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Abstract 
 
GAN (Generative adversarial network) is a type of deep learning model that can generate fake data that looks real. GAN 
consists of two rival neural networks generator and discriminator.  There are several types of GAN can be classified 
based on different criteria such as learning method, network architecture, application, and improvement of training. under 
the umbrella of learning methods, GAN can be categorized into three types, including unsupervised, semi-supervised, and 
supervised learning methods. Fully Connected GANs, Convolutional GANs, LAPGANs, AAEs, and Vari GANs are all 
subtypes of GANs that are distinguished by their respective network architectures, the quantity and composition of layers 
used in each style distinguishes it from the others. Application areas for GAN include computer vision and image 
processing, medical imaging, natural language processing, cyber security, and fault detection and tracking. In conclusion, 
GAN can be categorized in accordance with how training has progressed such as feature matching, probability 
percentages, regularization, choosing proper optimization, adding noise to discriminator, hyperparameters tuning, 
normalization, and weight normalization. 
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1. Introduction 
 
Ian Goodfellow did come up with generative adversarial 
networks in 2014. Using two distinct duelling neural 
networks, this method lets computers make data that seems 
real. When GANs were first used, they made some amazing 
images; the fake images they made had the same quality as 
real images. GANs can turn scribbles into pictures [1]. The 
pairs' networks are trained at the same time to compete with 
one another as an art expert and a forger. In the GANs 
literature, the forger is referred to as the generator, and its 
job is to generate fake pictures that seem as legitimate as 
possible to fool the discriminator (art expert), who must 
distinguish both fake and genuine pictures [2]. Generator 
and discriminator networks are often constructed as multi-
layer networks with convolutional and/or fully connected 
layers that use either multilayer perceptrons or filter banks 
with non-linear post-processing [3]; the network weights are 
learned by backpropagation in every iteration[4].Training 
networks need a loss function, as is the requirement with all 
deep learning systems, one loss function is for the generator, 
and another is for the discriminator. If the loss function gives 
a big value, the generator and discriminator networks adjust 
their weights and biases via backpropagation using one of 
several optimizers including stochastic gradient descent 
(SGD), Root Mean Square propagation (RMSProp), Adam, 
AdaGrad, and Adaptive Gradient algorithm (AGA). 
Therefore, both neural networks simultaneously learn [5]. It 
is possible to classify generative algorithms in terms of their 
relationship to either explicit or implicit density models. The 
models that constitute the distribution are defined and solved 
for in detail in explicit density estimation. The obstacles of 

computational tractability and learning from high-
dimensional data are typical issues for this distribution. 
These generative models include the Markov chain approach 
(such as Boltzmann Machines), the Variational Autoencoder 
(VAE), and completely transparent belief networks. 
Constructing a model that can sample from the distribution 
without explicitly describing it is what implicit density 
estimation is about. 

Generative models with implicit density include the 
popular generative stochastic network (GSN)[6] and 
generative adversarial networks (GANs)[7]. In particular, 
GANs have received a lot of interest as a unique class of 
deep generative models. This is due to the fact that they can 
be trained using backpropagation and do not need Markov 
chains for sampling, which means implicit density 
estimation is done by adjusting the weights of the generator 
and discriminant through training. 
 
 
2. Training the Generator and the Discriminator 
 
Obtaining genuine sample x at random from the provided 
training dataset, then obtaining a fabricated random noise z 
and creating a fictitious sample, x*, using the generator 
network, then Recognizing the distinction between x* and x 
using the discriminator network. Back-propagate attempts to 
decrease error by adjusting the biases and weights of the 
discriminator and generator [8]. See Fig. 1.  

The Generator network uses random noise Z to create the 
images. The noise-generated images are saved as G(z). 
Gaussian noise, which is a stochastic position in latent space, 
is often used as the input. A particular image's membership 
in a real distribution is determined by the discriminator 
network [9, 10]. GAN's loss function is based on a two-
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player minimax game, which is a zero-sum game with two 
neural networks competing against each other, two players 
are symbolized by two differentiable functions. D is the 
discriminator function with regard to their inputs x and 
weights ϴ(D). G represents the generator function, whose 
input x and weights ϴ(G) [11]. The loss functions are: 

 
𝐿(𝐷, 𝛳(𝐷)	) 	= 	₋	𝐸𝑥⁓𝑝𝑑𝑎𝑡𝑎	(𝑥)	[𝑙𝑜𝑔	𝐷(𝑥)]      (1) 
 
for Discriminator  
 
L(G, ϴ(G) ) =  Ez⁓pg [log( 1₋ D(G(z)) )        (2) 
 
for Generator  
Where the variable pdata indicates genuine data distribution, 
whereas the variable pg indicates created data distribution.  
 

Each competitor must account for its own loss function, 
D should be maximized by updating ϴ(D), and G should be 
minimized by updating ϴ(G). The loss functions of both 
competitors are depending upon that parameters of the other 
[15]. They are unable to update the other parameter and will 
continue to train unless a Nash equilibrium is reached [12, 
13]. GAN is a minimax optimizer with the following loss 
function:  

 
	min𝑚𝑎𝑥
		𝐺		𝐷	 	L(D,G)=	min𝑚𝑎𝑥		𝐺		𝐷	  {𝐸𝑥⁓𝑝𝑑𝑎𝑡𝑎	(𝑥)	[𝑙𝑜𝑔	𝐷(𝑥)] 	+ 

		𝐸𝑧⁓𝑝𝑔(𝑧)	[𝑙𝑜𝑔(	1₋	𝐷(𝐺(𝑧)))] }         (3) 
 
The first portion of equation (3) indicates that, given actual 
data, D maximizes the objective function. The latter signifies 
that, when fed with the produced data, D causes the output D 
(G (z)) to approach zero, while G's purpose is to bring the 
output D (from the generator) as near to one as possible. 
After the two models have been trained extensively enough, 
a Nash equilibrium is reached [14]. 
 

 
Fig. 1. Training the Generator and the Discriminator, where z denotes 
noise distribution, G (z) denotes the generator's samples, and x is a set 
of realistic data samples. 
 
 
3. GAN Types and Classification 
 
There are already hundreds of various GANs, and that 
number is rapidly growing. Different GANs are categorized 
in accordance with their respective learning methods, or 
GAN architectures or their application. Because of 
enhancements to the training network, new kinds have 
evolved to tackle previously intractable issues, one can name 
these types under an umbrella term: varieties GAN depend 
on the improvement of training. 
 
3.1. Classification Based on Learning Strategies 
Different GANs are categorized in accordance with their 
respective learning strategies: unsupervised, semi-
supervised, and supervised learning methods [14]. See 
Figure 2. 
 

 
Fig. 2. GAN types classification based on learning methods. 
 
 
3.1.1. Unsupervised learning 
3.1.1.1. Vanilla GAN 
This type is considered the first appearance of the GAN, 
which appeared in 2014, and is regarded as the simple type 
that was using the binary cross-entropy loss function. 
Iteratively adjusting weights and biases on every epoch until 
a discriminator and generator are accurately performed if the 
loss function produces more value than can be achieved 
using stochastic gradient descent (SGD) with 
backpropagation (Bp)  The optimal value for generator is 0.5 
when discriminator become unable to distinguish between 
fake or real data, Generator's value is determined by:   
 
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 = −	𝑙𝑜𝑔	4	 + 2 ∗ 	𝐽𝑆𝐷	(𝑃𝑑𝑎𝑡𝑎(𝑥)	||	𝑃𝑔(𝑥)) (4) 
 
where JSD is Jenson Shannon Divergence. 
 
3.1.1.2. WGAN and WGAN-GP 
"WGAN" is an abbreviation for the Wasserstein GAN, and 
"WGAN-GP" is an abbreviation for GAN-Gradient Penalty. 
As an alternative to the Jenson Shannon Divergence, the 
Wasserstein distance metric has been used. Weight clipping 
is a trouble in WGAN. To avoid it, use the Lipchitz constant, 
WGAN-GP is made by adding the gradient penalty term to 
the WGAN loss function [15]. A soft version of the 
restriction with only  penalty for sample data on the gradient 
norm, So, here's what the loss function looked like [16, 17]: 
 
LWGAN-GP =𝑚𝑖𝑛𝐺  ( 𝑚𝑎𝑥𝑤 ∈ 𝑊	Ex⁓pdata(x)[ D(x) ]- Ez⁓pg(z) 

[D(G(z))]) + λ Ex⁓pdata [ǁ𝛻	𝑥𝐷(𝑥)ǁ-1)2]      (5.a) 
 
𝐿𝑊𝐺𝐴𝑁 − 𝐺𝑃 = 𝐿𝑜𝑠𝑠	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑊𝐺𝐴𝑁 +
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡	𝑝𝑒𝑛𝑎𝑙𝑡𝑦          (5.b) 
 

The discriminator in WGAN does not give 0 or 1, 
instead it returns the Wasserstein distance, WGAN utilizes 
the root mean square propagation (RMSProp optimizer), 
which modifies the weights and biases of generator and 
discriminator for each iteration until discriminator is unable 
to distinguish between actual and artificial pictures. While, 
when using WGAN-GP, the Adam optimizer produces 
excellent sharp pictures [14]. Vanilla GAN, 
WGAN,WGAN-GP have same architecture are illustrated in 
figure 3. 
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Fig. 3. Vanilla GAN, WGAN,WGAN-GP Architecture. 
 
 

3.1.1.3. InfoGAN 
InfoGAN stands for the semantic information (si) was added 
to noise, so the generator will receive information as well as 
the noise to create fake image, as shown in figure 4. SGD 
optimizer is used for adjusting weights and biases [18, 19]. 
The Wake-Sleep algorithm was included into InfoGAN. In 
the wake phase, we optimized and updated the lower limit of 
the generator log PG(x). During the sleep phase, designers 
update the auxiliary distribution Q by up sampling from a 
generator distribution rather than the actual data distribution 
[20], where loss function [21] : 
 
minmax𝐿
𝐺, 𝑄		𝐷 𝐼𝑛𝑓𝑜𝐺𝐴𝑁(𝐺,𝐷) = 𝐸𝑥~𝑝data(x)	[log	(D(x)) +

En~pn(n)[log	(1 − D(G(n))] − λ × 𝐿𝐵(𝐺, 𝑄)      (6) 
 

 
Fig. 4. InfoGAN architecture. 
 
 
3.1.1.4. BEGAN 
Boundary Equilibrium GAN is an acronym for this concept. 
This type of GAN utilized Nash equilibrium to achieve 
equilibrium. The architecture of BEGAN is identical to that 
of the original GAN, with just exception [23]: equilibrium 
preservation. The discriminator in BEGAN encodes pictures 
and can tell the difference between genuine and fake ones, 
while the generator performs the role of decoder as shown in 
figure 5. The loss function of D is:  
 
𝐿𝐷	 = 𝐿(𝑥)	– 	𝑘𝑖	 ∗ 	𝐿(𝐺(𝑧))         (7.a) 
 
and to G is: 
 
𝐿𝐺	 = 𝐿(𝐺(𝑧))                (7.b) 
 
the BEGAN to achieve equilibrium would use proportional 
control model [22]:  
 
𝐸	[𝐿(𝐺(𝑛))] 	= 	𝛾	 ∗ 	𝐸	[𝐿(𝑟)]        (7.c) 
 
where γ is the hyperparameter which gets the value 0 or 1. 
 
𝐾𝑖 + 1	 = 	𝑘𝑖	 + 	𝜆	(𝛾𝑘	𝐿𝐷(𝑥))	₋	𝐿(𝐺(𝑧))	)    (7.d) 
 
where γk is a learning rate and ki is an updating parameter 
that preserves formula, k0= 0. 
 

 
Fig. 5. BEGAN architecture. 
 

 
3.1.1.5. Sequential GAN 
Continually employing GAN with unsupervised learning, 
but the architecture of GAN has changed slightly. In this 
type of GAN, we will note that there are two generators and 
two discriminators. The noise is entered to Generator1 and 
the output is fake image1 that will enter to Generator2 to 
create fake image2 in sequential, while Discriminator1 and 
Discriminator2 is examine the fake image1 and fake image2 
respectively, as shown in  Figure 6. 
 

Fig. 6. Unsupervised sequential GAN architecture. 
 
 

3.1.1.6. Parallel GAN 
parallel GAN means that the four networks—two generator 
networks and two discriminator networks work in "parallel" 
to produce many images at the same time, see Figure 7, as 
though two GAN networks were communicating and 
operating in simultaneously [23]. 
 

 
Fig. 7. Parallel GAN architecture. 

 
 

3.1.1.7. Cycle GAN 
Cycle GAN also have two generators and two 
discriminators, the first generator1 used noise vector to 
produced feature map that will be considered an input to 
generator2 Which then makes fake images as shown in 
Figure 8. It is worked with image-to-image translation [24]. 
 

 
Fig. 8. Cycle GAN architecture. 
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3.1.2. Semi Supervised Learning 
Semi-supervised learning means that the discriminator, in 
contrast to the Generator, be trained with labels. An example 
of such type is the Semi GAN, in this type, the discriminator 
network will be given a label with real sample, and this is a 
supervised learning characteristic. As for the generator, only 
noise is given without label, and this is the unsupervised 
learning. Thus, the GAN resulting from this architecture is 
semi-supervised [25] as shown in figure 9.  

The loss function for generator and discriminator [26-
28]: 

 
𝐿𝑠𝑒𝑚𝑖𝐺𝐴𝑁(𝐷) = 	𝐸𝑥⁓𝑝𝑑𝑎𝑡𝑎(𝑥)	[𝑙𝑜𝑔	(𝐷(𝑥|𝑐))]     (8) 
 
where c is a class label 
 
𝐿𝑠𝑒𝑚𝑖𝐺𝐴𝑁(𝐺) = 𝐸𝑧⁓𝑝𝑔(𝑧)	[𝑙𝑜𝑔(1₋	𝐷(𝐺(𝑧))	)	]     (9) 
 

 
Fig. 9. Semi GAN. 
 
3.1.3. Supervised Learning 
These types of GAN learn in a supervised way, which means 
having labels with data. 
 
3.1.3.1. BiGAN 
BiGAN is short for bidirectional GAN [29]. The encoded 
image distribution, noise, and real data were used to train the 
discriminator as shown in Figure 10, BiGAN used SGD and 
backpropagation to update the weights at each iteration to 
make discriminator works correctly [30].  
 

 
Fig. 10. BiGAN structure. 
 
3.1.3.2. CGAN 
Conditional GAN (CGAN) is the simplest type which is the 
same as vanilla GAN with a small difference is the addition 
class label to both generator and discriminator network [31]. 
CGANs with classifier predictions may be used for 
automatic image labeling, with the generator producing the 
tag vector distribution based on image characteristics [9]. 
 

3.1.3.3. ACGAN 
ACGAN is short for Auxiliary Classifier GAN [32]. The 
architecture of the ACGAN like CGAN with a slight 
difference that the class label is add to noise vector then 
enter to generator [14]. See Figure 11. To understand the 
variance. The SGD also used to update the weights for both 
G and D until the discriminator does its job. 
 

 
Fig. 11. Comparison ACGAN and CGAN. 
 
 
3.1.3.4. Supervised sequential GAN 
Supervised sequential GAN have two discriminators and two 
generators in sequential [33], when real sample is input to 
encoder to produce encoded image that will consider as 
input to the first generator, then the output is fake image1 
which is enter to the second generator to create the fake 
image2, while the first discriminator has three inputs: (noise 
vector, encoded image, and fake image1) to determine 
whether it is genuine or counterfeit, and classifies a sample 
for each class, the second discriminator also has three inputs: 
(noise vector, encoded image, and fake image2) as shown in 
Figure 12. [34, 35].  
 

 
Fig. 12. Supervised sequential GAN structure. 
 

Table 1 shorten a comparison between different types of 
GANs based on learning method, This table illustrate the 
basic types of learning method: supervised, semi-supervised, 
and unsupervised learning, and shows different criterions for 
comparison like loss function, optimizing algorithm, 
distance metric, activation function, and the gaps appeared 
in such type as well as the year of first appearance of this 
GAN.  

 
Table 1. Comparison of different GANs based on learning method.  

 
GAN 

Learning 
Method 

Optimizer 
Algorithm 

Distance 
Metric 

 
Loss Function 

Activation 
Function 

Gaps Year Of 
Appearance 
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Vanilla GAN  
Unsupervised 

 

BP + SGD JSD  Binary cross 
entropy Loss + 
min-max game 
theory 

ReLU For the first few iterations of back 
propagation, no learning will occur 
because when the distributions of the 
genuine image and the artificial image 
do not overlap, the JSD between the 
two values becomes log 2, and 
derivative log 2 equals zero, as 
expected [36]. 

2014 
[1] 

WGAN RMS prop Wasserstein 
distance 

Kantorovich- 
Rubinstein 
duality loss [37, 
38] 

ReLU+ 
leaky 

or 
ReLU+ tanh 

When using the Lipchitz constant, 
weight clipping cause low-resolution 
image creation [39]. 

2017 
[5] 

WGAN-GP Adam Wasserstein 
distance 

Kantorovich-
Rubinstein 
duality loss + 
penalty term 

ReLU+ 
leaky 

or 
ReLU+ tanh 

1. Nash equilibrium is difficult to 
achieve [40]. 
2. Due to the fact that the gradient 
penalty is calculated for each data 
sample individually, Batch 
Normalization cannot be employed.  

2017 
[5] 

Info GAN SGD  JSD Binary cross 
entropy + 
variational 
information 
regularization 

ReLU 1. λ hyperparameter must tune 
precisely to produce image of high 
quality [21]. 
2. The reciprocated information has 
been added to a generator that will 
replace the important data attributes 
while learning is going on. 

2016 
[5] 

BEGAN Adam 
 

Wasserstein 
distance 

Auto encoder 
loss  

ELU Nash equilibrium is hard to attain[41]. 2017 
[41] 

Unsupervised 
seq-GAN 

RMS prop KLD + JSD conversion loss 
+ Binary cross 
entropy 

ReLU Nash equilibrium is hard to attain [42]. 2018 
 

Parallel GAN SGD JSD Binary cross 
entropy 

ReLU Nash equilibrium is quite difficult to 
reach [43, 44]. 

2016 
[23] 

Cycle GAN Batch 
normalization 

JSD Binary cross 
entropy loss + 
cycle 
consistency loss 

ReLU+ 
sigmoid 

It is challenging that image-to-image 
translation because of the many factors 
to be taken into account, such as color, 
texture, geometry, etc.[45]. 

 
2018 
[5] 

Semi-GAN Semi-
supervised 

SGD JSD Binary cross 
entropy 
Loss 
 

ReLU The generator can't make more 
realistic pictures to trick the 
discriminator because it has been 
trained with labels In contrast to the 
generator, which is trained without a 
class label. [46] 

2017 
[28] 

CGAN  
Supervised 

 

SGD 
 

JSD Binary cross 
entropy 

ReLU Stability in training is lacking[47, 48]. 2014[5] 

BiGAN SGD 
 

JSD Binary cross 
entropy 

ReLU The real image test that is provided to 
the encoder should be clear, as well as 
the data distributions can't be too 
complicated or it won't work well[49, 
50]. 

2016 
[50] 

ACGAN SGD JSD Binary cross 
entropy 

ReLU Stability in training is lacking [51] 2017[5] 

Supervised 
seq-GAN 

RMS prop KLD + JSD Binary cross 
entropy, 
conversion loss, 
autoencoder loss 

ReLU If the encoder isn't provided with a 
high-quality, genuine sample, it won't 
be able to produce convincing fake 
images.[52] 

2018 
[42, 53] 

 

 
 
3.2. Classification based on Network Architecture 
When viewing the architecture of the generator and 
discriminator neural network, we notice that there are 
multiple types of GANs [54], that differ in terms of the sorts 
and numbers of layers used in each type, and they can be 
divided into five basic types [2, 9]. 
3.2.1. Fully Connected GANs 
Fully connected neural networks (dense) were employed for 
both the generator and discriminator in the original GAN 
architectures. Three relatively straightforward image 
datasets—MNIST, CIFAR-10, and the Toronto Face Dataset 
(TFD)—were used to test this type of design [1, 9]. This 
type called also vanilla GAN. 
 
3.2.2. Convolutional GANs 
It is also called Deep Convolutional GANs (DCGAN) 
because it uses the CNN layers instead of using dense 
hidden layers; these layers include polling, convolutions, 

batch normalization, and ReLU(Rectified linear unit) and 
LeakyReLU activations, three datasets were used to test this 
new architecture: Imagenet1k , CIFAR10 and LSUN 
datasets[55]. Adam optimizer, learning rate of 0.0002, 
momentum term β1 =0.5 —all these used in DCGAN to 
stabilize training. See Figure 13, which illustrates the 
architecture of the DCGAN's generator. 
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Fig. 13. Architecture of the DCGAN's generator. 
 
3.2.3. Laplacian Pyramid of Adversarial Networks 
(LAPGAN) 
In this architecture, upsampling and/or downsampling are 
used to produce high-resolution images. A Laplacian 
pyramid architecture consisting of a cascade layer of 
convolutional networks is used to generate images from 
coarse to fine[56].  

In order to prepare the picture for generative adversarial 
networks, it is first downsampled by a factor of N at each 
layer, and then upsampled in reverse order at each layer until 
it is the same size as before[57, 58]. Laplacian pyramid is 
used Gaussian pyramid at each layer as shown in Figure 14. 

 

 
Fig.14. Laplacian pyramid is used Gaussian pyramid at each layer. 
 
3.2.4. Adversarial Autoencoders (AAE) 
Autoencoders are non-linear "encoder" and "decoder" 
networks, using backpropagation with unsupervised 
learning, the encoder and decoder parameters can be learned 
from the difference between the created image and the 
original image[59, 60]. In 2015 Makhzani et al. [60] 
suggested AAE that is the encoder trains to transfer the data 
distribution to the prior distribution, while the decoder trains 
to transfer the given prior to the data distribution using a 
deep generative network. Show Figure15 that illustrate x and 
latent vector z were entered to encoder while p(z) is the prior 
distribution and the q(z/x) is encoding distribution that will 
enter to decoder to get p(x/z) which is decoding distribution. 
 
3.2.5. Vari GAN 

Vari GAN is an abbreviation of variational GAN, Zhao et al. 
[61] in 2018, it was foreseen that cloth images would be 
created in a coarse-to-fine progression, with the overall 
appearance of the object serving as the first inference to 
style, followed by the creation of a coarse cloth image with a 
different style in low resolution, and finally, the creation of a 
fine cloth image in high resolution. The coarse and fine 
image generators used encoders and decoders, but the fine 
image generator also used U-net in a double way. U-Net is a 
type of CNN network that looks like a letter U(symmetric 
shape) [62]. Table 2 shorten a comparison between different 
types of GAN based on network architecture, This table 
shows different criterions for comparison like learning 
method, network architecture, optimizer algorithm, 
activation Function, year of appearance and gaps. 
 

 
Fig. 15. An unsupervised AAE architecture becomes supervised when 
style and label are added, and semi-supervised when label is added with 
discriminator input. The upper line is a conventional autoencoder that 
synthesizes x given z, and the bottom line is a discriminator that is used 
to estimate whether a sample comes from the autoencoder's concealed 
code or a user-specified sampled distribution. 
 
3.3. Classification based on Application 
GANs are an incredibly great generative model for 
producing samples that seem realistic. Due to these benefits, 
GAN is used in several artificial intelligence (AI) and 
computer vision (CV) applications.  
 
3.3.1. Image-to-Image Translation 
It is a method for acquiring the knowledge required to 
convert an image from one domain to another such as 
translate white and black image to color image, 2D image to 
3D image [64]. General approaches in this translation are 
Cycle-consistent GAN (CycleGAN) and pix2pix uses [65]. 
CycleGAN have two generators and two discriminators. The 
generators in CycleGAN each take an image and convert it 
into a representation of a certain feature. The discriminators 
in CycleGAN ensure that only the desired characteristics are 
present in the translated images. This allows CycleGAN to 
be used with just two domains, with each generator in charge 
of one domain [24]. Figure 16 illustrate how that CycleGAN 
application .Pix2Pix have U-Net generator and PatchGAN 
discriminator. When U-Net do segmentation to image that is 
mean part of image is converted, there are applications of the 
Pix2Pix shown in figure 17 [66, 67]. 
 

 
Table 2. Types GAN based on networks architectures Comparison 

Gan Learning 
Method 

Network 
Architecture 

Optimizer 
Algorithm 

Activation 
Function 

Year Of 
Appearance 

Gaps 

Fully 
Connected 

GANs 

Unsupervised Multilayer 
perceptrons 

SGD, BP ReLU 2014 It work with simple image such as black and  white 
image. 

Convolutional 
GANs 

Unsupervised Convolutional 
networks  

Adam optimizer ReLU, 
LeakyReLU 

2015 Although easy convergence occurs,  training 
different images needs adjusting parameters and 
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suffers from vanishing gradients. [11] 
LAPGAN Supervised cascade of 

convolutional 
networks 

_ _ 2015 Although LAPGAN is easy to approach and provide 
step-by-step independent training, it must be trained 
under supervision [11].  

AAE Supervised, 
Semi-

supervised  
unsupervised 

Multilayer 
perceptrons 

 

SGD, 
regularization, 

mini-batch 

ReLU 2015 It is a model that takes the best features of both 
GAN and VAE (forgery and semi-supervised 
learning, respectively) and eliminates the worst 
features of neither (overfitting in VAE and high 
training instability in GANs) [63]. 

Vari GAN unsupervised Multilayer 
perceptrons,  
U-net (CNN) 

Adam optimizer ReLU or 
ELU 

2018 There aren't many academic papers devoted to this 
format, generating realistic images conditioned on 
the given images [61]. 

 
Fig. 16. Case study of Image-to-Image Translation by CycleGAN: 
Monet paintings to/from landscapes, Horses to/from zebras and, 
Summer to/from winter landscapes [65]. 

 
Fig. 17. Case study of Image-to-Image Translation by pix2pix: Labels 
to Street Scene, Labels to Facade, Aerial to Map ,Black and White to 
color photos, Sketch to photo, and day to knight [68].  
 
 
3.3.2. Image Synthesis or Blending 
Image synthesis, or blending, means that transferring visual 
characteristics like color, tone, texture, or style from one 
image to another and merging features from various images 
allows for novel synthesis, see figure 18. This is a type of 
can that needs a large and varied dataset to be able to 
generate new images, but in the case of the input images 
being few, it will cause overfitting and mode collapse [69]. 
 

 
Fig. 18. Case study Image synthesis or blending by DEff-GAN [69]. 
 
3.3.3. Application of GANs in Healthcare 
In the medical field, GANs can help with issues such as 
health data generation, abnormality detection, and medical 
image segmentation [70]. 
 
3.3.3.1. Health Data Generation 
Electronic health records (EHRs) are databases that hold 
medical records electronically. Full or partial exchange of 
EHR data is difficult due to privacy and regulatory concerns. 
For data scientists and researchers, acquiring EHR data is a 
major source of stress. Due primarily to legal issues, the wait 
time for EHR among data workers is extremely lengthy. It 
also slowed down the progress of most medicinal studies. To 
address the challenge of collecting high-quality EHR data, 
GAN can be used to generate convincing artificial data. 
There are no regulatory barriers to sharing high-quality fake 
data. And that will hasten the entire process of collecting 
data for medical studies. Synthetic patient medical data are 
generated by a medical adversarial network (medGAN) [71]. 
Figure 19 shows uses medGAN to improve the quality of the 
medical brain image. 

 
Fig. 19. Case study of health data generation by medGAN. 
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3.3.3.2. Medical Image Segmentation 
It is the method by which edges in a 2D or 3D medical 
image are identified automatically. Segmentation is a 
significant difficulty when dealing with medical images. The 
image must be segmented into relevant zones so that doctors 
can recognize tumors and other semantically related regions. 
Tumor detection and volume estimation are also completed 
following this segmentation process. The image must be 
segmented into relevant zones so that doctors can recognize 
tumors and other semantically related regions. Tumor 
detection and volume estimation are also completed 
following this segmentation process. Segmentation GAN 
(segAN)is Hybrid convolutional neural network & U-Net 
[72]. Figure 20 illustrate how segment tumor from medical 
image of brain. 
 

 
Fig. 20. case study of segmentation tumor of brain by segAN. 
 
 
3.3.3.3. Abnormality Detection  
Anomaly GAN(AnoGAN) is used to Find strange things in 
medical images, detect and classify image anomaly, or 
develop an image anomaly prediction system [73, 74]. The 
use of imaging techniques in medicine is crucial for the 
accurate diagnosis of many diseases. Automatic image 
analysis using deep learning is gaining popularity to help 
radiologists save time and effort in making diagnoses.  Yet 
such approaches need the time-consuming and labor-
intensive annotation of pictures, which is itself challenging, 
expert-heavy, and resource-intensive. Because of this, 
AnoGAN have been developed to aid radiologists in 
automatically detecting and localizing probable problems 
with minimal to no annotations as shown in figure 21 [75]. 
 

 
Fig.21. The anomalous areas are denoted by the green boxes [75]. 
 
3.3.3.4. Financial 
By providing a new economics-based loss function for the 
generator, supervised learning may be applied to Generative 
Adversarial Networks. When applied to daily stock market 

data, Financial GAN (Fin-GAN) achieves higher Sharpe 
Ratios than a set of benchmarks while also generating 
distributional forecasts and uncertainty estimates. Profit-and-
loss (PnL) metrics are typically used when making financial 
forecasts since they help choose which side of a transaction 
to take (buy or sell) [76]. 

There are several GAN kinds, each of which is utilized 
for a certain application[9, 77]. Table3 illustrates these 
applications and their branches and associates each GAN 
with the appropriate application and what the input and 
output dataset. 

 
3.4. Classification Based on Training Improvement 
The key problems with GAN training that causes instability, 
vanishing gradients, mode collapse, and convergence 
problems. This problems can be solved by techniques and/ 
or Stabilization Heuristics such as regularization, choosing 
proper optimization, normalization and noise injection [78]. 
The solution consider improvement for GAN which produce 
new types. The problems are the following. 
 
3.4.1. Vanishing Gradients Problem 
This problem means that the discriminator is active, it 
predicts confidently in real samples, which impacts the 
generator's trainability, so a discriminator may prevent the 
generator from learning the distribution of data. While the 
produced and original samples are too dissimilar in early 
training, an optimum discriminator does not supply enough 
information to the generator to proceed ahead [79]. In this 
situation, the generator's training is so slow that it may fail 
because the gradient for the Jensen-Shannon divergence 
disappears, to address this issue, many alternative 
loss functions and extended types of GANs, like the 
Wasserstein GAN, which use the Wasserstein distance, have 
been suggested [80], in addition improvement of min-max 
loss which has been recently suggested to address the 
vanishing gradient issue [5]. 
 
3.4.2. Mode collapse problem 
This problem means that generator when it generates a real 
samples to the discriminator and learn repeatedly in every 
iteration, consequently, the generator only creates a small 
pool of samples, the diversity among generated samples is 
unsatisfactory [81]. To solve this problem there are several 
solutions such as the Wasserstein loss, gradient penalty (as 
in WGAN-GP) [82], unrolled optimization of the 
discriminator, using implicit variational learning [83], 
boosting generative models, balance the generator’s and 
discriminator’s training [84], mini-batch discrimination for 
discriminator and alleviate the over-optimization of the 
generator. 
 
3.4.3. Convergence problem 
This problem appear when the model parameters space of  
generator and discriminator are diverging, or oscillating 
behavior, It is challenging to train two GAN rival neural 
networks to produce a stable model because of the min-max 
game is neither convex nor concave. Finding the equilibrium 
called the Nash equilibrium (NE) between the generator and 
the discriminant is difficult because instead of reaching the 
global (NE), it approaches the local (NE) [85]. 

A generator creates samples that are significantly 
different from the original distribution and too simple for the 
discriminator to categorize, while the discriminator's loss 
quickly approaches zero. To solve this problem uses: 
regularization, noise addition to the discriminator, weight 
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penalty, appropriate choice of the optimization function 
(such as the Adam optimizer), and selection and tweaking of 
the hyperparameters(e.g., batch size and learning rate), these 
solutions are a viable for remedy for the GAN convergence 
failure [84]. These three basic of training problems are often 
highly linked with each other and addressing them often 
takes character of a trade-off [78], as shown in figure 22. 

There are many other problems, such as overfitting of 
generator with the current discriminator, the feature 
matching is used to prevent this problem, or dropout 
regularization. overconfidence in the prediction of 
discriminator is also consider problem in training and the 
solution is used one-sided label smoothing. Table 4 shorten a 
comparison between different types of GANs based on 
improvement of GAN training, shows different criterions for 
comparison like problems of training, improvement, GAN 
name, advantage, and year of appearance. 

 
 

 
Fig.22. stability training problems. 

 
 

 

 
Table 3. Types of GAN based on  applications. 

Applications Branches GAN name Input Output 
Image processing 
and  computer 
vision  

Image synthesis or blending  Data-Efficient 
GAN (DEff-GAN) 
[69] 
Coupled GAN [86] 

Two images or more One image 

improve the image quality  SRGAN [5] image High quality image 
Image-to-image translation CycleGAN [65] 

Pix2pix [68] 
Image from source domain Image in Target domain 

Application of 
GANs in 
Healthcare  
 

Abnormality detection  MADGAN [87] 
AnoGAN [75] 

Medical Image (x-ray image). Medical Image with annotations 
of diagnosis of the disease type. 

Medical image segmentation  SegAN[9] [72]  Medical image Prediction & segmentation of 
tumor. 

Health data generation medGAN [71] (EHRs)/ Medical image 
Positron Emission 
Tomography(PET) 

(EHRs)/ Medical image 
Computed Tomography (CT) 

Natural Language 
Processing [88] 

Text Generation  BFGAN text text 
Text -to-image translation Stack GAN 

TAC-GAN 
text image 

Cyber Security 
[89] 

Security analysis CGAN Image + secret message Secure Image Steganography 
 Intrusion/Malware detection 

[90] 
Vanilla GAN 

Steganography 
Fault Diagnosis 
and Monitoring  

Smart grid fault diagnosis GBSS [91] diagnostic system Analyzing two power grid 
situations to identify assaults and 

flaws 
 Finance Predicting time series Fin-GAN [76] financial data Forecasting buy or sell 
 
 
Table 4. Improvement of GAN training. 

Problems Improvement Gan name Advantage (new feature) Year 
Overfitting  

problem 
feature matching  McGAN provide a stable training environment for GANs, 

reducing the loss between distributions 
significantly. 

2017 [92] 

probability percentages  variational 
GAN 

Uses in text, image generation and text style 
transfer. This model was stable training 

2020 [93] 

Regularization GAN More stable, easy convergence 2017 [94] 
Convergence 

problem 
choosing proper 
optimization 

stochastic Gradient 
descent (SGD) 

Vanilla GAN image generation 2014 [1] 

Root Mean Square 
propagation 
(RMSprop) 

Seq2Seq 
GAN 

generate video future predictions based on 
previous video for city 

2020 [95] 

adaptive moment 
Estimation(ADAM) 

CFC-GAN address issues caused by a limited sample size, 
elevate the rate of convergence and 
generalizability of the model. 

2021 [96] 

Adding noise to discriminator PA-GAN promotes healthy competition between the 
generator and discriminator, which in turn 
improves the performance of the generator. 

2018 [97] 

Hyperparameters tuning  InfoMax-
GAN, 

SSGAN 

enhances the effectiveness of GANs in creating 
synthetic images, Prevention of Collapse Mode. 

2021[98] 

Normalization Batch Normalization 
(BN)  

Fisher GAN not need weight clipping, stable GAN, not 
hinder the discriminator's ability. 

2017 [99] 

Weight GAN produce samples better quality as GAN models 2017 

Vanishing or 
Exploding 
Gradients 

Mode 
Collapse 

Non-
Convergence 

addressing 

addressing 

ad
dr

es
si

ng
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Normalization(WN) without normalization, train quicker & more 
stable than BN. 

[100] 

Spectral 
Normalization 

SC-GAN Based on 3D conditional GAN, guarantee the 
training process is stable and the optimization 
converges. 

2020 
[101] 

mini-batch discrimination Bayesian 
GAN 

avoids mode-collapse for generator.  2017 
[102] 

Vanishing 
gradients  

Use a different loss function like the 
Wasserstein distance. 

WGAN Use also norm clipping, weight normalization 
and batch normalization in discriminator.  

2017[15] 

Mode 
collapse 
problem 

Gradient Penalty WGAN-GP Steadier production of new, high-quality data 
samples. 

2022 
[103] 

unrolled optimization UGAN several novel Internet of Things applications 
have been developed utilizing GAN. 

2021 
[104] 

 
 
4. Conclusions 
 
This article shows classified GAN types based on learning 
methods, architecture, application in different domains, and 
improvement of training. Different criterion for comparison 
between different types of GANs were illustrated based on 
learning methods, and showed different milestones for 
comparison like loss function, optimizing algorithm, 
distance metric, activation function, and gaps. The basic 
branches: supervised, unsupervised, and semi-supervised 
learning. Depending on the architecture of GAN can be 
further classified into five classes, each class different from 
anther in network architecture, learning method, optimizer 
algorithm, activation function, and gaps that suffer from it. 

GAN has multiple types in various fields such as 
Healthcare, finance, Natural Language Processing, Fault 
Diagnosis and Monitoring, Cyber Security and computer 

vision. The paper showed the key problems that causes 
instability of the GAN: Convergence Vanishing gradients 
Mode collapse problems, and the types that appear when 
addressing this problem. 

We observe that many researchers still continue to 
propose further types of GAN, this study, in our opinion, can 
assist researchers in choosing the best techniques for certain 
neural network topologies and in better comprehending the 
drawbacks of current techniques in order to create new 
techniques that address such drawbacks. 

 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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