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Abstract 
 

In a complex supply chain, product demand is characterized by non-linearity and instability. In particular, demand 
trajectory with intermittent or abnormal spikes exists, which makes it difficult for suppliers to accurately estimate the 
time-varying demand distribution and make the accurate inventory decision. Hence, a deep autoregressive model with a 
time attention mechanism (Attention-DeepAR model) was proposed to overcome this practical issue. In addition, a 
separated estimation and optimization approach was provided to solve a newsvendor problem with shifting demand. 
Temporal features were extracted from historical data through the Attention-DeepAR model to identify the long-term and 
short-term trends of the demand. Accordingly, the time-varying demand distribution was accurately fitted, which can 
assist in making precise inventory decisions. In addition, the rolling window design was proposed to introduce new 
demand data to update the demand. Finally, the validity of the Attention-DeepAR model was verified through the Monte 
Carlo simulations and a real case. Results show that the Attention-DeepAR model can effectively capture the temporal 
correlation between the regular and promotional demand values under volatile demands, improving the fitting accuracy of 
the time-varying demand distribution. This model can provide precise inventory decisions and significantly decrease 
average total costs. 
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1. Introduction 
 
Inventory decision is one of the crucial decisions for 
suppliers [1]. Most suppliers aim to reduce inventory levels, 
improve the turnover rate of inventory, and develop a 
reasonable order strategy based on demand [2]. Traditional 
inventory management methods assume that the demand is 
continuous, stable, and relatively independent from other 
demands. However, with the rapid development of Internet 
technology and the widespread application of Internet 
platforms, multilateral supply and demand coupling with 
instantaneous transactions have been achieved, promoting 
the growth of a multi-channel supply chain [3]. In a multi-
channel supply chain, suppliers can deal their products on 
various platforms online and offline, such as physical stores, 
websites, and markets, providing multiple touchpoints that 
can reach their prospective customers in a diverse, 
individualized, and timely manner to meet their fragmented 
order demand. 

In the intricate demand scenario, traditional inventory 
management methods face numerous challenges, including 
slow responsiveness to demand fluctuations, excessive 
inventory pressure, and low inventory turnover rates. Thus, 
demand forecasts should be combined with inventory 
decision-making, and an inventory decision model should be 
developed based on demand forecasts to overcome these 
challenges [4]. With the continuous advancement of 
information science and computer technology, enormous 
amounts of multi-source demand data can be collected and 

stored. Machine learning [5] and data analysis technologies 
can be applied to observe and analyze time series demand 
data, opening new ideas for supply chain inventory 
management based on demand forecasting [6]. The rise of 
multi-channel supply chain has led to strong stock-keeping 
unit demand, resulting in a massive volume of inventory and 
demand data, including volatile demand that poses serious 
challenges for suppliers’ product inventory management [7]. 
First, demand fluctuations are exceedingly erratic owing to 
promotional activities, resulting in uncertain and non-linear 
demand data. For instance, Adobe reported that Black Friday 
online demand hit a record-breaking $9.12 billion in 2022, 
soaring 221% compared with an average day in October. 
Second, promotional activities are frequently conducted in 
many forms, such as product price reductions, store coupons, 
direct price cuts, gifts, and shopping subsidies, each with 
different scopes and intensities. Finally, multi-channel 
supply chain is time-efficient and can generate variable 
demand fluctuations in a short time. Therefore, accurate 
forecasting of commodity demand based on available data is 
a challenge for suppliers. 
 Two major methods of forecasting product demand are 
currently used: single historical demand data and multi-
source data. The traditional forecasting methods that rely on 
historic demand data are limited in their effectiveness. The 
reason is that they are susceptible to single factors and are 
not suitable for capturing demand fluctuations or nonlinear 
forecasting. Additionally, the accuracy of the forecast is 
restricted by demand stability. Conversely, multi-source data 
prediction methods can establish the relationship between 
demand and both internal and external factors, partly using 
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complex nonlinear mapping relationships to obtain more 
accurate matching results. However, these methods are only 
valid for relatively regular and stable demand. They are not 
suitable for intermittent commodities as they have low 
accuracy in capturing information related to demand changes. 
 Multi-channel demand has intermittent and momentary 
characteristics. Hence, changes in demand trends need to be 
captured, the hidden demand trends behind the data should 
be investigated, and reliable predictive methods that aid 
suppliers in making better order decisions must be found [8]. 
Furthermore, suppliers must consider how to integrate new 
data and capture future market demand. The reason is that 
up-to-date observation data can be an invaluable tool for 
detecting anomalies timely and enhancing suppliers’ 
perception of future markets. 
 The need for time variance distribution in inventory 
management issues was examined in this study. Specifically, 
the structure design of the DeepAR network was improved, 
and time attention mechanisms were introduced to the 
decoding layer. A deep autoregressive model, known as the 
Attention-DeepAR model, was then created based on time 
attention mechanisms. The amount of time information 
contained in each coordinate of historical demand data was 
determined, and effective information was filtered out to 
enhance the present hidden vector. The model can accurately 
predict normal demand values, even in the presence of 
intermittent or abnormal peak values. This case enables the 
learning of global and effective time models from all-time 
series data while considering complex patterns (e.g., 
seasonality, data with time uncertainty growth) and long-
term information with time-uncertain growth. 
 Suppliers can exploit multi-source demand data by 
employing the Attention-DeepAR model to adapt the 
distribution of product demand that changes over time, even 
in complex situations, such as intermittent and abnormal 
peaks. Consequently, the Attention-DeepAR model can aid 
suppliers to make more precise order decisions. Additionally, 
utilizing the Attention-DeepAR model can enable suppliers 
to predict future demand trends for multiple terms, anticipate 
market demand trends, and make swift responses to changes 
in demand. Furthermore, using the rolling window design 
permits new demand data to be introduced into the 
Attention-DeepAR model to update suppliers’ perceptions of 
market demand. 
 The rest of the study is organized as follows: Section 2 
briefly reviews research relevant to data-driven newsvendor 
problem. Section 3 builds up the Attention-DeepAR model 
to adapt to the distribution of time variable needs. Then, 
Section 4 uses numerical simulations and real-life cases to 
experiment to verify the validity of the model. Finally, 
Section 5 concludes the study and discusses future research 
prospects. 
 
 
2. Literature Review 
 
This study aims to investigate the data-driven newsvendor 
problem with multi-source demand data, contributing to the 
following two streams of literature: (1) demand prediction 
with machine learning and (2) the data-driven newsvendor 
problem. 
 
2.1 Demand prediction with machine learning 
Forecasting demand poses a challenge owing to several 
factors, including seasonality and external market 
fluctuations. These factors lead to nonlinear and uncertain 

changes in demand patterns thereby making it harder to 
predict accurately. Hence, this study focused on accurately 
predicting demand trends using historical data. 
 Previous studies have predominantly employed the 
eXtreme Gradient Boosting model (xgboost) [9-11], support 
vector machine [12-13], and Exponential Smoothing (ES) 
model [14-15] to forecast product demand. Given their 
simplicity, feasibility, and adaptability to the complexity of 
demand changes, these methods only had relatively 
satisfactory prediction results. Moreover, accurately 
predicting demand using a single historical demand time 
characteristic is challenging because product demand is 
influenced by various complex factors. Therefore, 
researchers have adopted several methods to identify key 
influencing factors, established complex nonlinear mapping 
relationships, and generated predictions based on them to 
achieve accurate forecasting results [16-18]. Singh et al. [19] 
employed Holt-Winters exponential smoothing, neural 
network autoregression model and Autoregressive integrated 
moving average (ARIMA) models to forecast Amazon’s 
quarterly demand in 2019, where ARIMA was found to be 
the most effective. Weng et al. [20] developed a supply 
chain demand forecasting model using a Light Gradient 
Boosting Machine (LightGBM) and Long Short Term 
Memory (LSTM) networks, which offers a scientific and 
reasonable approach to predicting long-term product demand. 
Bandara et al. [21] utilized LSTM to examine Walmart’s 
actual online market dataset and found that LSTM 
effectively predicted long-term and short-term dynamic 
changes in financial time series. Dong et al. [22] combined 
Autoregressive Recurrent Networks (DeepAR) models with 
a large amount of monitoring equipment data to anticipate 
slope displacement. 
 The encoder output of the above model can provide 
historical information about the demand time series that can 
help the model better predict future values. However, these 
models only use the output of the previous moment to 
predict long time series and ignore the output of the coding 
phase at each moment. Hence, they are prone to losing their 
memory and unable to capture long-term trends, seasonal 
information, and other key data. Moreover, they have 
difficulty accurately evaluating and weighing the temporal 
correlation between regular and promotional demands in the 
demand environment. 
 The attention mechanism enhances the importance of 
input features in time sequence [23]. This mechanism 
automatically learns the correlation between the hidden 
vectors generated by the decoder and encoder. Deep learning 
models are unable to differentiate the degree of correlation 
between the hidden layers of input and output sequence 
across multiple time steps. The attention mechanism 
compensates for this limitation. Additionally, the attention 
mechanism reduces the distortion rate after the input of real 
data. The attention mechanism is widely used in the field of 
demand prediction as evidenced by numerous studies [24-
28]. 
 Integrating the attention mechanism into the DeepAR 
model was developed as the Attention-DeepAR model. This 
model assigned weights based on the importance of time, 
enhanced the attention of critical timing input, and 
implemented effective learning of the global time model 
from all time-series data. The model accounted for the 
impact of complex patterns, such as seasonality and 
uncertain data growth over time, and long-term information. 
Consequently, the model improves the ability to predict 
complex scenarios, such as intermittency and abnormal peak 
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values. This case can lead to higher prediction accuracy, 
particularly for e-commerce businesses with complex 
product demand forecast characteristics. 
 This study aims to enhance the DeepAR network 
structure design by introducing the time attention 
mechanism in the decoding layer. The mechanism 
determines the time information contained by each covariate 
in historical data, screens the pertinent information to 
enhance the currently used hidden vector, and allocates time 
weight based on the hidden vector information. These 
enhancements yield better time correlation ability between 
the forecast demand normal value and intermittent or 
abnormal peak value. 

 
2.2 Data-driven newsvendor problem 
Since its proposal, the newsvendor model has gained 
widespread application in operational management, 
including inventory, supply chain contracts, and 
procurement. The classic newsvendor model accounts for 
uncertainty in demand faced by decision-makers and aims to 
achieve optimal expected benefits or costs. 
 Chen et al. [29] proposed a joint pricing and ordering 
decision model for a single product, considering periodic 
inventory replenishment with a finite horizon. They 
introduced the concept of symmetric k-concave functions 
and provided methods to describe and construct optimal 
strategies. Levi et al. [30] examined the effectiveness of the 
sample mean approximation method in updating the demand 
distribution using independent historical demand data. They 
also established the theoretical boundary of the single-level 
inventory model. Building on the study, Levi et al. [31] 
reinforced the reliability of the sample-based approach by 
identifying the specific conditions that demand distribution 
satisfies, providing further upper bounds. Bertsimas et al. 
[32] developed a data-driven approach to establish a robust 
newsvendor model, without the assumption of an existing 
demand distribution. They introduced an adjustable 
parameter alpha to adjust the supplier’s risk preference 
levels. 
 In practice, decision-makers frequently encounter 
significant demand fluctuations owing to rapid market 
changes and shortened product lifecycles [33]. When 
historical demand data and vast amounts of information 
related to demand are available, Tapiero et al. [34] assumed 
that demand and price are exogenous, and the joint 
distribution is known to determine newsvendor decisions. 
Pearson proposed a model and algorithm that optimizes 
inventory levels, establishing performance metrics and target 
revenue functions as constraints, assuming that the mean of 
the demand distribution is known [35]. Ban et al. [36] 
introduced demand characteristics and established 
theoretical performance bounds under various scale features 
through the linearization of the newsvendor model and the 
combination of machine learning with linear models. Ban et 
al. [36] and Oroojlooyjadid et al. [37] conducted a broad 
investigation of the newsvendor model by accounting for not 
only historical demand data but also customer demographics, 
weather patterns, seasonality, and economic indicators. 
 After reviewing the literature above, we conclude that an 
ideal newsvendor model should go beyond the assumption 
that the demand distribution is known, and consider 
historical data, including potential endogenous and 
exogenous factors, to develop multi-period decisions. 

 
 

3. Methodology 
 

3.1 Newsvendor problem based on multiple demand 
features 
The supplier deals perishable goods and uses stochastic 
demand  to make ordering decisions. Considering that 
market demand is nonlinear and volatile, the supplier is 
unable to observe the true demand distribution . 
Therefore, we investigate the supplier’s ordering decisions 
during a finite selling season using stochastic demand and 
feature data (e.g., number of collectors and comments), 
particularly when the demand distribution  is unknown. 
Notably, the supplier has access to historical demand 
observations over  periods (i.e., ) before 
making ordering decisions. Each historical demand 
observation for the t-th period includes historical demand 
data  (where ) and multiple features 

. In particular, , and 
. 

 The supplier can observe demand-related information 
data  for period  (where ) before 
making the next order decision. We developed a data-driven 
newsvendor model that can efficiently process multiple 
demand information and optimize the conditional expected 
cost function by including several features of observed 
demand data. 

 
     (1) 

 
where  and  correspond to unit shortage cost and unit 
holding cost, respectively. 
 We can express the supplier’s order decisions in period 

 using Eq. (2): 
 

     (2) 
 

 Evidently, the optimal inventory  is a function 
that maps the collected information to the estimated demand 
distribution . Therefore, the objective of this 

model is to find the best conditional distribution  
that minimizes the expected cost. In the next section, we 
discuss how to estimate the conditional distribution 

 using historical demand observations  and 
the future feature value  to obtain the optimal 
estimate of external factors.  

 
3.2 Deep autoregressive model with attention mechanism 
This study proposed the Attention-DeepAR algorithm, 
which combines the DeepAR algorithm with the time 
attention mechanism. The algorithm utilizes historical 
demand data and exogenous feature vectors to capture the 
complex and abnormal information of intermittent and 
lumpy demand effectively. Further explanations of the 
algorithm’s process are detailed in the following subsections. 

 
3.2.1 Input layer 
Historical product data from complex environments have 
multiple characteristics, which could result in gradient 
disappearance and explosion in Recurrent Neural Network 
(RNN) models, leading to reduced prediction performance. 
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To address this issue, the Attention-DeepAR algorithm uses 
a recurrent window to input historical demand and product 
characteristics. Assuming that the product time series 
window length is , the external variable dimension is , 
and the training BatchSize is .  samples are collected 
from the product time series. The external variables (  
dimension) and observed historical demand variables (1 
dimension) are combined through the embedding method. 
Hence, the dimension of input sample data is . 

 
3.2.2 Time correlation layer 
(1) LSTM 
LSTM constitutes the core module of the DeepAR algorithm, 
achieving logical information association by retaining past 
information. LSTM resolves gradient issues commonly 
found in RNNs while capturing long-term temporal 
correlation. An LSTM neural network must be introduced to 
compute the hidden state vector . The network’s main 
working principle is to retain past information and use it to 
inform present decisions. 
 The LSTM architecture comprises the memory cell , 
input gate , forgetting gate , and output gate .  
represents the cell state at time  in the LSTM model. The 
input gate controls the flow of information into the cell. Eqs. 
(3)-(8) show how the LSTM layer is calculated at each time t. 
 

       (3) 

 
       (4) 

 
      (5) 

 
       (6) 

 
        (7) 

 
        (8) 

 
 The forgetting gate uses the Sigmoid function  to 
determine whether to discard information from memory cell 

. The forgetting coefficient  is obtained by weighting 
input value  in layer  and the previous state  in layer 

 according to Eq. (3). The input gate generates a 
coefficient  based on whether certain information in the 
current input vector  should be discarded using Eq. (4). 
The neuron updates the cell state candidate value  at the 
current moment using tanh activation Eqs. (5) and (6), and 

 is a multiplication operation. The output gate Eqs. (7) 
and (8) evaluates the current value of  to decide whether 
to discard information and generate the final cell state output 

. Notably,  and  represent the weight matrix and bias 
vector, respectively. 
(2) Deep autoregressive neural network 
The DeepAR model is an autoregressive recursive neural 
network model proposed by David Salinas and other 
scholars [38]. This model is based on multiple time series 
training, enabling it to accurately estimate the probability 
distribution  of future time series 

 using existing time series  and covariate . 

In this study, we outputted the probability distribution of 
each DeepAR phase in the future to obtain the demand 
distribution and improve the time sensitivity. Fig. 1 shows 
the basic structure of the DeepAR model. 
 

 
Fig. 1. The Structure of the DeepAR Model. 

 
 The DeepAR model considers the conditional probability 
distribution as the concatenation of likelihood factors over a 
sequence of timestamps: 

 

    (9) 

 
     (10) 

 
 The LSTM cyclic network’s implicit state after the 
calculation is represented by , whereas  represents the 
implicit state of the autoregressive cyclic network after 
strengthening time attention. Fig. 1 illustrates that the model 
requires the previous time’s network output , the target 
value  at the previous time, the covariable  at the 
current time, and the model parameter  to obtain  at 
time t. Parameter  comprises the RNN’s  and  
parameters. The likelihood function  plays a role in the 
model’s noise. Typically, the Gaussian and negative 
binomial likelihood functions are utilized. 

 
3.2.3 Time extraction layer 
In the time correlation layer, the LSTM treats different 
marginal values of demand data equally, regardless of the 
historical moment in the input samples. This approach 
makes accurately capturing and weighing the temporal 
correlation between regular demand and promotional 
demand difficult. To overcome this limitation, the time 
attention mechanism is incorporated into the decoding layer 
of the DeepAR model (as highlighted in the red box in Fig. 
1). Leveraging the superior self-learning ability of the 
attention mechanism in capturing time correlation, the 
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Attention-DeepAR algorithm considers the importance of 
relevant input sequences, captures time patterns across 
multiple time steps, and assigns different weights to 
important time nodes. Consequently, the Attention-DeepAR 
algorithm can capture long-term time correlation, intensify 
the degree of attention to important time nodes in the input, 
and achieve the profound key time characteristics of mining. 

Fig. 2 illustrates the operational principle of the 
Attention-DeepAR model. 
 

 
Fig. 2. The work principle of the Attention-DeepAR model. 

 
 First, the encoder processes historical demand data. The 
weight vector of attention time  is calculated for the 
encoder's output using Eq. (11). Then, the time information 
included in the covariate of historical demand data is 
comprehensively evaluated. 

 
     (11) 

 
where  is the weight matrix to be learned by the model, 

 is the hidden state of the encoder,  is the unit state of 
the encoder at the last moment, and is the bias vector of 
the fully connected layer. 
 Second, the attention probability  of the input 
sequence at each time step is normalized using a softmax 
function. 

 
     (12) 

 
 Third, relevant information is extracted to enhance the 
currently used hidden vector using weighted aggregation of 
the context vector  at  time, which yields the weight 
assigned by the hidden state at different points in time. Thus, 
the final output vector of the attention layer is defined as 
follows: 

 
      (13) 

 
 Finally, time weights are assigned to the hidden vector 
information. This information is then integrated and output 
using an LSTM gated unit. 

 

3.2.4 Output layer 
The two-stage process of time correlation and time 
extraction allows for the in-depth mining of product demand 
distribution. Thus, the output layer is primarily responsible 
for building the Attention-DeepAR model to predict the final 
product demand. The model parameter  is composed of 
parameters of , a cyclic neural network that integrates 
an attention mechanism, and parameters of . This 
parameter is trained using the maximum likelihood 
estimation to learn. The loss function can be expressed as 
follows: 
 

    (14) 

 
The model arrives at a stable structure with a small 

deviation value through continuous iteration. 
 
 

4. Numerical Experiments  
 
In this section, Monte Carlo numerical simulation is used to 
verify the robustness and effectiveness of the Attention-
DeepAR model. Moreover, the influence of the model on the 
optimal order quantity and the expected cost are analyzed 
from the time weight perspective. 

 
4.1 Data generating 
This section generates data by referring to the data 
generation method proposed by Ban et al. [36] to more 
accurately describe the intermittent or abnormal peak 
characteristics of product demand in the volatile demand 
environment. The data generation process consists of two 
steps as follows: 
 
(1) Generate demand covariable samples 
Product feature covariable  is independently generated, 
including two dynamic covariables and five static 
covariables. Covariables are mainly subject to the binomial, 
Bernoulli, continuous, and discrete uniform distribution. 
Each covariable has the same weight, which is . 

 
      (15) 

 
     (16) 

 
    (17) 

 
where, , is randomly generated and 

, , , . 
 
(2) Generate historical demand data 
Historical demand data  are generated, and noise data  
that follow normal distribution are added. A random value 

 was added at common promotion time points to simulate 
the abnormal peak value during the promotion to get closer 
to the real demand. In addition, a time column was added, 
which was set from November 1, 2016, to July 28, 2019, to 
test the ability of time sensitivity of the model. 
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     (18) 

 
where , , . 

 Data are generated based on the above steps, with a 
sample size of 1000. Fig. 3 shows the historical demand data 
of a simulation. 

 
Fig. 3. Historical demand data graph for a simulation. 

 
 As shown in Fig. 3, when promotion nodes such as 
“Double 11 shopping carnival” and “618” exist, product 
demands deviate from the trend of daily demand and show 
an abnormal peak. In addition, demand volume before and 
after the promotion is affected, leading to intermittent 
fluctuations in demand. This case brings great difficulties to 
the fitting of demand distribution and the subsequent 
ordering decision. 

 
4.2 Experimental setting 
Step 1) Splitting data samples. 
The demand forecast during “618” in 2019 was selected as 
the verification object to verify the timely and accurate 
capture of abnormal peak value by the Attention-DeepAR 
model. That is, the demand data from June 1, 2021, to July 
28, 2021, were taken as the test sample ( ), and the 
remaining data were taken as the training sample ( ). 
 
Step 2) Reference model setup. 
Li et al. [25] verified that the DeepAR model has higher 
prediction accuracy than the LSTM and Convolutional 
Neural Networks (CNN) models. In this part, the prediction 
accuracy of the Attention-DeepAR model relative to the 
LSTM and CNN models would not be discussed. Only the 
DeepAR model is used as the benchmark model to compare 
the fitting performance and ordering decision of the 
Attention-DeepAR model under complex conditions, such as 
the intermittent and irregular characteristics of demand. 
 
Step 3) Model training. 
In multi-step fitting, a rolling window scheme is adopted.  
is selected as the fixed scrolling window size, and  is 
the initial estimation period. After fitting the demand 
distribution of  cycles in each scrolling window, the 
estimated period is moved back one phase along the entire 
data set, that is, the first observation is discarded and the 
next new observation is added back. 
 
Step 4) Performance evaluation. 
In this experiment, two indicators were used to evaluate the 
out-of-sample performance of the Attention-DeepAR model. 
 (1) The optimal parameters and model are obtained to 
objectively evaluate the demand forecasting model during 
the promotion period. In this study, the relatively common 

mean absolute percentage error (MAPE) was used to 
evaluate the predicted and actual demand values of each 
model. Evaluation indicators are defined as follows: 
 

    (19) 
 
where  represents the predicted demand at time  (the 
DeepAR model represents the quantile of forecast sales),  
represents the actual demand at time , and   represents 
the total number of predicted days. 
 (2) Performance indexes of multi-step advance 
probability distribution fitting of order quantity, including 
prediction interval coverage probability (PICP) and 
prediction interval normalized average width (PINAW). The 
specific formula of PICP is as follows: 
 

       (20) 

 

     (21) 

 
where  is the prediction interval within the 
predetermined coverage range (the confidence interval based 
on the given confidence level), and  is a Boolean variable. 
When the actual value of the t-th period is within the interval, 
it is assigned a value of 1, and 0 if otherwise. The larger the 
PICP, the more predicted value of the predicted interval 
coverage, and the more convincing the fitting results.  
 In addition to evaluating reliability, PINAW is also 
required to comprehensively evaluate the performance of 
interval prediction. The specific formula is as follows: 

 
    (22) 

 
where  is the difference between the maximum and 
minimum values of the target value. The smaller the PINAW, 
the more accurate the fitting result. The relative ratio of the 
Attention-DeepAR model and DeepAR model PINAW 
values is defined as follows: 
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   (23) 

 

(3) Out of the sample average total cost , 

where . Meanwhile, the 
disappointment level of the expected cost between the 
Attention-DeepAR model and the average total cost out of 
the sample of the DeepAR model is defined as follows: 

 
  (24) 

 
Step 5) Robustness validation. 
We repeat the above four steps 100 times and then calculate 
the average values of probability distribution fitting, the 
order quantity, MAPE, and the out-of-sample cost. 

 
4.3 Simulations analysis 
In this subsection, numerical experiments are conducted 
based on the proposed data sample and simulation procedure 
in the previous subsections. We first analyze the results of 
the demand probability distribution estimator for the 
DeepAR and Attention-DeepAR algorithms. Second, we 
compare the optimal order quantity and the corresponding 
cost obtained with different learning algorithms. 
 
4.3.1 Analysis of probabilistic forecasts 
Table 1 presents the estimation sharpness of demand 
probability distribution for the DeepAR and Attention-
DeepAR algorithms. Two algorithms exhibit a 100% 
empirical coverage exceeding the expected nominal one of a 
90% confidence level. However, from the value of PINAW 
with a 90% confidence level, the Attention-DeepAR 
algorithm provides the lowest PINAW with different 
forecast horizons (N). In addition, the normalized widths of 
the Attention-DeepAR algorithm become lower as the 
forecast horizon (N) increases. Specifically, the difference in 
the PINAW value between the DeepAR and Attention-
DeepAR algorithms is -27.11%. These results imply that 
incorporating the attention mechanism with the superior time 
correlation self-learning ability into the DeepAR algorithm 
(i.e., the Attention-DeepAR algorithm) can avoid the 
additional uncertainty of promotions on demand estimation 

and improve the sharpness of probabilistic forecasts in a 
complicated and intermittent environment. 
 
Table 1. The estimation sharpness of demand probability 
distribution. 
N DeepAR Attention-DeepAR 

Δp PICP PINAW PICP PINAW 
8 100% 9.53 100% 8.12 -14.80% 
18 100% 8.41 100% 7.44 -11.57% 
28 100% 7.34 100% 5.35 -27.11% 
 
4.3.2 Comparison of out-of-sample order decisions 
We compare the order decision and the incurred out-of-
sample costs from June 1, 2021, to July 28, 2021, in this 
subsection to further evaluate the performance of the two 
algorithms. First, taking actual demand as the reference 
point, we compare order quantities obtained with two 
algorithms. The comparison results of MAPE in Table 2 can 
reflect the performances of two algorithms with different 
critical ratios. 
 
Table 2. The comparison results of order decisions. 

b/(b+h) 
Attention-DeepAR DeepAR 

Mean 95% confidence 
interval Mean 95% confidence 

interval 
  0.61 [0.59,0.64] 0.65 [0.63,0.68] 
0.3 0.31 [0.30,0.32] 0.31 [0.30,0.33] 
0.5 0.52 [0.51,0.52] 0.54 [0.54,0.55] 
0.7 0.32 [0.32,0.32] 0.35 [0.34,0.35] 
0.9 0.06 [0.06,0.07] 0.08 [0.07,0.09] 

 
 From Table 2, we can learn that the Attention-DeepAR 
algorithm can achieve a higher level of order accuracy than 
the DeepAR algorithm. Specifically, the mean values of the 
MAPE difference become the smallest as the critical ratio is 
0.9. 
 Then, Table 3 shows the statistical results of incurred 
out-of-sample costs with different critical ratios. Hence, the 
average cost of the Attention-DeepAR algorithm is 
significantly lower than the DeepAR algorithm. For example, 
for a critical ratio of 0.3, the mean cost using the DeepAR 
algorithm is reduced from 52.99 to 47.99 using the 
Attention-DeepAR algorithm, making the disappointment 
level of the cost Δc reach 9.44%. The results imply that 
improving the accuracy of demand estimation by using the 
Attention-DeepAR algorithm is the best option, and this 
algorithm can significantly reduce the supplier’s cost. 

 
Table 3. The comparison results of order decisions.  

b/(b+h) Attention-DeepAR DeepAR 
Δc Mean 95% confidence interval Mean 95% confidence interval 

0.1 93.81 [70.78,116.84] 95.75 [71.57,123.92] -2.03% 
0.3 47.99 [36.75,58.11] 52.99 [42.06,63.94] -9.44% 
0.5 86.44 [50.14,122.74] 87.59 [53.43,123.75] -1.31% 
0.7 68.47 [41.39,95.56] 69.61 [42.61,96.61] -1.64% 
0.9 34.62 [24.67,47.08] 35.87 [28.37,50.86] -3.48% 

 
5. Empirical Study 
 
From Table 3, we can learn that the Attention-DeepAR 
algorithm can achieve a higher level of order accuracy than 
the DeepAR algorithm. Specifically, the mean values of the 
MAPE difference become the smallest as the critical ratio is 
0.9. 
 The effectiveness of the Attention-DeepAR model 
through numerical simulations is presented in Section 4. 
Additionally, the performance of the model is confirmed 

through experimental analysis using the open retail Kaggle 
dataset. 

 
5.1 Data description 
The Kaggle dataset is a historical demand dataset from 45 
Walmart stores situated in diverse regions 
(https://www.kaggle.com/datasets/yasserh/walmart-dataset). 
The dataset contains weekly demand data of Walmart stores 
over the years 2010 and 2012, including relative internal 
(e.g., store ID, data, holiday indicator) and external (e.g., 

100%Attention-DeepAR DeepAR

DeepAR
p

PINAW - PINAW
PINAW

D = ´

T+T
ii=T+1

1MC = C
T'

¢

å
( ) ( )ˆ ˆ+ +

i i i i iC = b y - q +h q - y

( )( ) 100%Attention-DeepAR DeepAR DeepARC MC - MC MCD = ´



Xin Li, Yongshi Hu, Xiaoli Su and Bo Shao/Journal of Engineering Science and Technology Review 16 (3) (2023) 74 - 83 

 81 

temperature, fuel price, CPI, unemployment index) features, 
as shown in Table 4. 
 

Table 4. Structure of historical demand data. 
Name Description Example 
Store the store 9number 1 
Date the week of sales 05-02-2010 
Weekly_Sales sales for the given store 1643690 

Holiday_Flag 1 - Holiday week  
0 - Non-holiday week 0 

Temperature Temperature on the day of sale 42.31 
Fuel_Price Cost of fuel in the region 2.57 
CPI Prevailing consumer price index 211.10 
Unemployment Prevailing unemployment rate 8.11 

 
 Fig. 4 illustrates the demand trend of products in Store 1 
taking the historical demand data of Store 1 as an example. 
 

 
Fig. 4. Overall trend of product demand. 
 
 Fig. 4 shows that the demand data for this product 
displayed specific intermittent and abnormal peak 
characteristics during holidays, such as Super Bowl, Labor 
Day, Thanksgiving, and Christmas, which were influenced 
by promotional seasons. We conducted an experiment with 
the same settings as Section 4.2 to evaluate the performance 
of the Attention-DeepAR model in real-world scenarios. The 
training set comprised demand data from February 5, 2010, 
to September 6, 2012, whereas the test set comprised data 
from September 7, 2012, to November 1, 2012. 

 
5.2 Result Analysis and Discussion 
 
5.2.1 Analysis of probabilistic forecasts  
Out-of-sample prediction intervals of the probability 
distribution using a 90% confidence interval were observed 
for the Attention-DeepAR and DeepAR models. Fig. 5 
shows the results. 
 

 
Fig. 5. Interval plot of the out-of-sample probability distribution for the 
Attention-DeepAR model and DeepAR model. 

 
 As shown in Fig. 5, the Attention-DeepAR and DeepAR 
models are capable of effectively capturing demand trends in 
most cases. However, the DeepAR model is less sensitive to 
demand fluctuations resulting from promotions, causing the 

prediction intervals to be wider than those of the Attention-
DeepAR model. This result indicates a need for 
improvement in reducing the uncertainty of demand 
forecasts. Conversely, the Attention-DeepAR model 
effectively utilizes implicit time information and performs 
better in mitigating risks. Table 5 presents a detailed 
comparison of PICP and PINAW values of the two models. 

 
Table 5. Evaluation of probability distribution fitting 
performance. 
N DeepAR Attention-DeepAR 

Δc PICP PINAW PICP PINAW 
2 100% 27.90 100% 16.15 -42.11% 
3 100% 25.67 100% 14.04 -45.31% 
4 100% 25.73 100% 9.16 -64.40% 
5 100% 9.25 100% 6.82 -26.27% 
6 100% 9.26 100% 6.41 -30.78% 
7 100% 9.39 100% 6.67 -28.97% 
8 100% 9.41 100% 6.75 -28.27% 

 
 Table 5 shows that both models have a 100% predictive 
interval coverage, demonstrating that the true values fall 
within the predictive intervals. The improved model reduces 
interval width by 64.40%, particularly when , 
emphasizing its ability in mitigating uncertainty risks. Over 
time, as the probability of the predictive interval approaches 
100%, the predictive intervals of both models decrease, and 
the difference between them decreases. Nevertheless, good 
performance is still demonstrated in the improved model, 
indicating that the Attention-DeepAR model can effectively 
reduce the width of the predictive interval, improve the 
fitting accuracy by learning long-term trends, and accurately 
capture short-term fluctuations when dealing with complex 
situations. 

  
5.2.2 Comparison of out-of-sample order decisions 
The two algorithms’ order decisions and out-of-sample costs 
incurred during the period of September 07, 2012, to 
November 01, 2012, were compared to assess their 
performance. In comparing the order quantity deviation of 
the two algorithms, we used actual demand as a reference 
point. These comparisons were made to evaluate the 
effectiveness of the algorithms with varying decimal points. 
Fig. 6 displays the results of the MAPE comparison, which 
provides insights into the performance of both algorithms. 
 

 
Fig. 6. MAPE values for different quantiles of out-of-sample order 
volume for Attention-DeepAR model and DeepAR model. 

 
 Fig. 6 presents the comparison of the improved and 
unimproved model’s error values. The results show that the 
improved model consistently achieves lower error values 
except at a service level of 0.3 where both models exhibit 
similar errors. Although both models exhibit a similar trend 
and achieve the minimum MAPE at the median, our model 
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outperforms the unimproved model with higher prediction 
accuracy. Fig. 7 illustrates the total cost at the quantile of 
each of the next eight phases for our model and the 
benchmark model. The results suggest that our model 
consistently incurs lower costs, indicating a cost advantage. 
A significant deviation in order quantities at sub-sites of the 
distribution acquisition in our model renders cost prediction 
at  ineffective at a service level of 0.3. 

 

 
Fig. 7. Cost per period for different quantiles of out-of-sample order 
volume for Attention-DeepAR model and DeepAR model. 

 
 The Attention-DeepAR model has been able to 
significantly improve the cost of online suppliers with each 
operation by effectively capturing the time-varying demand 
distribution, leading to a reduction in the average total cost, 
as presented in Table 6. 

 
Table 6. Average total cost under different service levels. 
b/(b+h) Attention-DeepAR DeepAR Δc 
0.1 32109.29 40865.91 -21.43% 
0.3 48035.05 48246.73 -0.44% 
0.5 29342.31 46815.58 -37.32% 
0.7 29720.82 62127.38 -52.16% 
0.9 21114.87 44029.18 -52.04% 

 
 According to Table 6, the average cost of online 
suppliers varies across service levels. When the service level 
is 0.3, both models yield cost predictions equivalent to the 
MAPE value of the comparison model. However, our 
model’s performance surpasses that of the DeepAR model 
by 0.44%. Furthermore, at a service level of 0.7, the 
Attention-DeepAR model reduces the average total cost by 
52.16%. Our model demonstrated the narrowest decision 
deviation compared with the DeepAR model. Moreover, the 
comparison of our model with the benchmark model 
revealed that our model yielded the lowest cost of 40,865.91 
when the service level is 0.1, representing a 21.43% 
reduction compared with the benchmark model. 

 In summary, the empirical findings indicate that the 
demand trajectory of intermittent or abnormal peaks is 
effectively identified and captured by the Attention-DeepAR 
model. Valuable support is provided for suppliers to make 
precise ordering decisions, resulting in a significant 
reduction in the average total cost. 

 
6. Conclusions 
 
6.1 Main findings 
In the supply chain, with the intensification of market 
competition, the dynamic, diverse, and sudden nature of 
demand has led to frequent changes in plans. Inventory 
determined by the plan can no longer meet the agility and 
flexibility requirements of market demand. Consequently, 
external and internal resources within the organization need 
to be optimally used to optimize the inventory system. The 
current study examines a newsvendor problem, with reliance 
on data, in which we need to learn and analyze the trends 
from historical demand data and product characteristics, as 
the demand distribution trend remains uncertain. The 
Attention-DeepAR model based on the attention mechanism 
was constructed. The objective is to counter the difficulties 
of an uncontrollable and complex setting that comprise 
varying demand distribution, including an abnormal peak 
demand and heterogeneous demand distributions that are 
hard to fit accurately over time. 
 The Attention-DeepAR model that applies the attention 
mechanism to identify and learn crucial time nodes from 
historical data was proposed in this study. These important 
nodes and the inherent correlation between the states at 
different times in the decoding layer were captured by the 
model. As a result, the ability of the model to fit demand 
distributions in complex circumstances was improved. 
 Moreover, the leverage of multiple product feature data 
as input values to predict the probability distribution of 
product demand during specific periods was done in this 
study. Inventory management was optimized by this 
approach, which reduced demand forecast uncertainty and 
associated risks and enhanced the use of historical data. 
 Finally, the model’s effectiveness is verified through 
Monte Carlo numerical simulations, including real case 
studies. The results demonstrate that the model enhances the 
accuracy of fitting time-varying demand distributions, 
leading to more accurate optimal ordering decisions. 
Consequently, this case reduces costs incurred by the 
suppliers by enabling them to respond to different service 
level demands more effectively. 

 
6.2 Limitations and prospects 
The newsvendor problem under shifting demand was 
explored in this study by constructing the Attention-DeepAR 
model. 
 Despite some progress, this study still has limitations. As 
an illustration, owing to constraints on the availability of 
data, this study relied only on product data from a small 
sample of 45 stores between 2010 and 2012. This limited 
sample size and short time span may decrease the 
generalizability of the empirical findings. To address this 
shortfall, the sources of data should be broadened, and the 
time span must be extended to enhance the dependability 
and generalizability of the study. Additionally, concerning 
model design, subsequent research can extend the 
investigation of the autoregressive model by incorporating 
the attention mechanism and determining the optimal order 
quantity directly through the use of historical demand data. 
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