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Abstract 
 

Stitching the aerial images from an Unmanned Aerial Vehicle (UAV) is usually needed to obtain a more comprehensive 
image information, but the image stitching technology is limited by the requirements of stitching quality and stitching 
speed. This study proposed a method to achieve good quality, fast stitching speed, and good robustness in image stitching. 
A large number of feature points in the intersection region were extracted and incorrect feature matching point pairs were 
accurately filtered out. The area with large cross area of multiple images was extracted as the target area of feature points 
to be extracted. The Scale-Invariant Feature Transform (SIFT) algorithm was employed to extract the feature points in 
the image which was not invariant with illumination, environment, and scale. Given that Brute Force (BF) matching 
soundly produces large number of wrong feature point pairs, the polar constraint was added to improve the matching 
accuracy, and the feature point pairs were further filtered through the Progressive Sample Consensus (PROSAC) 
algorithm. Finally, the homograph transformation matrix was used for image registration, and the fusion algorithm was 
applied to naturally fuse the two images together. Results demonstrate that this algorithm largely reduces the 
computational complexity, improves the speed by 0.124% compared with other algorithms, and improves the 
performance of Root Mean Square Error (RMSE) and Mean Square Error (MAE) by 0.224% and 0.173%, 
respectively. The stitched image quality is obviously better than the general algorithm process. The proposed method 
provides a certain reference for UAV aerial image Mosaic methods. 
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1. Introduction 
 
In recent years, Unmanned Aerial Vehicle (UAV) has been 
widely used in all walks of life. UAV has the characteristics 
of flexible take-off and landing, low operating costs, and 
easy operation [1]. Agricultural irrigation, terrain detection, 
and target tracking are areas where UAV is being used with 
increasing frequency. The demand for UAV has shown a 
gradual increase while also seeing remarkable progress in 
the related technical research with growing units using UAV 
for image information acquisition. In 2000, the American 
professor, Shmuel Peleg, used images from aerial 
photography by UAVs and divided them into narrow strips 
for multiple projections to complete the stitching of images, 
opening up a new breakthrough in image stitching in the 
field of aerial photography by UAVs [2]. 

 However, with the demand for obtaining further 
information from images, obtaining large-area observation 
images became difficult for UAV remote sensing [3]. 
Therefore, stitching the acquired remote-sensing images was 
necessary to improve the information-gathering capability of 
remote-sensing images [4]. Owing to the limitations of flight 
height and camera focal length, images captured by UAV 
have many undesirable characteristics, such as large 
numbers, small image ranges, and high levels of overlap. 
They also require aerial UAV photography to extend the 
field of view for many specific tasks, which still seems 
challenging with the current imagery technology.  

In the existing research, scholars have also carried out 
substantial research on the traditional image stitching 
technology, but certain shortcomings persist in terms of 
stitching speed and stitching quality [5-10]. For example, 
image ghosting, distortion, misalignment, and other aspects 
lead to poor final stitching quality results. Thus, an urgent 
need arises to solve the problem of how to quickly stitch 
together a good and smooth panorama. 

Based on above analysis, this study proposed a method 
to extract a large number of feature points in the intersection 
region and accurately filter out incorrect feature matching 
point pairs. The results proposed in this study have a marked 
increase in image matching speed and a substantial 
improvement in image-matching quality. In turn, the study 
provides a certain reference for the optimization of image 
stitching technology. 
 
 
2. State of the art  
 
Substantial research and improvement are currently being 
done by scholars in the field of aerial UAV photography. For 
example, a Grid-based Motion Statistics (GMS)-Random 
Sample Consensus (RANSAC) based mosaic algorithm for 
UAV aerial images is used to obtain the correct set of high-
quality interior points while reducing the number of 
iterations of the algorithm; this process decreases the time 
complexity of the algorithm without the speed of stitching 
for images where the scale has been transformed [11]. The 
classical Scale-Invariant Feature Transform (SIFT) 
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algorithm has disadvantages such as high dimensionality of 
feature descriptors, high computational effort, and low 
matching efficiency. Therefore, down-sampling of high-
resolution images prior to feature detection has been 
proposed to reduce the number of feature points and improve 
the efficiency of feature detection. However, a reduction in 
the number of feature points leads to a reduction in matching 
accuracy [12]. Lee et al. considered an image stitching 
algorithm with robustness to large parallax based on the new 
concept of warping residuals. The main purpose was to 
alleviate parallax artifacts, but given that it was stitching 
images with large parallax, it slowed down the stitching [13]. 
Existing seam stitching algorithms can eliminate ghosting 
and blurring on the stitched image, whereas distortions and 
angular distortions caused by image alignment will remain 
in the stitching results. To address this problem, a stitching 
strategy based on optimal seams was proposed [14,21]. 
However, this algorithm also suffers from distortion caused 
by image alignment or viewpoint distortion.  

Scholars have proposed a method of dividing images 
into dense grids, each corresponding to a chi-square matrix, 
which highly improves the alignment of the image. At the 
same time, the workload upfront is considerably increased 
[15]. This splice layer was searched by defining the grey-
scale weighted distance and the differential gradient-domain 
as the differential split. However, the computational 
complexity increases [16]. Then, the Speed-Up Robust 
Features (SURF) algorithm was used to stitch aerial images 
from UAVs and found it to be faster than the SIFT algorithm 
at matching images. However, the number of matching 
points was small and unevenly distributed, and the image 
stitching quality was low [17]. To change the problem of 
image distortion, Lin et al. proposed a homologous 
linearization method that smoothly extrapolates the 
distortion from overlapping regions to non-overlapping 
regions. However, this method could lead to the original 
high number of feature points being pushed into non-
overlapping areas, which will ultimately lead to a decrease 
in the accuracy of the stitching [18]. Eden et al. proposed a 
two-step optimal seaming algorithm that can smoothly seam 
images. However, the algorithm suffers from scene motion 
and alignment errors [19]. Superpixel segmentation of the 
overlapping regions of the reference image was performed to 
determine the best stitching position precisely. However, 
determining images with severe distortion was still difficult 
[20,22]. The traditional algorithm was proposed by various 
methods, but the essential distortion and blurring and 
ghosting problems were still not fully resolved [5-10]. 
Metadata-based and image-based stitching methods were 
therefore employed to overcome the challenges of low-
altitude, small-scale UAV deployment. However, the 
situation does not exclude the influence of the external 
environment, and some uncertainty remains [23]. 

The above results focus on improving the distortion, 
ghosting, and image alignment of images, but research 
scarcely examines matching accuracy and stitching speed. 
Therefore, the study proposes the extraction of feature points 
in regions with large crossover areas and the use of the polar 
line constraint algorithm to improve the accuracy of 
matching. It is further purified by the Progressive Sample 
Consensus (PROSAC) algorithm, which has less iteration 
with faster computation capability than the RANSAC 
algorithm. 

The remainder of the study is organized in the following 
layout. Section 3 describes the computation of cross regions, 
the principle of limit constraints, the image stitching process, 

and the PROSAC algorithm. Section 4 analyzes the 
superiority and feasibility of the algorithm proposed in this 
study in concrete terms through experiments. Section 5 
summarizes the conclusions. 
 
 
3. Methodology  
 
3.1 Cross-area detection 
Owing to external environmental interference, such as foggy 
days, rain, wind, and other elements, maintaining a 
consistent UAV flight speed, flight direction, and flight 
posture while using a UAV for aerial photography might be 
challenging. These situations caused images to look blurry, 
distorted, compressed, and magnified. Thus, the result of 
fine image stitching has a certain effect. These studies 
indicate that the feature points will be discovered in the 
region with large cross areas in many images because it is 
one of the crucial phases in image stitching to identify the 
feature points of the image. 
 
3.1.1 Calculation of cross areas 
The prerequisite for extracting the intersection area of aerial 
images of UAVs is to know the distance of the UAV from 
the ground. Therefore, we first have to calculate the flight 
altitude of the UAV and the calculation formula is as follows: 
 

                                                                                         (1) 

 
where  is the ground resolution, which refers to the 
minimum distance between two targets on the captured 
image.  is the focal length of the camera, and is the 
pixel size of the camera. When the camera and its pixels 
are determined on board the UAV, and  are also 
determined. From the above formula, it can be seen that 
the higher the altitude of the UAV, the lower the ground 
resolution, i.e., the lower the clarity and accuracy of the 
image. When the UAV flies at a low altitude, let the 
height and width of the image ground coverage area 

and , the camera angle of view ; from the above 
formula, we can know the flight altitude of the UAV ; 
then, the image resolution, where and are expressed 
as the vertical and horizontal pixel values of the image, 
respectively, can be derived according to the 
trigonometric function. 
 

                                                                       (2) 

 

                                                                                 (3) 

 
The following illustrates three instances of typical 

UAV aerial photography overlapped areas. To locate the 
UAV's coordinates, we use Global Positioning System 
(GPS) signals. Once we have this information, we can use 
the formula above to calculate the size of the intersection 
area and set a threshold. Only overlapping ratios that are 
higher than the threshold of the image pair to match are 
considered. The target area for feature point identification 
may then be utilized to be the portion of the region with 
the largest intersection area. 
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As UAVs photograph different terrains and may not 

fly at the same altitude, the above equation creates 
difficulty in measuring the area measured by the UAV 
when it is flying at a high altitude. Therefore, this study 
also proposes a solution to this situation using the semi-
positive vector formula to calculate the distance between  
two points on the surface of a region. With two points 

and , and  denoted as the longitude and 
latitude of , respectively, the following distances 
between points  and can be obtained from the GPS 
coordinates. 
 

                                         (4) 

 
In the equation above, is the radius of the Earth 

and the angle between the  and  points, and the 
center of the Earth is the azimuth. 
 

                      (5) 
 

The distance and azimuth are computed using the GPS 
coordinates of each imaging center, and the UAV camera 
route is then created accordingly. The total coverage area is 
then determined. To identify the feature points, the 
intersection of many images with a significant rate of 
overlapping is located. 
 
3.2 Polar constraint 
The Brute Force (BF) solution algorithm actually creates a 
brute force matcher. First, it randomly selects a feature point 
in the first image. Then, it performs the distance 
measurement with all the feature points in the second image. 
Finally, it returns the closest feature point, and the matching 
result can be obtained. The BF solution algorithm is a rough 
calculation. The calculation amount is not only large but will 
also obtain several wrong feature matching pairs. 
Consequently, this study adds a polar constraint method. The 
polar constraint is actually a point-to-line constraint and not 
a point-to-point constraint. Nonetheless, this process allows 
the polar constraint to give the constraint condition of the 
corresponding point, which compresses the corresponding 
point matching from the whole image to identify the 

corresponding point on a straight line. The latter narrows the 
search area, which is an effective way to improve matching 
efficiency and reduce matching errors.  
             
3.2.1 How polar constraints work 
When two cameras capture scenes in the same area, a 
geometric correspondence occurs between the camera and 
the system composed of the captured scene. As shown in 
the Fig. 2, and represent the centers of the two 
cameras,  is a point in three-dimensional space, and 

 is a polar plane. The junction of  and  
becomes the baseline, and the intersection points of the 
polar plane and the imaging plane are  and , 
respectively. The intersection points of the baseline and 
the imaging plane are  and , respectively. As the  
point changes in space, the polar plane rotates around the 
axis of the pole.  

For two images  and taken in the same scene, 

any point on will have a corresponding pole line on 

, and the point in  that matches that point must also 
be on that pole. Therefore, erroneous pairs of matching 
points can be filtered out by polar constraints. In Fig. 2, 
three-dimensional vectors  and  contain correlation 
points, and the limit constraint equation can be 
represented by the following formula: 
 

                                                                                (6) 
 
The base matrix is an algebraic description of the polar 

geometric relationship between two viewpoint images taken 
by a general perspective camera. The base matrix is a 
singular 3rd order singular matrix with seven degrees of 
freedom and the following properties: 

 

                                                                       (7)  

 
Fig. 4 also shows that all pixels on the pole line 

where the same polar plane intersects on the left 
correspond to the same polar line on the right, forming a 
correspondence in units of polar lines. If you can find all 
the corresponding polar pairs, then, matching becomes 
convenient. Binocular stereo vision by polar line 
correction is used to complete this step. 
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Fig. 1.  Intersections of different locations 
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Fig. 2. Corresponding geometric diagram 

 
Through calibrated camera parameters, the image is 

projected onto a plane parallel to the baseline so that the 
main optical axes of the two cameras are parallel to each 
other. Through this setup, the intersection of the polar 
plane and the two images is in the same scan line. In this 
way, the same polar pair is in the same row of two 
images, i.e., the -coordinate of the feature point pair 
must be the same, but the -coordinate may not be. 
Thus, the polar constraint step is added as a coarse match 
in the image stitching process. 

 
3.4 Stitching process 
The algorithm process of UAV aerial image stitching based 
on the polar constraint of the intersection area is as follows:  

(1)  Extract the same intersection area of multiple images. 
(2)  Use the SIFT algorithm to extract features and 

maintain the maximum point of the response value. 
(3)  Apply the BF matching algorithm, add the pole line 

constraints, and filter the false matching point pairs. 
(4)  Use the PROSAC algorithm to remove the mismatched 

feature point pairs. 
(5)  By transforming the matrix,calculate the corresponding 

parameters. 
(6)  Use the fusion algorithm to make the image stitching 

more natural and smoother. 
 

 
Fig. 3.  Block diagram of image mosaic algorithm 
 
3.4 Filter feature matching point pairs 
The RANSAC algorithm is frequently used to weed out 
mismatched feature pairs during the precise matching step, 
but the RANSAC algorithm's performance has to be 
increased. The RANSAC method employs random data 
processing. Therefore, if the percentage of false matches is 
too large, the algorithm's complexity is enhanced by 
increasing the number of repetitions. The PROSAC 

approach, which enhances resilience and computational 
efficiency and is more appropriate for UAV image stitching, 
is used in this study. Samples are pre-ordered by mass 
linearly via PROSAC. Samples that are more similar to one 
another are more likely to have internal feature points. Next, 
using the data subset, these internal feature points are 
retrieved, eliminating blind extraction and considerably 
enhancing efficiency. 

This work enhances the matching algorithm to further 
raise the PROSAC method's matching accuracy. Second, the 
matching point pairs are limited by the polar line and 
organized in decreasing order of Euclidean distance. The 
permutation is used to obtain the first reliable data. The 
samples from this collection are then collected and examined. 
The loop ends if the inner point's value exceeds the 
predetermined value. Unless the stop condition is satisfied, 
the value is raised, and the preceding process is repeated. 

 
 

4 Result Analysis and Discussion 
 
4.1 Evaluation indicators 
The algorithm evaluation metrics in this study include four 
aspects: correct matching rate, execution time, Root Mean 
Square Error (RMSE), and Mean Square Error (MAE). 

(1) Correct match rate: indicates the number of 
correct matches and indicates the total number of 
matches.

 
The more the number of correct matchings, the 

higher the correct rate of matching, the better the quality 
of stitching. 
 

                                                                (8) 

 
(2) Execution time: the shorter the execution time, the 

more efficient the stitched image will be. 
(3) RMSE: RMSE is the root mean square error, 

and denote the length and width of the image, 
respectively. and denote the coordinates of 
the image to be evaluated and the coordinates of the 
original image, respectively. 

 

                                  (9) 
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(4) MAE: MAE is the mean absolute error, which 
represents the average of the absolute errors between the 
predicted and observed values. 

 

                                         (10) 

 
4.2 Polar line image effect display 
By experimenting with different algorithms, the figure 
below shows the matching of feature points. As seen from 
the Fig. 4, the SURF algorithm feature matching is 
disorganized with many wrong matching point pairs, which 
 is not ideal. From the figure below, we can see that the 
Oriented Fast and Rotated Brief (ORB) algorithm detects 
fewer feature points, which is insufficient to support the later 
alignment steps. Accelerated-KAZE(AKAZE) algorithm has 
some feature points that are not successfully matched, and 

some are incorrectly matched with poor results. Therefore, 
this study adopts the polar line constraint to match the 
feature point pairs, thereby improving the matching speed 
and reducing the computational effort. As can be seen from 
the Fig. 2, the feature points based on the polar line 
constraint method in Section 3.2 are all on a straight line and 
uniquely determine a point corresponding to it. Considering 
that the polar line constraint also has parallax, the polar line 
constraint serves as the first coarse matching and filters out 
most of the wrong matching point pairs. However, the 
achieved effect remains very obvious and better than the 
general feature matching. 
 
4.3 Splicing effect and evaluation index shown under 
different scenes 
Based on the methodological theory in Section 3, the 
final results are demonstrated.
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OURS                                                    SURF 

                  
ORB                                                       AKAZE 

Fig.5.  The first set of effects is shown 

               
SIFT+BF                                                                                                  SURF+BF 

                
ORB+BF                                                                                                 AKAZE+BF 

Fig. 4.  Comparison before and after adding the limit constraint 
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From the Fig. 5, we can see that under the hazy 
weather condition, the overall stitching of the SURF 
algorithm looks flat, but the effect of alignment and de-
shadowing is still not good enough. The image stitched 
by the ORB algorithm looks blurred, the image stitched 
by the AKAZE algorithm has only some lines left 
unaligned, and the overall stitching effect remains good. 
Compared with these three algorithms, this study uses the 
algorithm stitched image; no blur or alignment inaccuracy 
exists, the whole picture looks smooth and flat, and 
stitching quality is better. 

 The above images show the second set of effects is 
shown. The SURF algorithm stitched the image with 
slight ghosting and only stitched a small number of 
scenes. The ORB algorithm stitched results can show that 
the ghosting phenomenon is serious, resulting in blurred 
images, and the AKAZE algorithm only stitched a small 
part of the scenes as shown in the red box in the Fig 6. 
Finally, this study shows most of the scenes with no 
ghosting, no distortion, and stable performance. The 
following table shows the evaluation indexes of the 
algorithm. The results show that the algorithm in this 
study is significantly better than the other algorithms in 
terms of stitching time and performance. 

The third group of scenes shows obvious line segments. 
The SURF algorithm has ghosting, and the line segments are 
not aligned. The ORB algorithm stitches the image with 
serious distortion and ghosting. The AKAZE algorithm has a 

smooth image surface, and the line segments are not aligned 
at the red box. The algorithm in this study is precisely 
aligned, and the image is clear and smooth. The evaluation 
indexes in the following table also show the superiority of 
the algorithm. 
 
Table 1. First group of image mosaic effect evaluation 

Method Evaluation Indicators 

 (%) Execution 
Time(/s) RMSE MAE 

OURS 97.22 0.041 0.4167 0.3562 
SURF 95.74 0.662 0.5844 0.4573 
ORB 93.88 0.674 0.6645 0.5644 

AKAZE 96.35 0.039 0.4265 0.4289 
 
Table 2. Second group of image mosaic effect evaluation 

Method Evaluation Indicators 

 (%) Execution 
Time(/s) RMSE MAE 

OURS 98.32 0.010 0.3998 0.3244 
SURF 96.34 0.285 0.5774 0.4216 
ORB 94.68 0293 0.6254 0.5239 

AKAZE 97.66 0.029 0.4033 0.4278 
 
 
Table 3. Third group of image mosaic effect evaluation 

Method 
Evaluation Indicators 

 (%) Execution 
Time(/s) RMSE MAE 

OURS 97.57 0.029 0.4211 0.3458 
SURF 96.44 0.049 0.5645 0.4318 

MRC

MRC

MRC

                      
OURS                                                  SURF 

               
ORB                                                        AKAZE 

Fig.7.  The third set of effects is shown 

                  
                                                       OURS                                                       SURF  

                  
ORB                                                       AKAZE 

Fig.6.  The second set of effects is shown 
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ORB 95.98 0.050 0.5667 0.5123 
AKAZE 96.64 0.048 0.5449 0.4276 

 
It can be seen from Table 1, Table 2 and Table 3 that 

the algorithm in this paper is nearly 0.124% ahead of other 
algorithms in matching time, and the RMSE and MAE are 
also significantly better than other algorithms. In general, the 
algorithm in this paper has better performance. 
 
 
5. Conclusions 
 
To create fast, good quality, and robust UAV aerial images 
stitching, the intersection region of the image was extracted 
as the target region for feature point detection based on the 
polar line constraint algorithm, thus determining the unique 
feature matching point in the two photos. The correct rate of 
feature point pairs was further improved by the PROSAC 
algorithm. The following conclusions could be drawn: 

(1) A large number of feature points could be extracted in 
the region with a large intersection area, and the number of 
matched pairs increases significantly. 

(2) The polar line constraint algorithm was used to 
identify a unique matching point pair in two images. 

(3) The PROSAC algorithm was used to further purify the 
feature-matching point pairs while reducing the 

computational effort and largely improving the alignment 
accuracy. 

This study combines theory and experiment to propose 
a new method that will deal with the problem in the process 
of image stitching technology. The proposed stitching 
method can be applied to a variety of fields, such as remote 
sensing positioning, agricultural monitoring, and terrain 
surveying. In the future, further processing speed can be 
attempted to generate stitched images of UAV images or 
videos in real time. 
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