 5. Evaluation of the structural discretization. 
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Fig. 6. Results of the bending moment (kN.m) and maximum displacement (mm) of Case 1, discretization of 4 elements. 
 
 
Table 1. Analysis of the Results. 
Axial 
force, 
P [kN] 

  0 667 1334 2001 

Mbase 
[kN.m] 

AISCI 26.6 30.5 35.7 42.4 
TCIM 26.6 30.7 36.1 43.8 

utopo 
[mm] 

AISCI 5.13 5.86 6.84 8.21 
TCIM 5.13 5.86 6.85 8.22 

 

 As can be observed the difference between the reference 
model and the TCIM for all cases of loads was less than 
3.2% (dashed red lines). 
 Similarly, Figure 7 presents the results for maximum 
bending moment obtained by the modules and the difference 
from the reference values for Case 2. The table 2 shows a 
comparative analysis, subdividing the bars into 4 elements. 
For all cases the limits referring to the deviation of ±3% are 
represented in dashed red lines. 

 

 
Fig. 7. Results of the bending moment (kN.m) and maximum displacement (mm) of Case 2, discretization of 4 elements. 
 
Table 2. Comparative analysis of case 2. 

Axial 
force, P 

[kN] 
 0 445 667 890 

Mbase 
[kN.m] 

AISCI 38 53.2 68.1 97.2 
TCIM 38 53.8 69.5 101.1 

utopo 
[mm] 

AISCI 23.1 34.2 45.1 66.6 
TCIM 23.45 35.06 46.67 70.07 

 
 Table 2 shows that the TCIM presents a good precision 
being within the orientation limit of the ANSI/AISC 360-16 
[20], except for the case of higher axial load and this 
difference was 5% superior, thus showing that the method is 
more conservative in determining moments and 
displacements. 
 
3.3. Optimization of Plane Frame Presented in Farshchin 
et al. [24]. 
The first example analyzed is the frame presented in 
Farshchin et al. [24] and shown in the bars are grouped into 

columns and beams, fy is taken with the value of 250 MPa 
and E equal to 200 GPa. The authors used the method called 
School Based Optimization to determine the optimal solution 
to the problem. 
 

 
Fig. 8. Plane frame by Farshchin et al. [24]. (Source: adapted from 
Farshchin et al., [24]) 
 
 Farshchin et al. [24] does not limit the displacement of 
the structure in this example. In addition to the grouped bars, 
the profiles of the columns are limited to the W10 of the 
American standard, which have total section height ranging 
between 250 mm and 290 mm, this constraint is added 
exclusively in this example. Table 3 shows the results 
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obtained by the program elaborated with different catalogs 
of profiles and those obtained by Farshchin et al. [24], taken 

as a reference. 

 
Table 3. Optimization results of the frame of Farshchin et al. [24]. 

Parameter Farshchin et al.  [24]  Authors Authors Authors 

 Optimization method School Based 
Optimization Genetic Algorithm Genetic Algorithm Genetic Algorithm 

Standard AISC-LRFD (2001) EN 1993-1-1 (2005) EN 1993-1-1 (2005) EN 1993-1-1 (2005) 

Method of analysis FIELD Approximate 2nd order - 
TCIM 

Approximate 2nd order - 
TCIM 

Approximate 2nd order - 
TCIM 

Catalogue W profiles of the  
AISC-LRFD [25] 

W profiles of the 
AISC-LRFD [25] Gerdau® laminates European laminates 

 Column profile W250x89 W250x101 W250x101 HEM240 
Beam profile W610x92,3 W530x82,0 W530x82,0 IPE500 

Optimization Weight 
(Difference) 8523.9 kg  8181.4 kg 

(-4,0%) 
8192.5 kg 
(-3,9%) 

10281.4 kg 
 (+20,6%) 

 
 The result obtained with the Gerdau laminate table® 
shows a small reduction in relation to the result of Farshchin 
et al. [24], which can be explained by the method of 
analysis. It is noted that the answer found using the AISC-
LRFD W Profiles catalogue [25] is the same as with 
Gerdau's laminate table®, and the small difference between 
the total weights of the structure caused by rounding of the 
tables. 

 On the other hand, the result obtained with the Table of 
European Profiles presents a result 20.6% higher than the 
result of Farshchin et al. [24]. This is due to the constraint 
on the size of the columns because this table presents only 8 
elements that meet the limitation imposed by the project, 
against the 18 available by the Catalog of W Profiles of the 
AISC-LRFD  [25] and 14 for the laminate table of Gerdau®. 
 

 
Fig. 9. Constraints for the plane frame analyzed with Gerdau® laminate profiles. 
 
 It was observed for all cases that the governing criterion 
in the design of the columns (bars 1 to 9), of this example 
was that of the combined bending, given by equation 6 and 
represented by the constraint C6 in the system. This constraint 
refers to column 4, the most requested. For the beams (bars 
10 to 15) it was the same criterion acting on beam 15. The 
analysis of the constraints follows in Figure 9 for Gerdau® 
profiles. 

 
3.4. Spatial Frames Optimization 
The second example is of a space frame presented in Figure 
10 and proposed by McGuire, Gallagher and Ziemian [26]. 
 

 
Fig. 10. Example proposed by McGuire, Gallagher and Ziemian [26]. 

 
 

 The results obtained with the program elaborated in this 
work, using the catalog of Gerdau® laminate profiles and 
laminates of the European standard, are presented in Table 2 
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Table 4. Spatial frame optimization results. 
Parameter Author Author Author 
Standard NBR 8800:2008 [27] EN 1993-1-1 (2005) EN 1993-1-1 (2005) 

Method of analysis Effective lengths (1o. Order) 
Kx = 1, Ky = 1, Kz = 1 Approximate 2nd order - TCIM Approximate 2nd order - TCIM 

Catalogue Gerdau®  laminates Gerdau® laminates European laminates 

Profiles 

1. HP200x53.0 (H) 
2. HP250x62.0 (H) 

3. W460x89,0 
4. W360x91.0 (H) 

5. W200x19,3 
6. W200x52.0 (H) 
7. W150x22,5(H) 

8. W200x26,6 

1. W150x29.8 (H) 
2. W360x64,0 
3. W200x31,3 

4. W610x140,0 
5. W200x15,0 
6. W150x13,0 
7. W200x15,0 
8. W310x28,3 

1. HEB140 
2. IPE130 

3. HEA160 
4. HEB320 

5. IPE80 
6. IPE80 
7. IPE80 

8. IPE180 
Total weight 
(Difference) 2147.2 kg 1668.8 kg 

(-22,3%) 
1322.3 kg 
(-38,4%) 

 
 
 The use of Effective Lengths Method with K coefficients 
equal to 1 in the analysis of a spatial gantry is an 
approximation, since the table implemented in this program 
should be used in insulated bars, however, it is considered, 
in this case, that the beams offer a good locking to the 
horizontal and rotational displacement of the tops of the 
columns. 
 There is a considerable reduction using the elaborate 
program. This difference, once again, can be caused by the 
method of analysis used and this time there is also a 
considerable difference between the catalogues used by the 
elaborated program. 
 Figure 11 constraints for the case analyzed with Gerdau® 
profiles for the imperfections considered in the x-axis and 
for the imperfections considered in the z-axis, respectively. 
 

 
Fig. 11. Constraints for the spatial frame analyzed with Gerdau® 
profiles and imperfections in the direction of the x-axis. 

 
Fig. 12. Constraints for the spatial frame analyzed with Gerdau® 
profiles and imperfections in the direction of the z-axis. 
 
 

3.5. Analysis of Profiles Catalogues 
Considering the difference obtained in the final solutions, 
the graphics in Figures 13, 14 and 15 were generated. The 
presented figures display the profiles of these two tables 
(Gerdau® and European laminates) ordered in relation to the 
cross-sectional area, and the plastic resistance modules in 
relation to the y and z axes, respectively, in order to observe 
characteristics of these tables. 
 As shown in Figures 13, 14 and 15, the European 
profiles have a wider distribution, having the smallest and 
largest profiles for the quantities considered. The cross-
sectional area is directly linked to the linear mass of the 
element and to the resistance of axial loads. The plastic 
resistance modules are directly linked to resistance to 
bending stress in relation to the respective axes.  
 

 
Fig. 13. Gerdau® and European profiles ordered according to the cross-
section area. 
 

 
Fig. 14. Gerdau® and European profiles ordered according to the cross-
section plastic resistance module related to the y axis.  
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Fig. 15. Gerdau® and European profiles ordered according to the cross-
section plastic resistance module related to the z axis.  
 
 
 It can be concluded that for the studied cases, the 
European catalog had an advantage in structures with 
elements without direct loading on them, because it has 
lighter profiles.  However, this advantage is not observed, in 
cases where all elements have direct loading, as example, in 
the optimization of the plane frame, the first example. In this 
case, the Gerdau® profile catalog achieved better results by 
having a greater number of profiles at the resistance level 
closest to the requesting loads. 
 
 
4. Conclusions 
 
The applications developed in this work allow us to verify 
that it is feasible to create a structural analysis that makes 
second order  analysis using approximate methods with good 
precision and that optimizes the structural design according 
to EN-1993-1-1[16] via AG. 
 The TCIM demonstrated good accuracy in determining 
the requesting efforts and structural displacements when 
compared to the reference cases of ANSI/AISC 360-16 [21], 
mainly for structures subjected to a loading level for which  
they are usually sized, also presenting a low increase in 
computational demand, when compared to the first-order 

analysis. This low computational cost has a direct impact on 
the analysis and optimization of larger structures, 
considering that the currently most used algorithms are 
bioinspired methods and generally work with a population of 
individuals, and in each step of the iterative process the 
solution will be analyzed several times. 
 As for structural optimization, the GA proved to be 
effective when applied to isolated bar structures, flat frames 
and spatial frames, presenting coherent results when 
compared with literature results using EN 1993-1-1 [16] and 
Effective Length Method. 
 With the results it was possible to observe reduction in 
the weight of the structure when using different methods of 
structural analysis and the differences and particularities of 
the implemented catalogs. This observed reduction may also 
be related to the standard adopted. Reductions are observed 
when analyzing structures without the grouping of elements, 
but there are many constructive and structural advantages 
associated with the grouping of elements. 
 Finally, is the importance of considering the second 
order effects in structural analysis, as these can be 
determinant factors in the structural design, as exemplified 
in this work.  The implementation of the method can be done 
directly in commercial programs, due to its easy 
implementation, and adaptation of linear finite element 
codes. Also, the low computational cost opens possibilities 
for analysis in more robust structures. 
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