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Abstract 
 

The integration of large-scale wind power into power grids has made accurate short-term wind power forecasting a key 
technology for the safe and economical operation of power grids. A novel method based on variational mode 
decomposition (VMD), temporal convolutional network (TCN), and Gaussian mixture model (GMM) was proposed for 
accurate short-term wind power forecasting and uncertainty analysis. First, the wind speed information was decomposed 
into different mode components via VMD. Second, TCN was employed to capture accurately the time-series dependence 
of data by training and forecasting different mode component data. On this basis, GMM was used to calculate the 
distribution characteristics of short-term wind power forecasting errors and quantify the confidence interval of wind 
power forecasting. Results demonstrated that the root mean square error (RMSE) value of the VMD-TCN model for wind 
power forecasting for 4 h during winter is 4.69%, 3.13%, 2.48%, 1.21%, and 0.7% lower than the RMSE values of 
wavelet neural network, BP neural network, PSO-BP hybrid model, long short-term memory model, and TCN model, 
respectively. The proposed method has a certain promoting effect on improving the accuracy of short-term wind power 
forecasting. 

 
Keywords: Short-term wind power forecasting, Variational mode decomposition, Temporal convolutional networks, Gaussian mixture 
model, Confidence interval 
____________________________________________________________________________________________ 

 
1. Introduction 
 
The development and utilization of clean energy have 
become feasible schemes for the fight against climate 
change and environmental pollution. Wind energy is a type 
of clean energy widely developed and utilized in recent 
years [1]. Given the intermittence, randomness, and 
volatility of wind power, large-scale wind power grid 
connections have posed great challenges to the safe and 
stable operation of power grids. Accurately forecasting the 
wind power output has become an effective approach to 
ensuring the safe and stable operation of power grids and 
improving the consumption of wind power [2-3]. 

According to different forecasting time scales, wind 
power forecasting can be divided into medium-, long-, short-, 
and ultrashort-term forecasting [4-5]. Medium-term 
forecasting and long-term forecasting are mainly used for 
the maintenance plan of wind farms and the evaluation of 
annual power generation after the construction of a wind 
farm [6]. Short-term forecasting is mainly used for power 
grid dispatching, improving power supply quality, and 
promoting the participation of wind power in bidding [7]. 
Ultrashort-term forecasting is typically used for power grid 
real-time dispatching and wind turbine control [8]. 

The common statistical forecasting models for short-
term and ultrashort-term wind power forecasting include 
single-algorithm and combined-algorithm forecasting 
models [9], parametric and nonparametric forecasting 
models [10], linear and nonlinear forecasting models [11], 

and machine learning forecasting models [12]. Example 
calculations show that machine learning can be applied to 
short-term wind power forecasting under different terrain 
conditions, and the forecasting accuracy is relatively high 
[13]. The forecasting accuracy of the adaptive variational 
mode decomposition (VMD) and multiple machine learning 
models combined with short-term and ultra-short-term wind 
speed and wind power forecasting is higher than that of a 
single forecasting model [14]. The forecasting accuracy of a 
forecasting model can be improved to a certain extent by 
optimizing its weights and thresholds through various 
optimization algorithms [15-16]. 

The machine learning models mentioned above have 
achieved certain results in short-term wind power 
forecasting. However, they cannot mine the temporal 
correlation between data; thus, further improvement of their 
forecasting accuracy is limited [17]. Therefore, deeply 
mining the temporal correlation between data and 
constructing accurate short-term wind power forecasting 
models have become urgent challenges for short-term wind 
power forecasting. 

A short-term wind power forecasting model based on 
VMD, temporal convolutional network (TCN), and Gaussian 
mixture model (GMM) was proposed in the present study. 
First, VMD was used to eliminate the impact of wind speed 
randomness on forecasting accuracy. Then, the time 
convolutional network (TCN) was applied to mine the 
temporal correlation between data deeply. Thus, accurate 
short-term wind power forecasting was achieved. On this 
basis, GMM was used to calculate the distribution 
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characteristics of errors in short-term wind power 
forecasting. 

 
 

2. State of the Art 
 
The development of artificial intelligence has led to the 
proposal and use of new intelligent learning algorithms in 
wind power forecasting, further promoting the development 
of wind power forecasting technology [18]. Deep learning 
algorithms are widely studied novel methods of wind power 
forecasting. These algorithms include recurrent neural 
networks, deep belief networks, and convolutional neural 
networks (CNNs) [19]. Ran et al. [20] proposed a short-term 
wind power forecasting model based on the convolutional 
long short-term memory neural network (CNN-LSTM). The 
proposed model extracts the temporal correlation 
characteristics of data. However, it does not preprocess the 
input data or analyze the uncertainty of wind power 
forecasting. Zhou et al. [21] proposed a wind power interval 
forecasting model based on long short-term memory (LSTM) 
neural network. The calculation results showed that the wind 
power interval forecasting model can extract the temporal 
correlation of data and forecast the distribution interval of 
wind power. However, the model’s accuracy in extracting 
the temporal correlation features must be further improved. 
A deep learning model for short-term wind speed and 
direction forecasting was proposed by [22]. The actual 
calculation results revealed that the forecasting accuracy of 
the deep learning model for wind speed and direction is 
higher than that of the benchmark forecasting model. 
However, the temporal correlation of data and the 
uncertainty of forecasting were not considered in the deep 
learning model. 

A day-ahead wind power forecasting model based on 
CNNs was proposed, and the model parameters were 
optimized by [23]. The forecasting results showed that the 
method demonstrates good forecasting performance. 
However, the model does not consider the temporal 
correlation between data, and the forecasting uncertainty 
was not analyzed. Aslam et al. [24] proposed a multistep 
advanced wind power forecasting model based on the dual 
attention mechanism. They also optimized the 
hyperparameters of the model. The study results 
demonstrated that the forecasting effect of the model is good. 
However, the model does not preprocess the data or analyze 
the forecasting uncertainty. Maryam et al. [25] compared 
and analyzed the performances of LSTM, gated recurrent 
unit (GRU), CNN, and CNN-LSTM models in the accuracy 
of wind power forecasting. The forecasting results revealed 
that the forecasting accuracy of GRU is better than the 
forecasting accuracies of the three other models. However, 
data preprocessing methods and forecasting uncertainty were 
not studied. 

Optimizing the hyperparameters of a forecasting model 
can effectively improve forecasting accuracy [26]. Seyed et 
al. [27] utilized evolutionary search optimizers to optimize 
the parameters of deep CNNs, thereby improving model 
forecasting performance. However, they did not preprocess 
the data or analyze the uncertainty of wind power 
forecasting. Ahmed et al. [28] applied a heap optimizer to 
optimize the parameters of the LSTM model. This approach 
improves the forecasting accuracy of wind power to some 
extent. However, the uncertainty of wind power forecasting 
was not analyzed. A short-term wind power forecasting 
based on the wavelet-ARIMA model was presented by [29]. 

The calculation results demonstrated that this model has 
good forecasting performance. However, the temporal 
correlation between data was not mined in the model. 
Dominik et al. [30] proposed a neural unfolding analysis 
model based on time-series forecasting. This model has good 
performance in wind power forecasting. However, the data 
preprocessing and forecasting uncertainty were not 
considered. A novel interval forecasting method was 
proposed, and its effectiveness was verified by [31]. 
However, the data preprocessing and temporal correlation 
between data were not considered in the forecasting method. 
Bo et al. [32] considered the temporal correlation between 
data and constructed a nonlinear mapping network model for 
wind power forecasting. The effectiveness of the model was 
verified through examples. However, the related work of 
data preprocessing and forecasting uncertainty was not 
considered. 

Combining the advantages of multiple forecasting 
algorithms for achieving wind power forecasting can 
effectively overcome the shortcomings of a single 
forecasting algorithm [33-34]. The combination forecasting 
methods of multiple forecasting models mainly include 
parameter optimization methods and ensemble forecasting 
methods [26]. In terms of parameter optimization, Hossain et 
al. [35] combined a convolutional layer, a gated recursive 
unit layer, and a fully connected neural network to form a 
hybrid deep neural network model. Example calculations 
demonstrated that the forecasting accuracy of this hybrid 
deep neural network model is higher than that of other 
forecasting models. However, the uncertainty of wind power 
forecasting was not analyzed. Wang et al. [36-39] used data 
decomposition methods, such as wavelet transform, 
empirical mode decomposition, integrated empirical mode 
decomposition, and empirical wavelet transform, to 
decompose wind speed data into high- and low-frequency 
signals. Then, they used deep learning algorithms to forecast 
low- and high-frequency signal sequences, thereby 
effectively improving the accuracy of wind power 
forecasting. However, they did not analyze data 
preprocessing and forecasting uncertainty. A short-term 
wind speed forecasting model combining the automatic 
encoder of the CNN with LSTM units was presented by [40-
41]. The calculation results demonstrated that the short-term 
wind speed forecasting model can accurately forecast short-
term wind speed. However, this model lacks forecasting 
uncertainty analysis. 

The above scholars conducted in-depth studies on the 
forecasting methods of wind speed and wind power. They 
also made certain progress in temporal-related forecasting 
models, data preprocessing, and uncertainty analysis. 
However, a comprehensive exploration of data 
preprocessing, temporal-related forecasting models and 
uncertainty analysis is lacking. Therefore, the authors of the 
present study proposed a short-term wind power forecasting 
and uncertainty analysis method based on the VMD-TCN-
GMM. First, the proposed method applied the VMD to 
decompose wind speed information into different modal 
components, thereby eliminating the impact of wind speed 
randomness on forecasting accuracy. Second, the TCN 
model was used to explore deeply the temporal correlation 
between data, further improving the accuracy of short-term 
wind power forecasting. On this basis, the GMM was used 
to calculate accurately the distribution characteristics of 
short-term wind power forecasting errors. A confidence 
interval for wind power forecasting was constructed based 
on this calculation. 
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The remainder of this study is organized as follows. 
Section 3 details the calculation principles of VMD, TCN 
model, and GMM. The evaluation indicators of forecasting 
performance and the construction process of the forecasting 
model are also discussed. The effectiveness and superiority 
of the VMD-TCN model proposed in this study are verified 
in Section 4 by comparing the forecasting accuracies of 
different forecasting models. Moreover, the uncertainty of 
wind power forecasting is analyzed using GMMs. Section 5 
summarizes this article and provides relevant conclusions. 
 
 
3. Methodology  
 
3.1 Variational mode decomposition (VMD) 
VMD is a nonstationary signal decomposition method 
proposed by Dragomiretskiy et al. [42]. VMD realizes signal 
decomposition by introducing variational constraints, which 
effectively overcome the problems of mode aliasing and 
endpoint effects in traditional empirical mode decomposition 
methods. 

When VMD is used to decompose a signal , it is 
employed to obtain K intrinsic mode functions  and 
minimize the sum of the bandwidths of these K modes. The 
process for constructing VMD is as follows: 

Step 1: Define a band-limited intrinsic mode function 
with limited bandwidth. 
 

                                (1) 
 

Where  is the instantaneous amplitude, and  is 
the phase. 

Step 2: Perform Hilbert transform on  to construct 
the corresponding analytical signal. The corresponding 
unilateral spectrum of each mode is obtained, as shown in 
Eq. (2). 
 

                                 (2) 

 
where  is the pulse function, , and  is the  
variational mode component. 

Step 3: Add an exponential term  to each 
variational mode component  to adjust its corresponding 
center frequency  and modulate the spectrum of each 
mode to the corresponding fundamental frequency band, as 
shown in Eq. (3). 
 

                    (3) 

 
Step 4: Demodulate the signal in Eq. (3) by Gaussian 

smoothing (i.e., the square root of the  norm gradient) and 
estimate the bandwidth of each mode signal to obtain the 
variational constraint equation shown in Eq. (4). 
 

                  (4) 

where K is the number of components of the variational 
mode,  is the center frequency of the  variational 
mode component, t is the time, and  is the partial 
derivative of time. 
 
3.2 Temporal convolutional network (TCN) 
3.2.1 Principle of TCN 
TCN is a time-series model based on a CNN. Unlike CNN, 
which is mainly used for image or text feature extraction, 
TCN is mainly used for forecasting time-series data. When 
the input time-series data of the TCN model are 

, the model output can be 
 with equal sequence length or the 

feature  of the middle layer. 
All outputs satisfy the causal constraints. The current 

output  is only related to  and is 
unrelated to the “future” input . 
This scenario aligns with the application in real society, 
where only the historical data of the scenario are known, and 
the future state of the scenario is forecasted. 

The mapping relationship between the input and output 
of the TCN model is given by Eq. (5). 
 

              (5) 
 
where the function f represents the mapping function of the 
TCN model. The input of each sequence X corresponds to 
the corresponding output Y by learning and adjusting the 
parameters of the TCN model. 

TCN consists of three main parts: causal, dilated, and 
residual connection modules. 
 
3.2.2 Causal convolution 
In the design and implementation of a TCN, the following 
criteria must be observed: (1) The length of the network’s 
output time-series data is equal to that of the input time-
series data. (2) The output of the current time is only related 
to the input of the current time and the input of historical 
time. It is unrelated to the input of future time. When the 
input time-series information is  and 
the filter is , the causal convolution at 
xt can be calculated according to Eq. (6). 
 

                      (6) 

 
where K is the filter size, and t-K+k is the historical time-
point. 

The structure of the causal convolution is illustrated in 
Fig. 1. As shown in Fig. 1, the value of time t for the next 
layer depends only on the value of time t and before time t 
for the previous layers. Compared with traditional CNN, 
causal convolution does not consider future data. Causal 
convolution is a one-way structure; thus, only the previous 
cause can have the latter effect, which is a strict time 
constraint model. The number of hidden layers also 
increases as historical data increases. 
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Fig. 1.  Causal convolution 
 
3.2.3 Dilated convolution 
A deep network structure or a large convolution kernel is 
required when the traced historical time-series data are long. 
Thus, the model training time and the demand for computing 
resources increase. Therefore, the TCN introduces a dilated 
convolution based on causal convolution. 

Dilated convolution increases the range of the receptive 
field by injecting holes into the receptive field of an ordinary 
convolution. When the input time-series information is 

 and the filter is , 
the dilated convolution at  can be calculated according to 
Eq. (7). 
 

                      (7) 

 
where d is the dilated factor, K is the filter size, and t-(K-k)ˑd 
is the historical time-point. 

d is usually set to the exponential form of 2  
to avoid the grid effect when dilated convolution is 
calculated. When d is one, every point of the input is 
sampled. When d is 2, one point is sampled at every two 
input points. Thus, the higher the level is, the greater the 
value of d is. Dilated convolution causes the size of the 
effective window to grow exponentially with the number of 
layers, and the convolutional network can obtain a large 
receptive field with few layers. 

The structure of dilated convolution is shown in Fig. 2. 
The first layer is a causal convolution, and the length of the 
time-series data after convolution is equal to that of the time-
series data input by the model. Owing to an increase in the 
number of dilated convolutional layers, the current state of 
the hidden layer is exponentially related to the length of the 
historical input time-series data. 
 

 
 Fig. 2.  Dilated convolution 

 

3.2.4 Residual connection block 
Gradient disappearance and gradient explosion problems 
tend to occur during the training process of deep learning 
networks. Thus, the ability of the network to converge to the 
optimal solution is affected. The TCN model introduces a 
residual connection block to solve the problems of gradient 
disappearance and gradient explosion in deep learning 
networks. This model realizes the weighted fusion of the 
input x of the residual connection block into the output of the 
residual connection block. The residual connection block is 
calculated using Eq. (8). 
 

                    (8) 
 
where x is the input of the residual connection block, F(x) is 
the output of the convolution calculation of the residual 
connection block, and Activation() is the activation function. 

The internal structure of the residual connection block is 
illustrated in Fig. 3. As shown in Fig. 3, a residual 
connection block is composed of two layers: dilated causal 
convolution network and the nonlinear function ReLU. The 
weighted-norm and dropout layers are added to each layer of 
the dilated causal convolution network. In the residual 
connection block, the dilated causal convolution mainly 
completes the calculation of causal and dilated convolutions. 
The nonlinear ReLU function enables the TCN model to 
obtain nonlinear expression capabilities. The weighted-norm 
layer can effectively prevent gradient explosion in the 
network. The dropout layer can effectively prevent the 
overfitting of the TCN model. 

 
Fig. 3.  Residual block structure 

 
In Fig. 3, the residual connection block fuses its input 

data x weighted into its output data. A 1×1 convolution 
operation on the input data x is usually necessary to prevent 
the dimension of the input data x from being inconsistent 
with that of the output data during the calculation. 

The overall structure of the TCN model is shown in Fig. 
4. As depicted in Fig. 4, the TCN comprises multiple 
residual blocks for tracing the depth of historical data and 
further improving the accuracy of wind power forecasting. 
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Fig. 4.  Topology diagram of the TCN model 
 
3.3 Gaussian mixture model (GMM) 
GMM is a linear combination of a certain number of 
Gaussian probability density functions to approximate the 
probability density distribution of the sample set. It is also 
associated with high fitting accuracy and fast calculation 
speed. The probability density functions of GMM are shown 
in Eqs. (9) to (11). 
 

                          (9) 

 
                                  (10) 

 
    (11) 

 
where  represents the probability density function of 
the GMM,  represents the  sample in the dataset, is 
the weight of the  Gaussian probability density function, 

 and  are the mean and covariance matrices of the kth 
Gaussian probability density function, respectively, and D is 
the dimension of the sample space. 

Eqs. (9), (10), and (11) contain unknown parameters 
 that must be solved through the sample set. 

The commonly used method of solving unknown parameters 
 is the expectation maximization (EM) 

algorithm. The EM algorithm is an iterative algorithm used 
for the maximum likelihood estimation of probability model 
parameters with hidden variables. Each iteration of the EM 
algorithm consists of two steps: Step E is used to calculate 
the expectation, and Step M is used for maximization. The 
specific calculation process is as follows.  

Step E: Calculate the possibility that each feature  is 
derived from submodel k according to the current parameters. 
 

     (12) 

 
where N is the number of samples, and  represents the 
probability that the  sample belongs to the  Gaussian 
probability density function. 

Step M: Calculate the model parameters of a new round 
of iterations. 
 

                   (13) 

 

            (14) 

 

                    (15) 

 
Steps E and M are repeated until they converge 

;  is a small positive real number). At this 
point, the GMM parameters are calculated. 
 
3.4 Forecasting performance evaluation indicators and 
forecasting model construction 
 
3.4.1 Forecasting performance evaluation indicators 
Forecasting performance evaluation indicators are used to 
evaluate the performance of wind power forecasting models. 
The present study uses mean absolute error (MAE), root 
mean square error (RMSE), confidence interval coverage 
rate, and width to evaluate the forecasting performance of 
wind power forecasting models. MAE is the average of 
absolute error, which truly reflects the size of the forecasting 
error. The calculation formula for MAE is shown in Eqs. (16) 
and (17). 
 

                   (16) 

 

                  (17) 

 
where N represents the data point for wind power forecasting, 

 represents the actual value of wind power,  is the 
forecasting value of wind power, and  is the total 
installed capacity of the wind farm.  is the ratio of MAE 
to the total installed capacity, it is usually in percentage form 
in practical applications. 

RMSE is the root mean square error, and the calculation 
formulas are shown in Eqs. (18) and (19). 
 

                  (18) 

 

                (19) 

 
where  is the ratio of RMSE to the total installed 
capacity; it is usually in percentage form in practical 
applications. 
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The confidence interval coverage rate  describes the 
situation where the confidence interval covers the true value 
of wind power. The larger the coverage rate is, the more 
accurately the confidence interval can reflect the actual 
value distribution of wind power. The calculation formula 
for the coverage rate is shown in Eq. (20). 
 

                            (20) 

 
where N is the total number of samples, and  is the 
coverage factor. When the actual value of wind power falls 
within the confidence interval, ; otherwise, . 

The interval width  is an indicator for measuring the 
effectiveness of wind power forecasting. Under the premise 
of ensuring coverage rate, the smaller the interval width is, 
the better the forecasting effect is. The calculation formula 
for the interval width is shown in Eq. (21). 
 

                                 (21) 

 
where  is the difference between the upper and lower 
limits of the confidence interval where the  power value 
is located. 
 
3.4.2 Forecasting model construction 
A short-term wind power forecasting model based on the 
VMD-TCN-GMM was constructed according to the VMD 
principle, TCN model principle, GMM, and confidence 
interval calculation method introduced in the previous 
sections. The specific calculation process for the model is as 
follows: 

(1) Normalize input data, such as wind speed, wind 
direction, pressure, temperature, and power, to meet the 
input data requirements of the forecasting model. 

(2) Determine the number of mode components in the 
VMD and calculate the forecasting effect for different 
numbers of mode components. When the number of mode 
components is four, the forecasting effect of the forecasting 
model is the best. Therefore, the number of mode 
components in the VMD is four in this study. 

(3) Decompose the normalized wind speed data by VMD 
and change the decomposed wind speed data from the 
original n data to 4 × n matrix data. 

(4) Divide the decomposed wind speed data and the wind 
direction, pressure, temperature, and power data into training 
and testing sample sets. 

(5) Use the training sample set to train the constructed 
TCN model until the convergence condition is achieved. 

(6) Input the testing sample set into the trained TCN 
model and inversely normalize the forecasting results of the 
TCN model to obtain the forecasting value. 

(7) Use GMM to calculate the distribution characteristics 
of wind power forecasting error and obtain the probability 
density distribution of wind power forecasting error. 

(8) Calculate the confidence interval of wind power 
forecasting according to the probability density distribution 
characteristics of wind power forecasting error.  

The calculation process of the entire forecasting model is 
shown in Fig. 5. 
 

 
4. Result Analysis and Discussion 
 
4.1 Sample set division 
The data in this study were obtained from a wind farm with 
90 wind turbines in northern China. The data collection 
period for the wind power forecasting occurred from January 
1, 2010 to August 31, 2011. The data were divided into 
training and testing sample sets to complete the model 
training and testing verification. The data of the training 
sample set included the annual data obtained from January 1, 
2010 to December 31, 2010, with 25,384 data points. The 
data of the testing sample set were obtained from January 1, 
2011 to August 31, 2011. Two datasets in different seasons 
from the testing sample set were selected to evaluate the 
model and verify that the proposed forecasting model 
demonstrated a good forecasting effect in different seasons 
and different forecasting time scales. These two datasets 
included the 4 and 24 h data from February 12, 2011 in 
winter and August 1, 2011 in summer. 
 

 
Fig. 5.  Calculation process of the forecasting model 
 
4.2 Performance comparison of the forecasting models 
Figs. 6(a) and 6(b) show the wind power forecasting results 
for 4 h on February 12 (winter) and August 1 (summer), 
respectively. The forecasting models include the wavelet 
neural network (WNN), BP neural network, PSO-BP hybrid 
model, LSTM model, TCN model, and VMD-TCN model. 
As shown in Fig. 6, the similarity between the forecasted 
value of the VMD-TCN model and the actual value of wind 
power was high. This finding indicated that the forecasting 
effect of the VMD-TCN model was better than the 
forecasting effects of the other models. The following 
RMSE values were obtained for the forecasting results of 
each model during the 4 h forecasting on August 1: 1.03%, 
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VMD-TCN; 1.30%, TCN; 3.36%, LSTM; 7.58%, WNN; 
4.65%, BP; 4.35%, PSO-BP. The MAE values of the 
forecasting results of each model are as follows: 0.37%, 
VMD-TCN; 1.05%, TCN; 2.72%, LSTM; 7.04%, WNN; 
3.89%, BP; 4.02%, PSO-BP. Based on the calculation 
results, the RMSE and MAE values of the VMD-TCN 
model were less than those of the other models. This finding 
proved that the forecasting effect of the VMD-TCN model 
was better than the forecasting effects of the other models. 
 

 
(a)  

 
(b)  

Fig. 6.  4 h wind power forecasting for different forecasting models. (a) 
4 h wind power forecasting in February. (b) 4 h wind power forecasting 
in August 
 

Figs. 7(a) and 7(b) show the forecasting results of wind 
power for 24 h on February 12 (winter) and August 1 
(summer), respectively. As depicted in Fig. 7, the similarity 
between the forecasted value of the VMD-TCN model and 
the real value of wind power was high in the 24 h wind 
power forecasting. This finding indicated the high 
forecasting accuracy of the VMD-TCN model. The VMD-
TCN model demonstrated a good forecasting effect because 
VMD effectively eliminated the influence of wind speed 
randomness on forecasting accuracy. Furthermore, the TCN 
model could deeply mine the temporal correlation between 
data, thereby improving the forecasting accuracy of VMD-
TCN further. During the 24 h forecasting using VMD-TCN 
on August 1 (summer), the following RMSE values for the 
forecasting results of each model were obtained: 3.39%, 
VMD-TCN; 3.59%, TCN; 4.62%, LSTM; 9.59%, WNN; 
5.21%, BP; 4.99%, PSO-BP. The MAE values of the 
forecasting results of each model are as follows: 2.66%, 
VMD-TCN; 2.92%, TCN; 3.70%, LSTM; 7.67%, WNN; 
3.80%, BP; 3.78%, PSO-BP. The calculation results showed 

that the RMSE and MAE values for the forecasting error of 
the VMD-TCN model remained the lowest. This finding 
further indicated that the forecasting effect of the VMD-
TCN model was better than the forecasting effects of the 
other models. 

 
(a)  

 
(b)  

Fig. 7.  24 h wind power forecasting for different forecasting models. 
(a) 24 h wind power forecasting in February. (b) 24 h wind power 
forecasting in August 
 

Table 1 demonstrates the RMSE and MAE values for the 
forecasting results of each model under different forecasting 
time scales and climatic conditions. As depicted in Fig. 6, 
Fig. 7, and Table 1, the RMSE and MAE values for the 
forecasting error of the VMD-TCN model were lower than 
those of the other models under different climatic conditions 
and forecasting time scales. Such a finding proved that the 
forecasting accuracy of the VMD-TCN model was higher 
than that of the other models. 
 
Table. 1. RMSE and MAE values of the forecasting models 
at different time scales and climatic conditions 
Month Forecast time Models RMSE MAE 

Feb. 4 h VMD-TCN 1.50% 1.22% 
LSTM 2.71% 2.20% 
TCN 2.20% 1.48% 

PSO-BP 3.98% 3.76% 
BP 4.63% 4.42% 

WNN 6.19% 6.05% 
24 h VMD-TCN 4.45% 3.08% 

LSTM 5.93% 4.33% 
TCN 5.37% 4.14% 

PSO-BP 7.26% 6.54% 
BP 7.38% 6.66% 
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WNN 10.34% 9.69% 
Aug. 4 h VMD-TCN 1.03% 0.37% 

LSTM 3.36% 2.72% 
TCN 1.30% 1.05% 

PSO-BP 4.35% 4.02% 
BP 4.65% 3.89% 

WNN 7.59% 7.04% 
24 h VMD-TCN 3.39% 2.66% 

LSTM 4.62% 3.70% 
TCN 3.59% 2.92% 

PSO-BP 4.99% 3.78% 
BP 5.21% 3.80% 

WNN 9.59% 7.67% 
 
4.3 Confidence interval of wind power forecasting 
 
4.3.1 Probability density estimation of wind power 
forecasting errors 
The probability density distribution of the wind power 
forecasting errors must be determined first to calculate the 
confidence interval of wind power forecasting. In this study, 
GMM was used to determine the probability density 
distribution of the wind power forecasting error shown in 
Fig. 8. Fig. 8 reveals the probability density distribution of 
the 24 h wind power forecasting error. The blue box in Fig. 
8 represents the frequency histogram, the red solid line 
represents the probability density distribution of the wind 
power forecasting errors calculated by GMM, and the red 
dotted line represents the probability density distribution of 
the wind power forecasting errors obtained by the single 
Gaussian model. As shown in Fig. 8, the characteristics of 
the wind power forecasting errors described by the 
probability density distribution of the wind power 
forecasting errors obtained by GMM were more accurate 
than those described by the probability density distribution 
of the wind power forecasting errors obtained by a single 
Gaussian model. 
 

 
(a)  

 
(b)  

Fig. 8. Probability density distribution of the 24 h wind power 
forecasting errors. (a) Probability density distribution of the 24 h wind 

power forecasting errors in February. (b) Probability density distribution 
of the 24 h wind power forecasting errors in August 
 
4.3.2 Confidence interval of wind power forecasting 
After the probability density distribution of wind power 
forecasting error was obtained, the confidence intervals of 
wind power forecasting values at different confidence levels 
could be calculated. Figs. 9 and 10 demonstrate the 
distribution of the confidence intervals of the VMD-TCN 
model at 97.5%, 95%, 90%, and 85% confidence levels 
when the forecasting time scales are 4 and 24 h, respectively. 
As shown in Figs. 9 and 10, the real value of wind power 
was within the range of the confidence interval. This finding 
proved that the GMM could be reasonably used to determine 
the probability density distribution of wind power 
forecasting errors. The width of the confidence interval 
increased with the increase in confidence level. This 
scenario aligns with the calculation principle of the 
confidence interval. 
 

 
(a) 

 
(b) 

Fig. 9.  Confidence intervals of the 4 h wind power forecasting using 
the VMD-TCN model. (a) Confidence interval of the 4 h wind power 
forecasting in February. (b) Confidence interval of the 4 h wind power 
forecasting in August 

 
Table 2 demonstrates the coverage rate of the confidence 

interval of wind power forecasting based on the VMD-TCN 
model under different climatic conditions and forecasting 
time scales. The coverage rate of the confidence interval was 
higher than the confidence level. Thus, the confidence 
interval calculation method based on GMM could accurately 
describe the distribution range of the actual output power of 
the wind farm. 
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(a) 

 
(b) 

Fig. 10. Confidence intervals of the 24 h wind power forecasting using 
the VMD-TCN model. (a) Confidence interval of the 24 h wind power 
forecasting in February. (b) Confidence interval of the 24 h wind power 
forecasting in August 
 
 
Table. 2. Coverage rate of the confidence interval 

Month Confidence level 24 h 4 h 

Feb. 

97.5% 97.93% 100% 
95% 95.87% 100% 
90% 90.72% 94.12% 
85% 85.54% 88.24% 

Aug. 

97.5% 97.94% 100% 
95% 95.88% 100% 
90% 91.76% 94.12% 
85% 90.72% 88.24% 

 
 

5 Conclusions 
 
VMD, time convolutional network (TCN), and GMM were 
combined to construct a short-term wind power forecasting 
model and improve further the accuracy of short-term wind 
power forecasting. The calculation results indicate the 
following: 

(1) VMD can effectively overcome the impact of wind 
speed randomness on model forecasting accuracy, thereby 
improving the accuracy of short-term wind power 
forecasting. 

(2) Under different climate conditions and forecasting 
time scales, the short-term wind power forecasting accuracy 
of the VMD-TCN model is higher than the short-term wind 
power forecasting accuracies of WNN, BP neural network, 
PSO-BP hybrid model, LSTM model, and TCN model. This 
finding proves the feasibility and superiority of the short-
term wind power forecasting method based on the VMD-
TCN model proposed in the study. 

(3) GMM can accurately describe the distribution 
characteristics of short-term wind power forecasting errors. 
The confidence interval coverage rate constructed is greater 
than the confidence level under different climate conditions 
and forecasting time scales. 

This study combines the advantages of VMD, TCN, and 
GMM to construct a short-term wind power forecasting 
model. This model effectively overcomes the impact of wind 
speed randomness on the accuracy of wind power 
forecasting. Moreover, it deeply mines the temporal 
correlation between data, thereby improving the forecasting 
accuracy of short-term wind power effectively. However, the 
model constructed in this study cannot effectively extract the 
spatial distribution characteristics of data. Therefore, in 
future research, constructing a short-term wind power 
forecasting model that can deeply explore the spatial and 
temporal distribution characteristics of data will be a key 
breakthrough technology for wind power forecasting. 
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