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Abstract 
 
Cross-entropy (CE) is a measure of how different two probability distributions are. It is commonly used in machine 
learning and information theory to compare the predicted probability distribution with the actual probability distribution. 
On the other hand, fractional calculus is a branch of mathematical analysis which studies different possible approaches of 
defining fractional-order integrals and derivatives. In this paper, we have derived a novel generalized fractional CE 
(FCE). To do so, we have differentiated the CE's generating function (i.e., ℎ(𝑡):= ∫ !!(#)

!"(%)&!
𝑓'()(𝑥)𝑑𝑥) using a 𝛼 -order 

Caputo fractional-order derivative 𝐶𝐷*#
+ 𝑓. When the order of differentiation 𝛼 → 1, we recover the ordinary Shannon's 

CE, which corresponds to the results from a first-order ordinary differentiation. This allows to calculate the FCE for 
various values of 𝛼 ≠ 1 and compare them to the conventional CE (𝛼 = 1) to get further insights on its behavior. Some 
examples and illustrations of the proposed FCE are also presented.  

 
Keywords: Cross-entropy (CE), Riemann-Liouville/Caputo fractional integral/derivative, fractional calculus, entropy's generating 
function, Tsallis/Rényi entropy, information measure. 
___________________________________________________________________________________________ 

 
1. Introduction 
 
In 1948, Shannon proposed the concept of entropy in the 
context of communication theory [1]. It consists of a 
measure of surprise or uncertainty associated with the 
probability distribution of a random variable (RV). For a 
discrete RV𝑋taking values in 𝒳 = $𝑥,, 𝑥-, . . . , 𝑥.(and 
having a probability mass function 𝑝/ = 𝑃(𝑋 = 𝑥/) with 
∑ 𝑝/
.
/0, = 1and 𝑝/ ≥ 0for 𝑖 = 1, . . . , 𝑞, it is given by: 

 
𝐻(𝑋) = −∑ 𝑝/

.
/0, 𝑙𝑜𝑔 𝑝/ .            (1) 

 
This suggested measure of uncertainty (i.e., Eq (1)) with 

its properties has shown an agreement with the intuitive 
notions of randomness and justified its usefulness with 
respect to statistical problems in communication theory. 

Known as the differential entropy, the continuous 
analogue of the discrete entropy defined in Eq (1), for a 
continuous RV is given by [2]: 

 
ℎ(𝑋) = −∫ 𝑓1&!

(𝑥) 𝑙𝑜𝑔 𝑓1 (𝑥)          (2) 
 
where 𝑆1and 𝑓1(𝑥) are the support and the probability 
density function (PDF) of the RV 𝑋, respectively. 

Another very important information measure, in the 
mathematical statistics, is the Kullback-Leibler divergence 
(also known as the relative entropy and the I-divergence) 
[3]. For discrete probability distributions 𝑃and 𝑄 defined in 
the same probability space 𝒳, it is defined to be [4]: 

 
𝐷(𝑃 ∥ 𝑄) = ∑ 𝑃#∈𝒳 (𝑥) 𝑙𝑜𝑔 ?4(#)

5(#)
@         (3) 

 
It is a type of statistical distance. It measures how the 
probability distribution 𝑃is different from 𝑄. 

For two continuous RVs 𝑋 and 𝑌 with marginal PDFs 
𝑓1(𝑥) and 𝑓'(𝑦) and supports 𝑆1 ⊆ 𝑆' ⊆ ℝ, it is given by 
[5], [6]: 

 
𝒟(𝑃 ∥ 𝑄) = ∫ 𝑓1&!

(𝑥) 𝑙𝑜𝑔 ?!!(#)
!"(#)

@ 𝑑𝑥         (4) 
Eq (4) can be re-written as follows: 
 
𝒟(𝑃 ∥ 𝑄) =

∫ 𝑓1&!
(𝑥) 𝑙𝑜𝑔 𝑓1 (𝑥)𝑑𝑥GHHHHHHIHHHHHHJ

0(6(1)

−∫ 𝑓1&!
(𝑥) 𝑙𝑜𝑔 𝑓' (𝑥)𝑑𝑥KLLLLLLLMLLLLLLLN
06(1,')

.     (5) 

 
The second term in Eq (5), denoted ℎ(𝑋, 𝑌) is referred to 

as the continuous cross-entropy (CE) of 𝑋relative to 𝑌over 
𝑆1. Cross-entropy is a measure of how different two 
probability distributions are. It is commonly used in machine 
learning and information theory to compare the predicted 
probability distribution with the actual probability 
distribution. In machine learning, cross-entropy is often used 
as a loss function to measure the difference between the 
predicted probability distribution and the actual probability 
distribution of a classification problem [7].  

The cross-entropy loss penalizes incorrect predictions 
more heavily than correct predictions, which makes it a 
useful metric for training models [8]. 

The cross-entropy has several variants, including binary 
cross-entropy, categorical cross-entropy, and sparse 
categorical cross-entropy. Binary cross-entropy is used for 
binary classification problems, while categorical cross-
entropy and sparse categorical cross-entropy are used for 
multi-class classification problems [9], [10].  
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Although CE is widely used as an information measure 
in various fields such as machine learning, information 
theory, and statistics, it has some limitations that are worth 
considering, including the following [11]- [15]: 

 
• It assumes that the random variables  𝑋 and 𝑌	are 

independent.  
• It is not symmetric (i.e., ℎ(𝑋, 𝑌) ≠ ℎ(𝑌, 𝑋)), which 

makes it challenging to interpret the results and compare 
different models.  

• It can be biased towards certain types of distributions, 
depending on the choice of the base distribution.  

 
In this paper, we introduce a generalized version of it 

(named fractional-order cross-entropy (FCE)) by re-writing 
the previous ordinary CE in the form of a differ-integral 
equation, then we deform the ordinary derivative to a Caputo 
fractional-order one. The use of this later allows to get a 
broader idea in a generalized metric space concerning the 
CE and other related information measures. 

 
 

2. A Review on Fractional Integrals and Derivatives 
 
Fractional calculus (a mathematical analysis branch which 
studies different possible approaches of defining fractional-
order integrals and derivatives) can be traced back to a letter 
written to l'Hopital by Leibniz in 1695 [16]. In 1832, 
Liouville carried out a heavy-handed investigation on FC 
[17]. After that, the Riemann-Liouville (RL) fractional 
integro-differential operator was introduced by Riemann in 
[18] along with a comprehensive theory of FC. 

The left-sided Riemann-Liouville (RL) fractional 
integral RL𝐼*#

+ 𝑓of order 𝛼 ∈ ℝ	(𝛼 > 0) of an integrable 
function 𝑓: [𝑎, 𝑏] → ℝ, (0 ≤ 𝑎 < 𝑏 ≤ ∞) is defined as [10]: 

 
^RL𝐼*#

+ 𝑓_(𝑡) =RL 𝐼*#
+ [𝑓(𝑥)](𝑡) = ,

8(+)∫ (𝑡 − 𝑥)
+(,)

* 𝑓(𝑥)𝑑𝑥
                  (6) 
 
with 𝑎 ∈ ℝ, 𝑡 > 𝑎, 𝛼 > 0, where 𝛤(. )	is Euler's gamma 
function defined as 𝛤(𝛼) = ∫ 𝑥+(,9:

; 𝑒(#𝑑𝑥, (𝛼 ∈ ℝ	(𝛼 >
0)). 
 

The left-sided Caputo fractional derivative 𝐶𝐷*#
+ 𝑓 of 

order 𝛼 ∈ ℝ(𝛼 > 0) of an integrable and differentiable 
function 𝑓: [𝑎, 𝑏] → ℝ, (0 ≤ 𝑎 < 𝑏 ≤ ∞)is defined as [19]: 

 
^𝐶𝐷*#

+ 𝑓_(𝑡) =< 𝐷*#
+ [𝑓(𝑥)](𝑡) = ?RL𝐼*#

=(+ ? >
>)
@
=
𝑓@ (𝑡)    (7) 

 
with 𝑎 ∈ ℝ, 𝑡 > 𝑎, 𝛼 > 0, 𝑛 = [𝛼] + 1. 
 
When 0 < 𝛼 ≤ 1, we get: 
 
^𝐶𝐷*#

+ 𝑓_(𝑡) = ?RL𝐼*#
,(+ >

>)
𝑓@ (𝑡),    (𝑎 ∈ ℝ, 𝑡 > 𝑎)     (8) 

 
 

3. A Caputo Fractional Derivative-Based FCE 
 
3.1.  Definition 1. 
Let 𝑋 and 𝑌 be two non-negative continuous random 
variables (RVs) with probability density functions (PDFs) 
𝑓1(𝑥), 𝑓'(𝑦) and supports 𝑆1, 𝑆' respectively. The CE, 
ℎ(𝑋, 𝑌), of 𝑋 relative to 𝑌 over 𝑆1 is defined as: 

 
ℎ(𝑋, 𝑌):= −∫ 𝑓1&!

(𝑥) 𝑙𝑜𝑔 𝑓' (𝑥)𝑑𝑥 = 𝐸1[− 𝑙𝑜𝑔 𝑓' (𝑋)] (9) 
 
when the integral exists. 𝐸[𝑋]	is the expected value of the 
RV 𝑋. CE is commonly used in the fields of information 
theory, statistics, and machine learning for tasks such as 
density estimation, generative modeling, and anomaly 
detection. It is often used as a loss function for training 
generative models such as variational autoencoders and 
generative adversarial networks.  
 
3.2. Remark  
Through the whole paper, the base of the logarithm will be 
set to Euler's number 𝑒 = ∑ ,

=!
:
=0; . 

Our basic idea consists of re-writing Eq (4) as follows: 
  

ℎ(𝑋, 𝑌):= − 𝑙𝑖𝑚
)→(,

>
>) ∫

!!(#)
!"(#)&!

𝑓'()(𝑥)𝑑𝑥      (10) 
 

Then, we deform the ordinary differential operator >
>)

 in 
Eq (5) to the Caputo fractional differential operator 𝐶𝐷*#

+  
defined in Eq (3) (which reduces to >

>)
 in the limit 𝛼 → 1). 

Based on these ideas, we derive in the following theorem a 
new class of FCE.  

 
3.3. Theorem 1 
Let 𝑋 and 𝑌 be two non-negative continuous random 
variables (RVs) with probability density functions (PDFs) 
𝑓1(𝑥) and 𝑓'(𝑦) and supports 𝑆1and 𝑆' respectively. The 
FCE, ℎ+(𝑋, 𝑌) of order 𝛼, of 𝑋 relative to 𝑌 over 𝑆1 is 
defined as: 
 
ℎ+(𝑋, 𝑌):= ∫ 𝑓1&!

(𝑥)(− 𝑙𝑜𝑔 𝑓' (𝑥))+𝑑𝑥 =
𝐸1[(− 𝑙𝑜𝑔 𝑓' (𝑋))+]            (11) 
 
with 0 < 𝛼 ≤ 1. 
 
3.4. Proof 
Using the operator defined in Eq (3) (where the lower limit 
of the RL-integral is taken to zero, i.e., 𝑎 = 0, without loss 
of generality), Eq (5) can be re-written as follows: 
 
ℎ+(𝑋, 𝑌):

= − 𝑙𝑖𝑚
)→(,

𝑑
𝑑𝑡 iRL𝐼;,(+ jk

𝑓1(𝑥)
𝑓'(𝑦)&!

𝑒() ABC !"(#)𝑑𝑥l (𝑡)m, 

 
with 0 < 𝛼 ≤ 1.   
 
Therefore, we need to solve the following integral: 

 

ℎ+(𝑋, 𝑌):= − 𝑙𝑖𝑚
)→(,

𝑑
𝑑𝑡k ik (𝑡

)

;&!

− 𝑦)(+
𝑓1(𝑥)
𝑓'(𝑦)

𝑒(% ABC !"(#)𝑑𝑦m𝑑𝑥 

 
By letting 𝑤 = 𝑡 − 𝑦, using the definition of the 𝛤(. ) 

function, taking the ordinary derivative and setting 𝑡 = 1, 
we get Eq (4).  

The expression in (11) allows us to calculate the FCE 
(ℎ+(𝑋, 𝑌)) for different values of 𝛼 and compare them to 
each other and to the conventional CE (𝛼 = 1) at the same 
time to get further insights on its behavior. 
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In the following, we give few examples of the FCE for 
some common continuous probability distributions. 

 
3.5. Example 1  
Let 𝑋 and 𝑌be two non-negative continuous uniformally 
distributed RVs on [0, 𝑎1], 𝑎1 > 0, and [0, 𝑎'], 𝑎' > 0, 
respectively .i.e., 𝑋~ 	𝑈𝑛𝑖𝑓𝑜𝑟𝑚 	(0, 𝑎1) and 
𝑌~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝑎'). Then, the FCE of 𝑋relative to 𝑌 is 
given by: 
 
ℎ+(𝑋, 𝑌) = (𝑙𝑜𝑔 𝑎')+           (12) 
 
with 0 < 𝛼 ≤ 1  
 

To get further insights, in Fig. 1, we have plotted FCE in 
Eq(12) as a function of 𝛼.  

 
Fig.1. The FCE ℎ$(𝑋, 𝑌) in Eq (12) as a function of 𝛼.  
 
 
3.6. Example 2 
Let 𝑋 and 𝑌 be two non-negative continuous exponentially 
distributed RVs rate parameters 𝜆1and 𝜆', i.e., 𝑋~𝐸𝑥𝑝(𝜆1) 
and 𝑌~𝐸𝑥𝑝(𝜆'). Then, the FCE of 𝑋 relative to 𝑌is given 
by: 
 

ℎ+(𝑋, 𝑌) = D"
%&

'!
'"

D!
&% 𝛤 ?𝛼 + 1,− D! ABC D"

D"
@      (13) 

 
with 0 < 𝛼 ≤ 1&𝜆' ≤ 1, where 𝛤(. , . ) is the upper 
incomplete gamma function (See Eq. (8.2.2) in [20]).  
 

To get further insights, in Fig. 2, we have plotted FCE in 
Eq(13) as a function of 𝛼. 
 
3.7. Example 3 
Let 𝑋and 𝑌 be two non-negative continuous normally 
distributed RVs with mean and standard deviation 
parameters  (𝜇1, 𝜎1) and (𝜇', 𝜎'), respectively. i.e., 
𝑋~𝒩(𝜇1, 𝜎1) and 𝑌~𝒩(𝜇', 𝜎').  Then, the FCE of 
𝑋relative to 𝑌is given by: 
 

ℎ+(𝑋, 𝑌) = ,

E-FG!
(
∫ 𝑒

&(*&+!)
(

(-!
(9:

; ?,
-
𝑙𝑜𝑔( 2𝜋𝜎'-) +

(#(H")(

-G"
( @

+
𝑑𝑥             (14) 

 
with 0 < 𝛼 ≤ 1. 
 

Fig.2. The FCE ℎ$(𝑋, 𝑌) in Eq (13) as a function of 𝛼.  
 
 
4. Conclusion 
 
In this paper, we have introduced a new CE functional, 
ℎ+(𝑋, 𝑌), which generalizes Shannon's conventional CE, 
ℎ(𝑋, 𝑌), by applying Caputo fractional-order derivative to 
the CE's generating function. The proposed FCE has 
inherited the merits of the conventional CE, since the former 
is a generalization of the latter. As a future perspective, the 
possibility of estimating the FCE from empirical random 
samples is worth being explored. Testing its reliability 
through simulations and exploring its application in 
computer vision are also worthy to be considered. Cross-
entropy also has many applications in machine learning, 
including natural language processing, computer vision, and 
recommendation systems. It is a widely used metric for 
evaluating the performance of models in these fields. 
 
Notations: Here we give, for quick reference, the common 
notations used in this paper. 𝑓1(𝑥), 𝐹1(𝑥),	𝔼[𝑋], 𝑆1, ℎ(𝑋) 
denote, respectively, the probability density function (PDF), 
the cumulative distribution function (CDF), the expectation, 
the support the random variable 𝑋. ℎ(𝑋, 𝑌) and ℎ+(𝑋, 𝑌) are 
the CE and FCE of 𝑋relative to 𝑌over 𝑆1, respectively. 
RL𝐼*#

+ 𝑓 and 𝐶𝐷*#
+ 𝑓are the left-sided Riemann-Liouville 

(RL) fractional integral and the left-sided Caputo fractional 
derivative of order 𝛼 ∈ ℝ(𝛼 > 0). 𝛤(. , . )	is the upper 
incomplete gamma function. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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